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Figure 1. Example Satellite observation sequence from the EarthNet2021 dataset. The observation reflectance is mapped to pixel value of

the range 0-255.
Abstract

Transformers can model the complex spatiotemporal de-
pendencies present in satellite imagery, yet their quadratic
computational cost limits real time, large scale applications
such as climate monitoring and disaster response. We in-
troduce ViTKoop, a lightweight framework that combines a
Vision Transformer based autoencoder with a linear Koop-
man operator. The autoencoder compresses each image se-
quence into a compact latent state, and the Koopman op-
erator advances this state linearly in time, greatly reduc-
ing computational complexity without sacrificing fidelity.
On three benchmarks(ENSO, SEVIR, and EarthNet2021),
ViTKoop matches or surpasses state of the art Transformer
baselines while requiring only a small fraction of their float-
ing point operations. This efficiency enables real time, high
resolution forecasting on modest hardware and supports
timely weather prediction as well as rapid, energy efficient
Earth observation services that are vital for sustainable de-
velopment.

1. Introduction

The escalating pace of climate change and alterations in en-
vironmental systems is resulting in more frequent and se-
vere natural events such as droughts, wildfires, and hurri-

canes. These crises affect not only the environment but
also social and economic systems, leading to disruptions
in agriculture, loss of biodiversity, and extensive damage
to infrastructure. In this critical context, computer vision
technology has emerged as a powerful tool for social good,
enabling more accurate and timely environmental forecast-
ing. By harnessing high-resolution satellite imagery, com-
puter vision can provide precise, global-scale insights into
atmospheric, terrestrial, and oceanic dynamics. Traditional
weather and climate forecasting models, which primarily
rely on numerical simulations, often underutilize the rich vi-
sual data from modern Earth observation systems [16, 46].
However, advances in deep learning offer new opportunities
to enhance data-driven forecasting methods [36, 38]. Devel-
oping robust computer vision models for predicting changes
in satellite imagery is crucial for strengthening community
resilience, improving disaster preparedness, and promoting
sustainable environmental management in the face of accel-
erating global changes.

Deep learning (DL) has introduced powerful data-driven
methods for satellite image forecasting, moving beyond
explicit physics-based models [38, 42]. By learning di-
rectly from large-scale Earth observation data, DL models
can often outperform traditional approaches [11], achiev-
ing strong results in tasks like precipitation nowcast-
ing [9, 36] and ENSO prediction [19]. Yet, the chaotic,



Koopman Operator
(Linear

Infinite Zt g{‘

Space

v pe-------- F-9.

Inverse
Spase Xt fO

function
Non-inear Function

Xt+1

Figure 2. The Koopman operator framework. The top path shows
the linear evolution of states in the infinite-dimensional space
(2t — z¢41) through the Koopman operator . The bottom path
depicts the nonlinear dynamics of the system in the original state in
image space (¢ — x¢+1) via the nonlinear function f(). The lift-
ing function g maps the original state to the infinite-dimensional
uplift space, while the g~* performs the inverse mapping.

high-dimensional, and spatiotemporal nature of Earth sys-
tems presents major challenges. Earlier works combined
RNNs and CNNs [18, 42, 43, 46, 49], while more recent
Transformer-based models excel at capturing long-range
dependencies for environmental forecasting [3, 13, 28].
Neural operator approaches like Fourier Neural Operator
(FNO) [26, 34] are effective for PDE-governed physical
systems but face limitations for optical satellite imagery,
where smoothness, periodicity, and complete grids rarely
hold. Real satellite data often include missing values from
clouds and shadows, irregular sampling, and abrupt sur-
face changes (e.g., wildfires, urbanization), leading to error
accumulation and instability for FNO-based models. Our
work thus focuses on architectures designed to robustly ad-
dress these real-world challenges.

