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Supplementary Material

6. Appendix
This appendix presents supplementary analyses and ex-
tended experimental results that complement the findings
reported in the main paper to offer a more comprehensive
understanding of our proposed framework.

6.1. More Details on Datasets
Hyperspectral data consists of images captured across hun-
dreds of narrow, contiguous spectral bands, allowing each
pixel to contain a detailed reflectance spectrum. This rich
spectral information enables fine-grained material identifi-
cation and discrimination that is not possible with conven-
tional RGB or multispectral imagery. HSI datasets [1] are
essential in remote sensing, and provide detailed spectral
information across hundreds of bands. Among the most fre-
quently studied datasets are Indian Pines, Salinas Scene, &
Botswana, each offering unique characteristics and applica-
tions. The Indian Pines dataset, collected by the AVIRIS
sensor over Indiana, USA, contains 145×145 pixels and
220 spectral bands, covering wavelengths from 0.4 µm to
2.5 µm. It mainly consists of agricultural fields and forested
areas, with 16 ground truth classes and approximately
10,249 labeled samples. Classification on this dataset is
challenging due to class imbalance, high spectral similarity
among crop types, and the presence of mixed pixels.

The Salinas Scene dataset, also captured by AVIRIS,
represents agricultural land in California’s Salinas Valley.
It features higher spatial resolution with 512×217 pixels,
224 spectral bands (excluding 20 bands affected by wa-
ter absorption), and 16 land-cover classes, with a total of
approximately 54,129 labeled samples. Salinas Scene is
the largest among the three in terms of both spatial resolu-
tion and labeled data, making it especially well-suited for
detailed agricultural studies.

Botswana dataset, acquired by NASA’s Hyperion sensor
aboard the EO-1 satellite, covers the Okavango Delta—an
ecologically rich wetland. After removing water absorp-
tion bands, it includes 145 spectral bands and is commonly
cropped to 145×145 pixels from its original 256×1476 di-
mensions. It has 14 land cover classes and around 3,248
labeled samples. Botswana exhibits high spectral variation
due to the diverse natural vegetation and wetland features,
making it particularly valuable for environmental monitor-
ing. Table 7 provides a comparative summary of these
datasets. Common challenges in working with HSI include
high dimensionality, spectral redundancy, and difficulty in
distinguishing between spectrally similar classes.

6.2. Additional Experimental Setup Details
In this work, we employ a warm restart learning rate sched-
uler to enhance model convergence. The scheduler begins
training with a preset learning rate and gradually reduces it
using exponential decay. To avoid the model getting trapped
in local minima or plateaus, the learning rate is reset after
a considerable period for all three datasets. This cyclical
reset enables the optimizer to explore new regions of the
loss landscape, striking an effective balance between explo-
ration and exploitation. To enhance model generalization,
we apply simple yet effective augmentation techniques to
the HSI data. Each training patch is randomly subjected to
horizontal and vertical flips, followed by rotations of 90◦,
180◦, or 270◦.

Observation 1: Flatter and Dataset-Invariant Loss
Landscape of CPDGAL

CPDGAL forms a well-defined convex loss land-
scape with a broad, flatter global minimum com-
pared to supervised ViT. This flatness correlates
strongly with improved generalization, enabling the
model to avoid saddle points and suboptimal traps
across datasets. The loss topology remains consis-
tent despite different initializations. This ensures re-
liable convergence to optimal solutions.

6.3. Details on Evaluation Metrics
In hyperspectral image (HSI) classification, we employ
three widely used evaluation metrics: Overall Accuracy
(OA), Average Accuracy (AA), and the Kappa coefficient
(κ). These metrics provide complementary perspectives on
classification performance, particularly in the presence of
class imbalance. OA is defined as the proportion of cor-
rectly classified pixels across all classes. OA is intuitive
and easy to interpret, but can be misleading for imbalanced
datasets, as large classes dominate the metric.

AA computes mean of per-class accuracies. It balances
classification performance across all classes. AA treats each
class equally, regardless of its size, making it particularly
important in HSI datasets where minority classes are of-
ten underrepresented. κ is the agreement between predicted
and true labels, adjusted for chance. κ is more robust than
OA in imbalanced settings, as it discounts the accuracy that
could be achieved by random guessing. κ value close to 1
shows strong agreement, 0 indicates random performance,
and negative values indicate disagreement.



