
Supplementary Material
RetailAction: Dataset for Multi-View Spatio-Temporal Localization of

Human-Object Interactions in Retail

Davide Mazzini Alberto Raimondi Bruno Abbate Daniel Fischetti David M Woollard
STANDARD.AI

{davide, alberto, bruno, dan, david.woollard}@standard.ai

Figure 1. An annotated sample from the RetailAction dataset, consisting of two synchronized video streams from different cameras. The
videos capture real people interacting in actual retail stores. The subject performs two actions: taking an item and placing another on a
shelf. Each action is annotated with a categorical label (take, put, touch), a temporal range, and spatial coordinates in both views.

1

1. Dataset Examples
Figure 1 presents additional examples of the RetailAction
dataset. These examples illustrate cases with multiple peo-
ple, multiple actions, or interactions with different types of
shelves.

2. Additional Dataset Statistics
In this section, we provide additional statistics about the
dataset. In particular, Figures 2 and 3 show the distribution
of action duration and segment duration in frames. These
graphs can be compared with those representing the dura-
tion in seconds of segments and actions (Figure 3 in the
paper) to have an idea of the FPS of the generated videos.
As mentioned and as shown in Figure 3, the maximum du-
ration of videos in frames is 32 frames (sampled using a
frame scoring algorithm). This results in a variable FPS,
ranging from 10 FPS to lower values, which can be inferred
by considering the segment duration in seconds. Regarding
the action distribution, it is important to consider that seg-
ments with very short durations in seconds but close to the
maximum length of 32 frames will have a higher FPS. As
a result, short actions will still be represented by a higher
number of frames, which explains the tail in Figure 2.

3. Data Collection Implementation Details
In this section, we provide additional details about the data
collection process. As in the paper, the goal is not to present
the pipeline at a level of detail that would allow full repro-
ducibility—such a description would be too complex and
not sufficiently novel to be covered adequately in these sup-
plemental materials. Rather, our aim is to clarify the role
of each component and highlight the complexity involved
in the development of the pipeline. Understanding the data
collection process can also help readers better interpret the
collected data.

As described in the main paper, the automated video gen-
eration process consists of multiple steps. First, 3D-tracked
poses are generated over time for each shopper. Next, time
intervals corresponding to potential interactions with items
and shelves are identified. Finally, the parameters for select-
ing and generating the interaction videos are determined,
followed by the actual generation and anonymization of the
videos.

3.1. 3D Tracked Pose Generation
2D Pose Estimation – For each camera, a dedicated service
runs a 2D pose detection model at 10 FPS, detecting all peo-
ple within the frame and providing their 2D poses with 24
keypoints per frame. Traditional 2D pose estimation mod-
els do not perform sufficiently well on 360-degree top-view

Figure 2. Histogram of action durations in frames.

10 20 30
Duration (frames)

0

600

1200

1800

2400

Nu
m

be
r o

f a
cti

on
 in

sta
nc

es
Figure 3. Distribution of segment durations in frames.

0 4 8 12 16 20 24 28 32
Number of frames

0

3000

6000

9000

12000

15000

Nu
m

be
r o

f s
eg

m
en

t in
sta

nc
es

cameras. For this reason, we used a version of the Person-
Lab model[?], trained on a proprietary dataset composed of
360-degree views and 2D pose annotations collected from
multiple stores. While we are not able to fully report its per-
formance in this paper due to space limitations, the model
outperforms many state-of-the-art general-purpose pose de-
tection models, even on stores that were not included in its
training set.

Tracking and Triangulation – The 2D poses detected
across all cameras are processed by a centralized service
that performs multi-view matching and cross-frame track-
ing of individuals. This service reconstructs the 3D trajec-
tory of each person and generates 3D poses with 24 key-
points tracked at 10 FPS for each shopper in the store. The
system operates in three steps: first, 2D poses from each

camera are temporally tracked to produce camera-tracklets.
Then, tracklets from different cameras are clustered based
on triangulation error to create unified tracks, which are fi-
nally triangulated to obtain 3D position estimates.

3.2. Identification of Interaction Time Intervals
For each store, a model of shelf positions and dimensions
has been created to provide a spatial reference for tracking
interactions. Using this mapping, a kinematic model based
solely on the 3D trajectories of individuals and the shelf po-
sitions is employed to detect the segments of interest, i.e.,
time intervals with a high probability of containing real in-
teractions with shelf items (referred to as “interaction seg-
ments”). The kinematic model consists of two key steps:
Kinematic Interaction Detection and Segment Merging and
Splitting.