Despite yielding promising results, these Transformer-
based methods face substantial computational challenges
that limit their practical applicability. To address these limi-
tations while maintaining forecasting accuracy, we propose
integrating Physics-Constrained Learning (PCL) with effi-
cient deep learning architectures. PCL algorithms embed
physical consistency into vision models, thereby enhancing
both interpretability and forecast accuracy while requiring
fewer computational resources. The key insight behind our
approach is that forecasting future states of satellite image
sequences requires precise modeling of the underlying non-
linear dynamical systems. Koopman operator theory [21]
provides an elegant mathematical framework that represents
nonlinear dynamics via an infinite-dimensional linear op-
erator, enabling more efficient modeling of stability analy-
sis [31] and control applications [17, 35]. In practice, finite-
dimensional approximations of the Koopman operator are
necessary. Our deep learning approach addresses this by
constructing a finite-dimensional Koopman-invariant sub-
space using Auto Encoder networks specifically designed
for visual data (Fig. 1). These networks project high-
dimensional satellite imagery into a latent space where the

dynamics can be approximated linearly through a finite-
dimensional Koopman operator, implemented as a compu-
tationally efficient linear layer (Fig. 2). In this paper, we
introduce a novel Koopman Operator-based Vision Trans-
former (ViTKoop) framework that leverages the computa-
tional efficiency of Koopman theory, specifically tailored to
the challenges of satellite imagery forecasting.

2. Related Work

Deep Learning for Satellite Image Forecasting. Vision-
based deep learning for satellite forecasting has evolved
significantly, from U-Net architectures applied to precip-
itation nowcasting [46] and ENSO forecasting [19], to
the integration of spatiotemporal dynamics with ConvL-
STM [42]. Architectural innovations like PredRNN [49]
with its spatiotemporal memory flow and PhyDNet [18]
with PDE-constrained predictions have further advanced
the field. Recently, Transformer-based models, including
Rainformer [3] and Earthformer [13], have shown impres-
sive accuracy by modeling global dependencies. However,
these methods face substantial computational challenges
due to the quadratic complexity of self-attention when pro-
cessing high-resolution satellite imagery, which our work
specifically addresses.

Koopman Operator Theory. Nonlinear dynamical sys-
tems are inherently complex, making direct analysis and
long-term prediction challenging. Rather than modeling the
evolution of the state x,, € M directly via a nonlinear
map f, the Koopman operator framework proposes lifting
the system into a higher-dimensional space of observable
functions.

Consider an observable function g : M — C that cap-
tures a specific measurement or feature of the state x,,. Even
though the underlying state evolution

Xnt1 = £(xn)
is nonlinear, the evolution of the observable is given by
9(xny1) = g(f(xn)).
This motivates the definition of the Koopman operator K as
(Kg)(x) = g(f(x)),
which is linear by construction:
K(agi + bgz2) = aKgr + bKgo,

for any scalars a and b. The surprising and powerful aspect
of this approach is that, although f is nonlinear, the operator
K acts linearly on the space of observables.

By examining the spectral properties of XC, we can iden-
tify eigenfunctions ¢; and associated eigenvalues \; that al-



low us to decompose any observable g into a linear combi-
nation:

g(xa) = 3 NIi(x0) o7,
=1

where v are the Koopman modes corresponding to the ob-
servable g. This modal decomposition provides clear in-
sights into the growth/decay rates and oscillatory behavior
of the system, effectively linearizing its dynamics in the
lifted space.

Koopman Auto Encoders. Koopman Auto Encoders
(KAEs) embed nonlinear dynamical systems into linear
Koopman spaces via deep autoencoders, enabling efficient
analysis of complex visual phenomena. Recent theoret-
ical advances by Wang et al. [2] and Yeung et al. [54]
have strengthened these frameworks for visual data process-
ing. KAEs have been successfully applied to fluid dynam-
ics prediction [32, 53], autonomous vehicle modeling [52],
and action recognition in video sequences [47]. Despite
these advances, the application of Koopman theory to high-
dimensional satellite imagery forecasting remains underex-
plored. Our work develops a specialized Koopman-based
vision architecture that achieves both computational effi-
ciency and high accuracy for satellite image sequence pre-
diction.

3. Proposed Method

In this section, we introduce ViTKoop, our proposed frame-
work for future frame forecasting in spatiotemporal satel-
lite image sequences. ViTKoop combines a Vision Trans-
former (ViT)-based Auto Encoder with the Koopman op-
erator to efficiently model temporal dynamics in the latent
space. The Auto Encoder extracts a compact latent repre-
sentation of the input sequences, while the Koopman oper-
ator enables linearized temporal evolution in this space, al-
lowing for computationally efficient and accurate long-term
forecasting.

