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This supplementary document provides additional details to complement the main paper. It aims to facilitate reproducibil-
ity and deepen the understanding of our proposed LEGNet, including its architectural design, core components, and extensive
experimental validation.

The appendix is organized as follows:
• Appendix A provides detailed descriptions of the datasets used for evaluation and the experimental setup.
• Appendix B presents the specific architectural configurations for the different variants of LEGNet (Tiny and Small).
• Appendix C includes an in-depth discussion on our key design choices, particularly the rationale for employing explicit

priors and the sensitivity of hyperparameters.
• Appendix D offers a visual analysis of intermediate feature responses, providing insight into how LEGNet enhances feature

representations compared to other methods.
• Appendix E showcases additional qualitative results, visualizing detection performance on the DOTA-v1.0 benchmark.

A. Datasets and Experimental Setup
As shown in Tab. 1, LEGNet was evaluated on five well-established datasets for object detection in remote sensing im-
ages: DOTA 1.0 [9], DOTA 1.5 [9], DIOR-R [2], FAIR1M-v1.0 [8], and VisDrone2019 [3]. These datasets provide diverse
challenges, including variations in object scale, orientation, density, and environmental conditions, making them ideal for
assessing the robustness of object detection models.

Dataset Train Set Test Set Instances Categories Resolution Key Features

DOTA-v1.0 21,046 10,833 188,282 15 1,024 × 1,024 High-resolution, diverse object sizes, aspect ratios, orientations

DOTA-v1.5 21,046 10,833 403,318 16 1,024 × 1,024 Adds small object annotations and container crane category, orientations

DIOR-R 11,725 11,738 192,472 20 800 × 800 high inter-class similarity, intra-class diversity, orientations

FAIR1M-v1.0 95,396 48,701 >1,000,000 5 (37 sub)
682 × 682,

1,024 × 1,024,
2,048 × 2,048

Large-scale, fine-grained categories, geographic metadata, orientations

VisDrone2019 6,471 548 >2,600,000 10

480 × 360
to

2,000 × 1,500
(Varies)

Drone-based, dense targets, complex backgrounds, diverse scenarios

Table 1. Comparison of Remote Sensing Object Detection Datasets

• DOTA-v1.0 and v1.5. The datasets are widely recognized benchmark for object detection in aerial images, featuring
high-resolution images ranging from 800 × 800 to 20,000 × 20,000 pixels. The datasets were split into training (1,411
images), validation (458 images), and test sets (937 images). To meet the DOTA-v1.0 and v1.5 benchmark, images were
divided into 1,024 × 1,024 patches with a 200-pixel overlap, resulting in approximately 21,046 patches for training and
10,833 for testing. Models were trained on the combined training and validation sets, and their performance was evaluated
on the test set.
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DOTA-v1.0 comprises 2,806 images with 188,282 annotated instances across 15 categories, including Plane (PL), Baseball
diamond (BD), Bridge (BR), Ground track field (GTF), Small vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court (TC),
Basketball court (BC), Storage tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and
Helicopter (HC). Its diversity in object sizes, orientations, and aspect ratios poses significant challenges for oriented object
detection. DOTA-v1.5 builds upon DOTA-v1.0 by incorporating annotations for extremely small objects (less than 10 pixels)
and introducing a new category, container crane (CC), increasing the total to 403,318 instances. This makes DOTA-v1.5
particularly suited for evaluating models on small and densely packed objects.

• DIOR-R. Derived from the DIOR dataset [5], DIOR-R is tailored for object detection in optical remote sensing images
with oriented bounding box (OBB) annotations for precise localization. It includes 23,463 images, each at 800 × 800 pixels,
with 192,472 annotated instances across 20 categories, such as airplanes, ships, and baseball fields. The dataset’s high
inter-class similarity and intra-class diversity challenge models to distinguish between visually similar objects.

• FAIR1M-v1.0. FAIR1M-v1.0 is one of the largest datasets for fine-grained object detection in high-resolution remote
sensing images, containing 15,266 images with over 1 million annotated instances. These are organized into 5 main categories
and 37 sub-categories, with images captured at resolutions of 0.3–0.8 meters. To ensure fairness, we follow the same dataset
processing approach as LSKNet [6]. We adopt multi-scale training and testing strategy by first rescaling the images into three
scales (0.5, 1.0, 1.5), and then cropping each scaled image into 1,024 × 1,024 sub-images with a patch overlap of 500 pixels,
resulting in approximately 95,396 patches for training and 48,701 for testing. The dataset includes geographic metadata, such
as latitude, longitude, and resolution, enhancing its utility for geospatial applications. Its scale and fine-grained categorization
make it ideal for testing models on complex, large-scale detection tasks.

• VisDrone2019. The dataset is a comprehensive benchmark for drone-based object detection, consisting of 10,209 static
images captured by various drone-mounted cameras across diverse urban and rural environments. It features over 2.6 million
bounding box annotations across 10 categories, including pedestrians, cars, and bicycles, under varying weather and lighting
conditions. The dataset’s dense target distributions and complex backgrounds make it a challenging testbed for developing
robust detection algorithms for unmanned aerial vehicle (UAV) images.