Kinematic Interaction Detection – This step is carried on
by a Graph Convolutional Network [] that operates on 6.4-
second windows and predicts, for 0.4-second sub-windows,
whether an interaction is occurring, providing a confidence
score. Input to the model includes the 3D pose of the in-
dividual and the relative distances between the upper body
joints (hands, wrists, elbows, shoulders, neck) and the near-
est shelf. The model is trained in a supervised manner using
labeled data, where labels correspond to time intervals in
which shoppers are picking up or placing items on shelves.

Segment Merging and Splitting – A deterministic post-
processing step refines the detected interaction segments by
recursively merging consecutive 0.4-second windows with
positive interaction predictions. Subsequent logic is respon-
sible for merging these small windows to generate what we
call interaction segments, aiming to capture complete ac-
tions from start to finish, including some context, without
splitting them while still keeping distinct actions in sepa-
rate segments.

For instance, if two actions occur far apart in time, they
should be assigned to different segments. Similarly, if ac-
tions take place in sufficiently distant locations or involve
different shelves that are far from each other (e.g., one in
front of the other), they should remain separate.

To achieve this, an algorithm iterates over all small win-
dows where an interaction is predicted—i.e., above a certain
confidence threshold, which is set very high to ensure we
meet the required target for our application (99%). The win-
dows are analyzed sequentially, and merging occurs only if
the following conditions are met:

• The time gap between the segments is below a predefined
threshold (fine-tuned to 1.5s).

• At least one of the following holds:
– The person’s average position across the two segments

is within a predefined distance threshold (1m).
– The person is not oriented towards two different

shelves in the two segments.
• The model’s interaction confidence scores at the segment

boundaries are sufficiently high.
An additional temporal padding (fine-tuned to 0.6s) is

applied when merging. All these thresholds were fine-tuned
qualitatively by reviewing thousands of events.

3.3. Video Selection
Best Camera Selection – For each interaction segment, the
system selects two video streams from the most suitable
cameras to ensure optimal visibility of the interaction. A
scoring algorithm evaluates each frame based on whether
the person is visible, potential occlusions caused by shelves,
and the visibility of the upper body joints, particularly the
hands. In a second step, a score grouping algorithm aggre-
gates the scores across frames within the interaction seg-
ment to finally provide a unique ranking of the cameras per
segment and select the two best views.

Spatial Cropping Selection – Once the temporal intervals
have been selected and the camera that best captures the ac-
tion has been identified, a crop must be selected within the
frame from the fisheye camera. The goal is to focus only
on the user performing the interaction, ensuring that the en-
tire action is fully visible without cutting out relevant parts
such as arms or items, while also avoiding excessive con-
text that is unnecessary for action recognition. To achieve
this, we use a model to select the crop, which analyzes the
2D poses of the person in the selected camera view, track-
ing all the pixels occupied by their hands throughout the
segment. The 3D left and right hand positions over time,
denoted as h(3D)

t , are first projected onto the camera image
plane. The cropping box is then determined by computing
the minimum and maximum projected coordinates h

(2D)
t

across the segment, with an additional padding term px, py
that accounts for the person’s distance from the camera in
order to always correspond to 0.4 meters:

xmin = min
t

h
(2D)
t,x − px, xmax = max

t
h
(2D)
t,x + px,

ymin = min
t

h
(2D)
t,y − py, ymax = max

t
h
(2D)
t,y + py.

This ensures that the cropped region encompasses the entire
hand movement while preserving relevant contextual infor-
mation.
Algorithm 1 shows pseudo-code that describes the spatial
cropping selection process, including the extraction of 3D
hand positions, projection onto the image plane, and com-
putation of the final crop bounds.

Temporal Frame Scoring – Finally, a frame selection
algorithm assigns a temporal importance score to each
frame 115 based on kinematic information. This compo-
nent is crucial because these scores are used to perform
subsampling, removing only the less relevant parts of the

video—for example, moments where the person remains
still for a long time. This algorithm relies solely on kine-
matic information, specifically the person’s 3D pose. As
mentioned in the paper, this scoring algorithm analyzes the
velocity and acceleration of the person’s hands, prioritiz-
ing frames with significant movement while downsampling
static frames. In particular, the temporal score for each
frame t is computed as:

score(t) = α

(
a(t)

Amax

)
+ β

(
v(t)

Vmax

)
+ (1− α− β) · c(t)2

Where a(t) and v(t) are the acceleration and the velocity at
time t, Amax and Vmax are the maximum expected acceler-
ation and velocity, c(t) is the confidence score of the kine-
matic interaction detection at time t, α and β are parameters
to give different weights to velocity and acceleration com-
ponents.