3.1. Solving PDEs by the Koopman Operator

Partial differential equations (PDEs) are fundamental in
modeling complex phenomena, yet many lack analytic so-
lutions. We propose a data-driven approach leveraging the
Koopman operator theory to transform nonlinear dynamics
into linear evolution in a latent space.

Rather than directly predicting high-dimensional, non-
linear states v(x;), we employ observation functions g :
I' — G where the time-dependent Koopman operator ICiJrE
propagates observables linearly:

g(Vite) = ’C§+Eg(7t) (1)

We integrate this framework with an Auto Encoder to learn
a nonlinear mapping from the original PDE solution to a

low-dimensional latent representation z; ~ g(~y;) where:
Zite ’Cﬁszt 2

This approach leverages the expressive power of deep learn-
ing to capture complex features while exploiting linear dy-
namics in the latent space for efficient prediction.

3.2. Koopman Operator Approximation

To operationalize this approach, we construct a Krylov se-
quence of observables with temporal step size €:

R = |g (), Kig (o), KZKig (v0), - -,

(n-1) " Kog () 3)

These observables are arranged into a Hankel matrix
Honxn:

g (70) g (7e) g (Yne)

men =

g (7(m+n,—1)5) .
“)

g (’Y(r;z,—l)e) g (’Y'ms)

The columns of H,,x» span a Krylov subspace K C
G (R% x T). We approximate the Koopman operator by
projecting it onto K and enforce that the Hankel matrix
evolves as:

Hoen (b +1) = RS9, (k),VE=1,...,n. (5)

To reduce computational costs for time-dependent systems,
we assume approximate temporal invariance for small € and
perform temporal averaging:

K. ~ argmin Z | Hmxn(k+1) = PHpypsn (k)| 7.
PeRdy+1 k=1
(6)

This formulation enables efficient offline approximation of
the Koopman operator for long-term prediction of time-
series satellite imagery. The combined architecture of the
Koopman operator and Auto Encoder provides a coherent
theoretical foundation for predicting complex spatiotempo-
ral phenomena in satellite image sequences while maintain-
ing computational feasibility.

3.3. ViTKoop

Our framework consists of three main components: an en-
coder, a Koopman operator, and a decoder. The encoder
extracts latent representations from input frames, the Koop-
man operator performs time evolution in the encoded space,
and the decoder reconstructs the future frames from the
evolved latent representations (Fig. 3(a)).
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Figure 3. Architecture of the Koopman operator combined with an Auto Encoder for video frame prediction. (a) The overall architecture
integrates past frames with a weight-shared encoder-decoder structure and the Koopman operator. The encoder transforms input frames
into a feature space where the Koopman operator linearly predicts future states. (b) The encoder implementation uses a Tiny ViT (Vision
Transformer) structure with MobileBlocks (MB Conv) and Transformer blocks to extract patch embeddings and create feature maps. (c)
The decoder employs a simple 2D CNN with upsampling layers to reconstruct the predicted frame from the feature representation.

Koopman Operator. We construct a Hankel matrix
Hyxn With embedding dimension m following Eqgs. (25-
26). Defining the Koopman operator as a Hankel matrix
provides a linear approximation of complex nonlinear dy-
namics in a lifted latent space. Our 2D Koopman operator
KC is implemented as a learnable complex-valued transfor-
mation in the Fourier domain:

K : .F(Z‘t) — .F(l‘t+1) @)

where F(-) represents the 2D Fourier transform. The time
evolution is performed as follows:

X =KX (®)

where X[T is the Fourier-transformed latent representation
of the input z;. The inverse Fourier transform is then ap-
plied to obtain the updated representation in the spatial do-
main.

Auto Encoder Structure. The encoder is based on a Tiny
ViT [50]-Base backbone that extracts spatial features from
input frames (Fig. 3(b)). The decoder reconstructs latent
features of frame ¢ and calculates features using transposed
convolution layers (Fig. 3(c)).