Table 7. Details on Indian Pines, Salinas, and Botswana Hyperspectral Datasets
Feature Indian Pines Salinas Botswana

Location Indiana, USA California, USA Okavango Delta, Botswana
Sensor AVIRIS (airborne) AVIRIS (airborne) Hyperion (satellite)
Spatial Size 145 × 145 px 512 × 217 px 256 × 1476 (cropped to

145×145) px
Spectral Bands 220 224 (20 removed) 145
Ground Truth Classes 16 (crops, forest) 16 (agriculture) 14 (natural land cover)
Labeled Samples 10,249 54,129 3,248
Primary Use Agricultural land classification Crop classification Environmental analysis
Major Challenge Spectral similarity between crops High-resolution spectral variation Complex vegetation-water inter-

actions

6.4. Analysis of Results with Additional SOTA

To ensure a thorough evaluation, we compare our pro-
posed CPDGAL approach with four additional state-of-the-
art (SOTA) methods identified through an extensive liter-
ature review. SSAN [27] introduced the Spectral-Spatial
Attention Network, which incorporates an attention module
into a simple spectral-spatial framework to reduce the im-
pact of interfering pixels near land-cover boundaries. SST-
FA [10] proposed the Spatial-Spectral Transformer (SST),
combining CNNs for spatial representation with a modified
transformer to model spectral sequences. This hybrid archi-
tecture demonstrates how attention-based models can out-
perform traditional CNNs in hyperspectral image classifica-
tion tasks. 3DSA-MFN [20] presented a 3D Self-Attention
Multiscale Feature Fusion Network that integrates multi-
scale convolutions with a 3D self-attention mechanism to
effectively capture both local and long-range dependencies.
SSL [13] developed a self-supervised learning framework
that reconstructs the central pixel of a hyperspectral patch
using global context. By embedding spatial priors into the
transformer architecture, this method addresses the lack of
inductive bias noted by [32]. Additionally, it combines
pixel-wise reconstruction with metric space projections to
learn both local and global features.

Table 8 presents a comparative evaluation of CPDGAL
against these methods on the Indian Pines (IP) and Sali-
nas datasets. CPDGAL achieves the highest performance
across both datasets in terms of overall accuracy (OA) and
Kappa coefficient (κ). On IP, CPDGAL achieves an OA
of 97.34% and κ of 97.21, outperforming the second-best
SSL method [13] by +0.79% in OA and +1.11 in κ. It also
surpasses 3DSA-MFN [20] (96.02% OA) and SSAN [27]
(95.49% OA), while SST-FA [10] lags notably behind, em-
phasizing the performance gap between newer transformer-
based/self-supervised models and earlier architectures. On
the Salinas dataset, where most methods already yield near-
saturation accuracy, CPDGAL still leads with 99.87% OA
and 99.81 κ, slightly outperforming SSL (99.85% OA,
99.75 κ) and 3DSA-MFN (99.72% OA, 99.13 κ). The im-
provement in the ∆ row further highlights CPDGAL’s edge,
with gains of +0.79% OA and +1.11 κ on IP, and smaller
but meaningful margins on Salinas. The average per-class

accuracy (AA) highlights the performance of the methods
across all classes, particularly on minority classes. On the
IP dataset, our method achieves an AA of 96.74%, out-
performing the best baseline (SSAN) by 2.57%, and in-
dicates a strong robustness to class imbalance. On Sali-
nas, our technique attains an AA of 99.41%, slightly lower
than SSL (99.73%), yet it achieves the highest OA and κ,
showing that it maintains an overall classification balance
while slightly trading off on uniform per-class performance.
These show CPDGAL’s strong classification performance
and robust generalization across diverse data settings.

Observation 2: Optimal Model Complexity

Increasing embedding dimension D, number of
heads h, and layers L improves accuracy until sat-
uration at (32, 8, 6). Further scaling leads to dimin-
ishing returns and possible overfitting.

6.5. Convergence Trends through Active Learning

Figure 8 shows the training and validation accuracy curves
over different active learning cycles. For the Indian Pines
dataset, using a 90% hold-out test set and a 10% training
set, the configuration with 5% initial labeled data followed
by 2% acquisitions per cycle demonstrates stable and effi-
cient convergence. The model reaches approximately 80%
accuracy by the 3rd cycle, surpasses 90% at the 12th cycle,
and exceeds 97% accuracy after the 22nd cycle. Beyond this
point, the performance gradually stabilizes and indicates di-
minishing returns from further active learning cycles.

For Botswana, we use 90% hold-out test set & 10% train-
ing set similar to IP. With a 5% initial labeled fraction and
iterative acquisition of 2% of the remaining unlabeled pool
per cycle, the model exhibits a rapid and stable learning tra-
jectory. Accuracy improves from approximately 50% in ini-
tial cycles to 90% by the 10th cycle, surpasses 98% between
the 19th and 21st cycles, and subsequently stabilizes. Be-
yond the 25th cycle, performance plateaus, indicating that
additional cycles yield negligible gains. This behavior un-
derscores the efficiency of moderate initial supervision in
driving convergence while avoiding early saturation effects.

For the Salinas dataset, we employ a more constrained



Table 8. Comparison with additional SOTA methods on Indian Pines and Salinas datasets.