In Algorithm 2 we provide a pseudo-code description of
how this algorithm works. Once again, we emphasize that
this method has proven to be qualitatively effective in se-
lecting the most important frames.

Anonymization and Storage – A final processing step ap-
plies facial blurring to anonymize all individuals appearing
in the videos. Face detection is performed using 2D pose
predictions. Additionally, all timestamps are anonymized
by resetting them to the reference date of 1970, and any ref-
erences to store names are either removed or blurred if vis-
ible in the videos. Once anonymization is complete, videos
are stored alongside metadata.

Algorithm 1: Spatial Cropping Selection
Input: Camera ID cam num, Person Track person track, Padding Size bounds pad
Output: Cropping Bounds (xmin, xmax, ymin, ymax)

/* Extract 3D positions of left and right hands over time */
hand pos 3d← get hand positions(person track) ;

/* Retrieve camera model */
camera← get camera(cam num) ;

if len(hand pos 3d) = 0 then
return None /* No valid hand positions found */

/* Project 3D hand positions onto 2D image plane */
proj ← camera.project points(hand pos 3d) ;

/* Compute crop boundaries */
xmin ← min(proj[:, 0]), xmax ← max(proj[:, 0]) ;
ymin ← min(proj[:, 1]), ymax ← max(proj[:, 1]) ;

/* Apply padding to maintain a fixed real-world size of bounds pad (0.4m) */
if bounds pad > 0 then

(px, py)← get padding based on distance(camera, hand poses array, bounds pad) ;
if not any(isnan([px, py])) then

xmin ← xmin − px, xmax ← xmax + px ;
ymin ← ymin − py, ymax ← ymax + py ;

return (xmin, xmax, ymin, ymax)

Algorithm 2: Temporal Frame Scoring Algorithm
Input: left hand pos, right hand pos: 3D hand positions over time, times:

corresponding timestamps, model confidences: list of model confidences
for each timestamp

Output: scores: list of timestamps and their corresponding scores

MAX SPEED ← 1.5 /* m/s */
MAX ACCELERATION ← 30.0 /* m/s2 */
SPEED WEIGHT ← 0.35
ACCELERATION WEIGHT ← 0.6
lookback ← 3
default speed←MAX SPEED/5, default acceleration←MAX ACCELERATION/10

SCORE KERNEL← array([0.6, 0.7, 0.8, 0.9, 1.0, 0.9, 0.8, 0.7, 0.6])
SCORE KERNEL← SCORE KERNEL/sum(SCORE KERNEL) /* This kernel gives
more weight to the central part of the segment, emphasizing the middle frames
while reducing the influence of frames at the edges of the segment. */

prev left, prev left velocity, prev right, prev right velocity ← []
scores← []

foreach (left hand, right hand, ts, conf) ∈ (left hand pos, right hand pos, times,model confidences) do
speeds, accelerations← [], []

foreach (current hand, prev hands, prev velocity) ∈
[(left hand, prev left, prev left velocity), (right hand, prev right, prev right velocity)] do

hand is none← (current hand = None) ∨ (isnan(current hand[0]))

if len(prev hands) = 0 ∨ hand is none then
speed← default speed, acceleration← default acceleration
if not hand is none then

Append (current hand, ts) to prev hands

else
velocity ← 1

lookback

∑
prev∈prev hands[−lookback:]

(current hand−prev[0])
ts−prev[1]

speed← ||velocity||
if len(prev velocity) = 0 then

acceleration← default acceleration

else
acceleration← || 1

lookback

∑
prev∈prev velocity[−lookback:]

(velocity−prev[0])
ts−prev[1] ||

Append (current hand, ts) to prev hands
Append (velocity, ts) to prev velocity

Append speed to speeds, Append acceleration to accelerations

speed← min(MAX SPEED,max(speeds))
acceleration← min(MAX ACCELERATION,max(accelerations))

score← ACCELERATION WEIGHT× acceleration
MAX ACCELERATION +SPEED WEIGHT× speed

MAX SPEED
+(1− SPEED WEIGHT −ACCELERATION WEIGHT)× conf2

Append (ts, score) to scores

if len(scores) > 0 then
scores array ← [score for (,score) ∈ scores]
scores array ← convolve(scores array, SCORE KERNEL)
scores← [(ts, score) for (ts,) , score in zip(scores, scores array)]

return scores

	Dataset Examples
	Additional Dataset Statistics
	Data Collection Implementation Details
	3D Tracked Pose Generation
	Identification of Interaction Time Intervals
	Video Selection