The Koopman operator acts as an intermediate trans-
formation between encoding and decoding, enabling latent
space time evolution. A simple 2D CNN is applied to the
stacked past frames, which consist of a fixed number of in-
put images determined by a hyperparameter, to extract con-
textual features. These extracted features are then concate-
nated with the transformed features from the Koopman op-
erator. In each step of the Koopman layer, the transformed
feature map is added to the original input, updating the rep-
resentation over time. Two types of addition mechanisms
are employed: linear and nonlinear. In the linear case, the
transformed feature map is directly summed with the input,
ensuring smooth updates. In the nonlinear case, a tanh

activation function is applied before addition, allowing the
model to learn more expressive transformations.

3.4. Implementation Details

Our model is implemented using PyTorch. The Koopman
operator is parameterized with complex-valued weights and
operates in the Fourier domain. The training is conducted
for forecasting T, frames from input 7;, frames. The net-
work is trained using the Adam optimizer with an initial
learning rate of 10~%. During training, input sequences
are incrementally updated using predicted frames to enforce
temporal consistency.

Following the formulation of Xiong et al. [53], our train-
ing objective jointly minimises an image-reconstruction
loss(Lyec) and a future-prediction loss(Lpreq). For an in-
put sequence of length 7, and a prediction horizon of T,
we define

Tin 9 Tout 9
Liee = ZHframet — rectH yLpred = ZHpredt — gttH ,
t=1 t=1

9

where frame; / rec; denote the input and its reconstruction
at time ¢, and gt, / pred, denote the ground-truth and pre-
dicted future frame, respectively. To improve the stability
of the Koopman dynamics in latent space, we introduce an
additional latent-consistency 10ss(Liatent)-

Tout
Llatent = § Hzt - Zt’
t=1

2
)

(10)

with z; the latent vector obtained by propagating the ini-
tial latent state through the learned Koopman operator, and
z; the latent vector produced by the encoder at the corre-
sponding future step. The overall objective is the weighted



Dataset ‘ Size ‘ Len. ‘ Size

s | train val test | in out | HxW
SEVIR 35,718 9,060 12,159 | 13 12 | 384 x 384
ICAR-ENSO 5,205 334 1,667 | 12 14 24 x 48
EarthNet2021 8,100 900 1,000 | 10 20 64 x 64

Table 1. Statistics of the datasets used in the experiments.

sum
Ltotal = >\1 Lpred + )\2 Lrecon + )\3 Llatenta (11)

in which A1, A2, A3 balance the contributions of prediction
accuracy, reconstruction fidelity, and latent-space stability.
Guided by pilot experiments on synthetic sequences (see
Supplement 6.1), we empirically set Ay = 1.0, Ao =
1.5, A3 =0.1.

4. Experiments

4.1. Forcasting Results

We figured out the quality of our ViTKoop and compared
it with other recent state-of-the-art models on three real-
world datasets: SEVIR [46], ICAR-ENSO' and EarthNet
2021[37] . The statistics of all the datasets used in the ex-
periments are shown in Table 1. We normalized the data to
the range [0, 1] and trained all the models with the Mean-
Squared Error (MSE) loss.

SEVIR. Storm EVent ImageRy (SEVIR) [46] is a
spatiotemporally aligned dataset containing over 10,000
weather events. Each event consists of 384 km x 384 km
image sequences spanning 4 hours. Images in SEVIR
were sampled and aligned across five different data types:
three channels (C02, C09, C13) from the GOES-16 Ad-
vanced Baseline Imager, NEXRAD Vertically Integrated
Liquid (VIL) mosaics, and GOES-16 Geostationary Light-
ning Mapper (GLM) flashes. The SEVIR benchmark sup-
ports scientific research on multiple meteorological appli-
cations including precipitation nowcasting, synthetic radar
generation, and front detection. We adopt SEVIR for bench-
marking precipitation nowcasting, i.e., predicting future
VIL up to 60 minutes (12 frames) given 65 minutes of input
VIL (13 frames). In the supplementary, Fig. 7 shows an
example of VIL observation sequences in SEVIR.