Methods
Indian Pines Salinas

OA (%) AA (%) κ OA (%) AA (%) κ

SSAN [27] TGRS ’20 95.49 94.17 94.85 96.81 98.33 96.54
SST-FA [10] RS ’21 88.98 68.15 86.70 94.94 93.05 94.32
3DSA-MFN [20] RS ’22 96.02 93.89 94.78 99.72 99.32 99.13
SSL [13] ICLR ’23 96.55 93.12 96.10 99.85 99.73 99.75

OURS 97.34 96.74 97.21 99.87 99.41 99.81
∆ +0.79 +2.57 +1.11 +0.02 -0.32 +0.06

training set of 2% and a 98% test set. Here, the initial la-
beled fraction is relatively high at 10%, and the same frac-
tion is acquired in each subsequent cycle for optimal perfor-
mance. Owing to the richer supervision from the outset, the
model converges significantly faster, reaching near-perfect
accuracy by the 6th cycle. This shows the strong influence
of initial sample richness on active learning efficiency in
high-resolution hyperspectral datasets.

6.6. Impact of Pre-training with Limited Samples
on Active Learning Convergence

Fig. 9 shows the impact of the pre-training phase with lim-
ited samples on active cycles for Botswana dataset. Fig. 9
(a) demonstrates that in the 1% initial pre-training setup,
the model begins with an accuracy ranging from 35% to
50% in the first three cycles and shows a steady upward
trend across subsequent active learning phases. By the 13th

cycle, accuracy surpasses the 90% threshold. Further im-
provements are observed until the 25th to 27th cycles, where
the model reaches the 98% mark. Beyond this point, accu-
racy stabilizes slightly above 98%, indicating convergence
with minimal fluctuations in the remaining cycles.

In the 5% initial pre-training configuration (Fig. 9 (b)),
the model exhibits an early-phase accuracy between 50%
and 60% across cycles 1–3, reflecting the beneficial effect of
a richer pre-trained feature space in accelerating subsequent
active learning gains. The performance trajectory demon-
strates a rapid improvement, surpassing the 90% threshold
by the 10th cycle. High-confidence convergence is achieved
between cycles 19–21, where accuracy exceeds 98%. Post-
convergence, the performance profile remains remarkably
stable, with minimal inter-cycle variance and substantial
overlap of learning curves beyond the 25th cycle, indicating
diminishing marginal returns from further retraining. The
empirical “sweet spot” for this setup is observed between
cycles 20–25, the point where the cost of additional sam-
pling no longer yields significant accuracy improvements.

In the 10% initial pre-training configuration (Fig. 9 (c)),
the model benefits from a substantially more informative
initialization, attaining close to 80% accuracy by cycle 3,
which is markedly higher than the 5% setup during the same

phase. The 90% benchmark is reached by cycles 10–12,
followed by a progression to above 98% accuracy in the cy-
cle 19–21 range. Stability is largely maintained between
cycles 22–24, although a transient degradation in accuracy
is observed around the 25th cycle, which may be attributable
to catastrophic forgetting effects. When the initial labeled
set is large (e.g., 10% setup), the early-stage model exhibits
higher accuracy due to richer supervision. However, this
also means that the active learning acquisition in subse-
quent cycles has fewer truly informative or diverse samples
to select from, and this can increase the chance of sample
selection bias. Over multiple cycles, such bias can intro-
duce catastrophic forgetting effects, particularly if newly
acquired samples disproportionately represent a subset of
the feature space, leading to temporary degradation in ac-
curacy before re-stabilization.

The system subsequently recovers, achieving late-phase
stabilization between cycles 27–30. This final convergence
occurs marginally later than in 5% setup. This implies that
larger initial pre-training can introduce different long-term
stability characteristics. Such delayed stabilization may re-
flect a more gradual resolution of residual high-uncertainty
regions within the feature space, even after rapid early im-
provements. The experimental protocol is designed to eval-
uate the impact of varying initial labeled set sizes on the
convergence dynamics of active learning. The full dataset
is partitioned into 10% training and 90% holdout test sub-
set to ensure unbiased evaluation. From the 10% training
subset, an initial labeled pool is randomly sampled to ini-
tialize the model. In each active learning cycle, an addi-
tional 2% of samples is selected from the remaining train-
ing subset (labels were not used) based on our acquisition
function and incorporated into the labeled set for retrain-
ing. This acquisition–retraining loop is repeated for a total
of 30 cycles and visualized in Fig. 9. The only factor varied
across the three experimental setups is the size of the ini-
tial labeled set: (a) 1% of the training subset (low-resource
initialization), (b) 5% (medium-resource initialization), and
(c) 10% (high-resource initialization). All other hyperpa-
rameters, model architectures, and training configurations
are held constant across experiments.
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Figure 8. Evolution of validation and training accuracy across successive active learning cycles on three datasets. The top row corresponds
to the Indian Pines dataset, the middle row to Botswana, and the bottom row to Salinas. For each dataset, the dotted lines depict the
progression of training accuracy, while the bold lines present the corresponding validation accuracy on the held-out test set.
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Figure 9. Impact of pre-training with limited samples on active learning convergence for Botswana: The dataset is split into 10% training
and 90% hold-out test sets. From the 10% training set, a random initial labeled set is selected, followed by iterative retraining using 2% of
samples from the remaining unlabeled set per cycle. The size of the initial labeled set is varied: (a) 1%, (b) 5%, and (c) 10%.