B. LEGNet Configuration Details

Stage
Downs. Layer (Input / Output) channels (C)

Rate Specification Tiny Small

1 H
4 × W

4

LoG-Stem Layer 3/32 3/64

[LEG Block] ×N1 32/32 64/64

2 H
8 × W

8

DRFD Module 32/64 64/128

[LEG Block] ×N2 64/64 128/128

3 H
16 × W

16

DRFD Module 64/128 128/256

[LEG Block] ×N3 128/128 256/256

4 H
32 × W

32

DRFD Module 128/256 256/512

[LEG Block] ×N4 256/256 512/512

Number of Block [N1, N2, N3, N4] = [1, 4, 4, 2]

Table 2. Architecture configurations of LEGNet.

Tab. 2 provides the architectural configurations of LEGNet, which features two distinct scales (Tiny and Small) structured
into four sequential stages. Each stage progressively downsamples the spatial resolution of the input feature maps. Each
stage commences with an initial layer responsible for downsampling, followed by a series of repeated LEG Blocks (Ni×).
Stage 1.
Downsampling Rate: The spatial resolution is reduced to H/4×W/4 relative to the original input dimensions.
Initial Layer: A ‘LoG-Stem Layer’ processes the input. For the Tiny configuration, it transforms 3 input channels to 32
output channels (3/32). For the Small configuration, it maps 3 input channels to 64 output channels (3/64). This indicates
an initial feature extraction and channel expansion.
Core Blocks: This stage includes N1 repetitions of the ‘[LEG Block]’. Both Tiny and Small versions maintain the channel
dimensions within these blocks (Tiny: 32/32; Small: 64/64), indicating a focus on learning hierarchical features without



further channel changes at this sub-stage.
Stage 2.
Downsampling Rate: The spatial resolution is further reduced to H/8×W/8.
Initial Layer: A ‘DRFD Module’ is employed for inter-stage transition and downsampling. The Tiny model expands channels
from 32 to 64 (32/64), while the Small model expands from 64 to 128 (64/128). This module incorporates downsampling
operations to achieve the specified resolution reduction.
Core Blocks: This stage comprises N2 ‘[LEG Block]’ repetitions. Channels are maintained within these blocks (Tiny: 64/64;
Small: 128/128), suggesting the primary role of these blocks is to refine features at the current resolution.
Stage 3.
Downsampling Rate: The spatial resolution is reduced to H/16×W/16.
Initial Layer: Another ‘DRFD Module’ facilitates the transition. The Tiny model maps channels from 64 to 128 (64/128),
and the Small model maps from 128 to 256 (128/256). This continues the pattern of channel expansion and downsampling.
Core Blocks: N3 ‘[LEG Block]’ repetitions are used, preserving channel dimensions (Tiny: 128/128; Small: 256/256).
Stage 4.
Downsampling Rate: The final downsampling brings the resolution to H/32×W/32.
Initial Layer: The last ‘DRFD Module’ handles the transition. The Tiny model transforms channels from 128 to 256
(128/256), and the Small model from 256 to 512 (256/512).
Core Blocks: N4 ‘[LEG Block]’ repetitions are present, maintaining channel dimensions (Tiny: 256/256; Small: 512/512).

Block Repetitions. The number of ‘LEG Block’ repetitions for each stage, denoted as [N1, N2, N3, N4], is consistently
set to [1, 4, 4, 2] for both Tiny and Small configurations.

C. Discussion on Design Choices
This section elaborates on key design choices within LEGNet, providing the rationale for embedding explicit priors over
purely end-to-end learning and discussing the sensitivity of crucial hyperparameters.

C.1. Rationale for Employing Explicit Priors
A natural question regarding our approach is why we chose to explicitly encode priors, such as edge and Gaussian features,
rather than relying on a sufficiently deep or complex network (e.g., a Transformer-based model) to learn them automatically.
While modern deep networks possess immense learning capabilities, our approach of embedding explicit priors offers several
distinct advantages, particularly in the context of our goal to build a lightweight and robust backbone for RSOD.
• Data and Parameter Efficiency: Learning fundamental concepts like edges or Gaussian-like attention from scratch is

a parameter-intensive task. By embedding these priors through parameter-free operators (our LoG-Stem and the fixed
Scharr/Gaussian filters in the EGA module), we provide the network with a strong, built-in ”head start.” This makes the
model significantly more data-efficient and allows it to achieve high performance with a much lower parameter count—a
core objective of our lightweight LEGNet design.

• Robustness to Degradation: This is a cornerstone of our motivation. End-to-end models learn features based on statistical
patterns in the training data. When input images are degraded (e.g., due to blur, low contrast, or noise), these patterns can
become weak or distorted, causing learned filters to fail. In contrast, our explicit edge detectors are deterministic operators
that can reliably extract structural information even from degraded signals. By providing the network with this robust edge
map, we ensure that subsequent layers receive meaningful structural cues, enhancing the model’s resilience to poor imaging
conditions.