The experimental results are listed in Table 2. Our
ViTKoop consistently outperformed baselines on almost
all metrics and provides significant performance gains, es-
pecially at high thresholds like CSI-219, which are more
valued by the community. Table 2 presents the perfor-
mance comparison of precipitation forecasting on the SE-
VIR dataset. Our proposed ViTKoop achieved results
comparable to the Transformer-based Earthformer [13]

IDataset available at https : tianchi . aliyun . com/

// /
dataset/databDetail?datald=98942

across all evaluation metrics, including Mean Squared Er-
ror (MSE) and Critical Success Index (CSI) at various pre-
cipitation thresholds. For details on these metrics, refer to
the supp. 6.3. Notably, ViTKoop attained the same CSI
scores as Earthformer while outperforming conventional
CNN- and RNN-based approaches such as UNet [46], Con-
vLSTM [42], and PredRNN [49]. These results suggest that
our method effectively captures the spatiotemporal depen-
dencies of satellite imagery, achieving competitive perfor-
mance with state-of-the-art Transformer models.

ICAR-ENSO. El Nifio/Southern Oscillation (ENSO) has
a wide range of associations with regional climate extremes
and ecosystem impacts. ENSO sea surface temperature
(SST) anomalies forecasting for lead times up to one year
(12 steps) is a valuable and challenging problem. ICAR-
ENSO consists of historical climate observation and sim-
ulation data provided by Institute for Climate and Appli-
cation Research (ICAR). We forecasted the SST anomalies
up to 14 steps (2 steps more than one year for calculating
three-month-moving-average) given a context of 12 steps
of SST anomaly observations. Table 3 compares the per-
formance of our Earthformer with baselines on the ICAR-
ENSO dataset.

We reported the mean correlation skill C-Nino3.4-M =
+ 3", Clino3-4 and the weighted mean correlation skill
C-Nino3.4-WM = L3, ap - C}im34 over K = 12
forecasting steps’, as well as the MSE between the spa-
tiotemporal SST anomalies prediction and the correspond-
ing ground-truth. For details on the metrics, refer to the
supp. 6.3. Table 3 presents the performance compari-
son of ENSO forecasting on the I[CAR-ENSO dataset. Our
proposed ViTKoop achieves state-of-the-art results, demon-
strating identical performance to the Transformer-based
Earthformer [13] across all evaluation metrics, including
the mean correlation skill C'-Nino3.4-M, the weighted mean
correlation skill C'-Nino3.4-WM, and the Mean Squared
Error (MSE). Furthermore, ViTKoop consistently outper-
forms CNN- and RNN-based approaches such as UNet [46],
ConvLSTM [42], and PredRNN [49]. These results indi-
cate that ViTKoop effectively captures the temporal evolu-
tion of sea surface temperature (SST) anomalies, achieving
competitive performance with state-of-the-art Transformer
models.

EarthNet2021. EarthNet2021 data used here was pro-
vided as part of the EarthNet2021 Challenge and consists
of 23,904 training datacubes located across Europe [39].
There are four evaluation tracks: Main (IID), Robustness
(OOD), Extreme Summer, and Seasonal Cycle. The IID set
contains about 4000 samples from the same regions as the
training set, where one region corresponds to a Sentinel-
2 tile (i.e., about 100 x 100km). However, if two sam-

2ay, = by, -Ink, where by, = 1.5, for k < 4; b, = 2, ford < k < 11;
by = 3,for k> 11.
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Model Metrics
CSI-M1 €SI-2191 C€SI-1811 CSI-1601 CSI-1331 CSI-74+ CSI-161 MSE(107%) |

Persistence 0.2613 0.0526 0.0969 0.1278 0.2155 0.4705 0.6047 11.5338
UNet [46] 0.3593 0.0577 0.1580 0.2157 0.3274 0.6531 0.7441 4.1119
ConvLSTM [42] | 0.4185 0.1288 0.2482 0.2928 0.4052 0.6793 0.7569 3.7532
PredRNN [49] 0.4080 0.1312 0.2324 0.2767 0.3858 0.6713 0.7507 3.9014
PhyDNet [18] 0.3940 0.1288 0.2309 0.2708 0.3720 0.6556 0.7059 4.8165
E3D-LSTM [48] | 0.4038 0.1239 0.2270 0.2675 0.3825 0.6645 0.7573 4.1702
Rainformer [3] 0.3661 0.0831 0.1670 0.2167 0.3438 0.6585 0.7277 4.0272
Earthformer [13] | 0.4419 0.1791 0.2848 0.3232 0.4271 0.6860 0.7513 3.6957
Ours(ViTKoop) 0.4381 0.1673 0.2759 0.3174 0.4227 0.6728 0.7475 3.7140

Table 2. Performance comparison on SEVIR. We include Critical Success Index (CSI) besides MSE as evaluation metrics. The CSI,
a.k.a intersection over union (IoU), is calculated at different precipitation thresholds and denoted as CSI-thresh.