6.7. Expected Model Improvement (EMI) Analysis
To quantitatively assess the efficiency of label utilization
in our active learning pipeline, we compute the Expected
Model Improvement (EMI), formally defined as the ratio
between the incremental change in validation accuracy and
the corresponding increase in the number of labeled sam-
ples. This metric captures the marginal utility per annota-
tion, and enables a fine-grained comparison of how effec-
tively each newly acquired label contributes to model per-
formance across acquisition cycles. It is defined as:

EMI =
∆Accuracy
∆Nlabels

For active learning, ∆Accuracy is measured between
consecutive cycles, and ∆Nlabels is the number of newly la-
beled samples acquired in that cycle. A high EMI value
indicates that the model achieves a substantial performance
gain per additional labeled sample, and this reflects high la-
bel efficiency. As active learning progresses, EMI typically
decreases, revealing the onset of diminishing returns, where
each new label provides progressively less improvement.
Unlike absolute accuracy curves, EMI captures marginal
utility of labeling decisions. This enables a direct compar-
ison of the cost-effectiveness of different strategies. This
perspective is crucial in scenarios where annotation costs
are significant, and traditional accuracy plots fail to reveal
the relative efficiency of label acquisition. EMI directly
aligns with the core objective of active learning: maxi-
mizing performance gains while minimizing labeling effort.
Trajectories of EMI for different acquisition budgets have
been depicted in Fig. 6.

6.8. Evolution of Entropy Distribution During Ac-
tive Learning

The entropy distribution heatmap captures the temporal
evolution of model uncertainty within the remaining unla-
beled pool over successive active learning cycles. Fig. 7
shows that, at the outset, the distribution is skewed towards
higher-entropy bins, reflecting substantial predictive uncer-
tainty across a large pool of unlabeled instances. As cy-
cles progress, pool size decreases due to iterative acquisi-
tion and labeling, and the distribution’s mass shifts towards
lower-entropy bins. This indicates that the model becomes
increasingly confident in the unlabeled remainder. Never-
theless, a non-negligible fraction of samples consistently
occupy higher-entropy bins in later cycles, revealing the
presence of intrinsically hard or ambiguous cases that resist
confident classification. This persistence is a hallmark of
uncertainty-driven querying: the model repeatedly targets
the most informative (high-entropy) instances, thereby con-
centrating labeling resources on samples with the highest
potential for marginal utility, even as the overall uncertainty
landscape contracts.

As seen in the main paper, for the 2% acquisition bud-
get, the heatmap shows a globally lighter color distribution,
which indicates fewer samples in the low-entropy region
across all cycles. This pattern reflects that a larger acqui-
sition rate rapidly removes low-uncertainty samples from
the unlabeled pool (remaining training corpus), which ac-
celerates model convergence and prevents the accumulation
of redundant data points. The relative absence of deep yel-
low near the low-entropy bins towards the end implies that
the model confidently generalizes across the dataset, with
little residual ambiguity in predictions. The evolution of
low-entropy mass can be formalized via the per-cycle en-
tropy distribution pt(e), where e ∈ [0, log(14)] ≈ [0, 2.64]
(with 14 classes present in the Botswana dataset). After dis-
cretization into bins indexed by i, the entropy drop is

∆Ht = H(pt−1)−H(pt),

where, H(pt) = −
∑
i

pt(ei) log pt(ei),

which quantifies the uncertainty removed from the unla-
beled pool at cycle t. We infer that the reduction in entropy
can be directly related to the expected model improvement
(EMI), allowing us to quantify the marginal utility of label-
ing additional samples. This can be expressed as

EMIt ≈ −
∆Ht

∆Nlabels
,

and reveals that lower acquisition budgets amplify marginal
utility but with high variance, producing oscillations;
whereas, larger budgets smoothen ∆Ht and stabilize EMI,
explaining consistent convergence observed for 2% setting.

6.9. Alignment with Sustainability
Beyond technical results, the proposed model, CPDGAL,
supports key sustainable development goals. Its efficient,
adaptable design can aid precision agriculture, environmen-
tal monitoring, and biodiversity assessment. By reducing
energy use and resource demands, it also contributes to low-
ering barriers for adoption of this model in resource-limited
regions for long-term access as a sustainable monitoring
tool.
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