• Guided Learning and Regularization: Explicit priors act as a strong inductive bias, guiding the network to focus on
structurally relevant information from the earliest stages. This serves as a form of regularization, discouraging the model
from overfitting to spurious textures or background noise. As discussed in our macro design (??), this biases the model
towards learning ”the right features for the right reasons,” leading to better generalization.

• Interpretability: The use of well-defined operators like Laplacian of Gaussian provides a degree of interpretability to the
early-stage feature extraction process. We know precisely that the initial layers are enhancing edges, which aligns with
human visual processing and provides clearer insight into the model’s behavior, as supported by our feature visualizations
in Fig. 1 of the Appendix.
In summary, our choice is not based on the premise that deep networks *cannot* learn these features, but rather that

explicitly encoding them provides a more efficient, robust, and targeted pathway to building a high-performing lightweight
model for the specific challenges of RSOD.



C.2. Discussion on Hyperparameter Sensitivity
The hyperparameters of the Gaussian kernel, namely its size and bandwidth (standard deviation, σ), are influential compo-
nents of the EGA module. While a full ablation study was beyond the scope of our primary investigation, we discuss their
roles and the reasoning behind our choices here.
• Gaussian Kernel Size: The kernel size determines the spatial extent of the feature aggregation. A larger kernel incorporates

context from a wider neighborhood, beneficial for larger objects, but risks over-smoothing details and blurring together
small, dense objects. Conversely, a smaller kernel preserves fine details but may fail to capture sufficient context. Our
selected kernel size was determined during preliminary experiments to strike a balance suitable for the multi-scale nature
of objects in datasets like DOTA and FAIR1M. The chosen value proved effective at capturing salient features without
significant information loss.

• Gaussian Bandwidth (σ): The bandwidth controls the decay rate of the Gaussian function. A small σ creates a sharp filter
that heavily prioritizes the central feature, while a large σ creates a smoother filter that gives more uniform weight to the
neighborhood. The value of σ is often set proportionally to the kernel size to ensure the distribution fits naturally within
the kernel’s window. Our implementation follows this standard practice, a well-established heuristic in computer vision for
ensuring stability.

Crucially, while these parameters are important, we found the model’s performance to be robust to minor variations around
our chosen values. This robustness is largely because the subsequent learnable layers (e.g., the 1x1 convolutions within our
LEG Blocks) grant the network the flexibility to adapt and recalibrate the features generated by the fixed-parameter Gaus-
sian module. Therefore, the overall architecture is not hyper-sensitive to these specific values, and the selected parameters
represent a stable and effective configuration for the task.

D. Analysis of Intermediate Feature Responses
To provide deeper insight into LEGNet’s mechanism, we visualize the intermediate feature maps. As shown in Fig. 1, we
compare the feature responses of our LEGNet-S with a strong competitor, PKINet-S, at different stages of the backbone: the
initial stem layer, the output of Stage 1, and the output of Stage 2.

The visualizations reveal distinct differences in feature representation. In the stem layer and Stage 1, LEGNet (bottom row)
demonstrates a superior ability to extract comprehensive and complete edge information across the entire image compared to
PKINet (top row). This is attributed to our LoG-Stem layer and the EGA module, which explicitly enhance structural details
from the outset. As the network deepens into Stage 2, LEGNet exhibits a more focused attention on salient object features,
effectively suppressing background noise and highlighting regions of interest. In contrast, the feature responses from PKINet
appear more diffuse. This comparison visually substantiates our claim that by integrating explicit edge and Gaussian priors,
LEGNet learns more robust and meaningful feature representations, particularly in the crucial early stages of processing.
Due to the highly abstract nature of features in deeper stages (3 and 4), we focus on these initial stages where the impact of
our design is most visually interpretable.

E. Visualization Results
The visual results on the DOTA-v1.0 test set are presented in Figs. 2 to 6. We conducted a visual analysis using SOTA back-
bones, including ARC-R50 [7] and PKINet [1], both of which were designed specifically for RSOD tasks. The visualization
results of ARC-R50 were based on the MMDetection toolbox, while ResNet-50 [4], PKINet-S and LEGNet-S visualization
results were based on the MMRotate toolbox. All models were developed based on the O-RCNN [10] detector.
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Figure 1. Visualization of intermediate feature maps from PKINet-S (top row) and our LEGNet-S (bottom row). LEGNet’s early stages
capture more complete edge details, while Stage 2 demonstrates enhanced focus on salient object regions. This supports the effectiveness
of our proposed design in refining feature representations for robust detection.
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Figure 2. Visualization of detection results on DOTA-v1.0 test set. Input images resolution were 1,024 × 1,024.
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Figure 3. Visualization of detection results on DOTA-v1.0 test set. Input images resolution were 1,024 × 1,024.
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Figure 4. Visualization of detection results on DOTA-v1.0 test set. Input images resolution were 1,024 × 1,024.
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Figure 5. Visualization of detection results on DOTA-v1.0 test set. Input images resolution were 1,024 × 1,024.
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Figure 6. Visualization of detection results on DOTA-v1.0 test set. Input images resolution were 1,024 × 1,024.
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