Model Metrics
C-Nino3.4-M1 (C-Nino3.4-WM1 MSE(107%) |

Persistence 0.3221 0.447 4.581
UNet [46] 0.6926 2.102 2.868
ConvLSTM [42] 0.6955 2.107 2.657
PredRNN [49] 0.6492 1.910 3.044
PhyDNet [ 18] 0.6646 1.965 2.708
E3D-LSTM [48] 0.7040 2.125 3.095
Rainformer [3] 0.7106 2.153 3.043
Earthformer [13] 0.7329 2.259 2.546
Ours(ViTKoop) 0.7310 2.552 2.514

Table 3. Performance comparison on ICAR-ENSO. C-Nino3.4-M and C'-Nino3.4-WM are the mean and the weighted mean of the correlation
skill C"**°%* over K = 12 forecasting steps. C-Nino3.4-WM assigns more weights to longer-term prediction scores. MSE is calculated
between the spatiotemporal SST anomalies prediction and the corresponding ground-truth.

11D (0]0))]

Model Metrics

MADT OLST EMD{ SSIMT MADT OLST EMDT SSIMT
Persistence [37] 0.2315 0.3239 0.2099 0.3265 0.2248 0.3236 0.2123 0.3390
Channel U-Net [37] 0.2482 0.3381 0.2336 0.3973 0.2402 0.3390 0.2371 0.3721
Arcon [37] 0.2414 0.3216 0.2258 0.3863 0.2314 0.3088 0.2177 0.3432
SGConvLSTM [20] 0.2589 0.3456 0.2533 0.5292 0.2512 0.3481 0.2597 0.4977
EarthFormer [13] 0.2638 0.3513 0.2623 0.5565 0.2533 0.3581 0.2732 0.5270
Ours(KoopamViT)  0.2596 0.3501 0.2582 0.5517 0.2517 0.3525 0.2764 0.5225

Table 4. Performance comparison on EarthNet2021 using the two different test tracks (iid, ood) of our models and baselines. MAD , OLS ,
EMD, and SSIM are calculated between the corresponding ground-truth frame.

ples capture exactly the same area, it was ensured that
there is no temporal overlap between them. The OOD
set contains a similar number of samples but from com-
pletely different regions, thereby additionally evaluating the
model’s spatial generalization capability. For these two
tracks, the input length is 10, while the prediction length
is 20. EarthNet2021 is evaluated using Median Absolute
Deviation (MAD), Ordinary Least Squares (OLS), Earth
Mover’s Distance (EMD), and Structural Similarity Index
(SSIM). For detailed definitions of these metrics, please re-
fer to the supp. 6.3.

Table 4 presents the performance comparison of Earth-
Net2021 future satellite image prediction across both IID
and OOD test tracks. Our proposed ViTKoop achieves com-
parable results to the Transformer-based EarthFormer [13],
demonstrating state-of-the-art performance in key evalua-
tion metrics, including Mean Absolute Deviation (MAD),
Ordinary Least Squares (OLS), Earth Mover’s Distance
(EMD), and Structural Similarity Index (SSIM). In particu-
lar, ViTKoop attains nearly identical scores to EarthFormer
in the IID setting, highlighting its capability to capture spa-
tiotemporal dependencies effectively. Moreover, our model
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Figure 4. Forecasting results of our ViTKoop and the baseline Earthformer [13] on the EarthNet2021 dataset [37]. In this task, a time-series
of 10 satellite images is provided as input to predict the subsequent 20 frames. The three images on the left correspond to the first three

frames of the input sequence.

generalizes well to the OOD test set, showing robust perfor-
mance under distribution shifts. These results confirm that
ViTKoop is a strong alternative to existing Transformer-
based methods for satellite image forecasting, leveraging
Koopman operator theory to model complex temporal dy-
namics efficiently.

Additionally, Fig. 4 presents a qualitative compari-
son between predictions from our proposed ViTKoop and
the Transformer-based EarthFormer. While EarthFormer
demonstrates high fidelity in color reproduction, closely
matching the ground-truth frames, ViTKoop also pro-
duces future images that resemble the ground truth. No-
tably, EarthFormer tends to generate images containing
clouds, whereas ViTKoop generally yields images with
fewer clouds. We hypothesize that this discrepancy arises
from the inherent temporal dynamics of satellite imagery
captured at sparse intervals (on the order of several weeks),
where cloud information provides limited predictive value.
Consequently, ViTKoop appears to discard cloud-related in-
formation to focus on more stable features of the scene.

4.2. Model Complexity

To evaluate the efficiency of our proposed method, we
compare it with state-of-the-art approaches for satellite im-

age time-series forecasting. Fig. 5 presents the MSE and
GFLOPS of various models on the SEVIR dataset, includ-
ing baseline models such as UNet [46], ConvLSTM [42],
and PredRNN [49], as well as more recent Transformer-
based methods like Rainformer [3] and Earthformer [13].
Our proposed model, ViTKoop, achieves a favorable bal-
ance between predictive performance and computational
efficiency, as demonstrated by its MSE of 3.7140 and
2.8 GFLOPS(Redpoint in Fig. 5). Compared to recur-
rent models such as PredRNN and E3D-LSTM, ViTKoop
significantly reduces computational cost while maintain-
ing competitive forecasting accuracy. Additionally, while
Earthformer achieves a slightly lower MSE (3.6957) at the
cost of higher computational complexity (23.9 GFLOPS),
ViTKoop demonstrates similar predictive performance with
substantially lower computational overhead. Other models,
such as ConvLSTM and UNet, exhibit either higher MSE
or lower efficiency trade-offs. These results highlight that
ViTKoop effectively captures spatiotemporal dependencies,
offering a well-balanced trade-off between prediction accu-
racy and computational efficiency.



Ablation Setting MSE (Short-Term) MSE (Mid-Term) MSE (Long-Term)
ViT w/o Koopman 0.0452 0.0995 0.2723
ViT w/ Koopman 0.0387 0.0752 0.1345
MLP w/ Koopman 0.0528 0.0957 0.1704
ResNet w/ Koopman 0.0415 0.0823 0.1518
ViT /w Koopman 0.0387 0.0752 0.1345
ViT /w DMD Approximation 0.0401 0.0798 0.1457
ViT /w EDMD Approximation 0.0393 0.0775 0.1408
ViT /w Koopman Approximation 0.0387 0.0752 0.1345

Table 5. Ablation study results showing Mean Squared Error (MSE) for different model variations across short-term, mid-term, and
long-term forecasting tasks of simulated non-liniear data.The number of Input frames is 20 frames, and the number of output flames is 5

frames(short-term), 20 frames(mid-term), and 100 frames(long-term).
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Figure 5. Comparison of model complexity in SEVIR dataset.

4.3. Ablation Study

To evaluate the effectiveness of the key components in our
proposed ViTKoop framework, we conducted an ablation
study focusing on four critical aspects: the presence of the
Koopman operator, the choice of the Auto Encoder archi-
tecture, the approximation method for the Koopman op-
erator, and the model’s long-term forecasting capability.
The dataset comprises 1000 samples, each containing 200
frames of 32x32 pixel images depicting linear wave pat-
terns. In these experiments, we set the number of input
image frames to 20. These patterns are created by com-
bining sinusoidal and cosine functions with randomly se-
lected frequencies and speeds within specified ranges, gen-
erating diverse yet controlled wave dynamics and provid-
ing a rich temporal and spatial representation for potential
model training. See supp. 6.2 for a detailed description of
the ablation study settings. The results on simulated non-
linear data are presented in Table 5.

Our ablation study confirms that each design modifica-
tion in our proposed method positively contributes to per-
formance improvement. In particular, when comparing

different approximation methods for the Koopman oper-
ator—namely Fourier-based, DMD, and EDMD—we ob-
served that the Fourier-based approximation achieves the
most accurate long-term predictions. This finding indicates
that the Fourier-based Koopman operator not only captures
the underlying dynamics more effectively but also main-
tains stability over extended forecasting horizons, making it
especially suitable for long-term satellite image prediction
tasks.

5. Conclusion

In this work, we propose a novel framework, ViTKoop,
which integrates a ViT-based Auto Encoder with a Koop-
man operator for efficient and accurate forecasting of satel-
lite image time series. By leveraging linear temporal evo-
lution in the latent space, our method significantly re-
duces computational cost compared to transformer-based
approaches, while experiments on real-world datasets (i.e.,
ENSO, SEVIR, and EarthNet2021) demonstrate compara-
ble or superior performance. This balance between effi-
ciency and accuracy suggests promising applications in en-
vironmental monitoring and disaster forecasting. Moreover,
the Koopman operator-based framework offers enhanced
interpretability. Rather than relying solely on a black-box
approach, our method uses a physically motivated linear ap-
proximation in the latent space, allowing for a degree of in-
terpretability in the learned representations and their tempo-
ral evolution, which benefits both understanding and further
refinement of the model.

Key limitations remain. The Koopman step’s local-linear
assumption can break under strong nonlinearities or abrupt
regime shifts. Accuracy also depends on the autoencoder’s
skill at embedding complex image patterns into a Koopman-
compatible latent space. Moreover, evaluation on only
ENSO, SEVIR, and EarthNet2021 leaves robustness across
other resolutions, lighting, and regions untested.
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6. Experiments

6.1. Simulated Data

In preparation for evaluating the proposed algorithm, we
performed a series of preliminary experiments using a syn-
thetic dataset. The primary goal was to verify the function-
ality and performance of our Koopman operator and Auto
Encoder-based approach in predicting future frames in spa-
tiotemporal sequences.

Linear Data. We generated sequences with specifically
defined properties. In total, 1000 samples were created,
each consisting of 200 frames of 32x32 pixel images. This
setup ensures a comprehensive representation of temporal
progression and spatial resolution. The dataset primarily fo-
cuses on linear wave patterns, generated through sinusoidal
and cosine functions with randomly assigned frequencies
and speeds. This approach enhances variability while main-
taining controlled complexity, which is crucial for effective
model training.

For linear data generation, the process involves selecting
random frequencies freqg_x and freq_y uniformly from
the interval [1,3]. These frequencies determine the peri-
odic nature of the waves, while a random speed drawn from
[0.1,0.3] influences their temporal evolution. At each time
step ¢ in the sequence, a meshgrid X, Y spanning from 0 to
27 is created over the 32 x 32 image size. The wave pattern
Z is computed via the equation:

Z = sin(freq_x - X + speed - t) + cos(freq_y - Y + speed - t).

This computation combines sine and cosine waves to pro-
duce intricate spatiotemporal variations, emulating complex
real-world phenomena.

The preliminary experiments aimed to confirm that the
proposed algorithm accurately learns and predicts dynam-
ics within the generated sequences (Fig. 6(a)). In our anal-
ysis, understanding the trained Koopman operator is crucial
to deciphering the latent spatiotemporal dynamics captured
by the model. A key focus is the distribution of eigenvalues
derived from the Koopman operator, offering insights into
our synthetic dataset’s structure (Fig. 6(c)). The eigenval-
ues exhibit notable characteristics. Their real parts are dis-
persed rather than concentrated near zero, indicating a lack
of strongly attenuating modes (Fig. 6(e)). This suggests
that the captured dynamics exhibit minimal rapid decay,
consistent with systems that have weak damping or mini-
mal attenuation. Moreover, the eigenvalues span a broad
range along the imaginary axis, highlighting the presence
of numerous oscillatory modes. This spread mirrors the
wave-like nature inherent in the data, with various oscilla-
tions and frequency components. Unlike simple harmonic
systems, where eigenvalues might align along a unit cir-
cle, the uniform distribution observed here indicates inter-
actions among multiple temporal scales rather than a singu-
lar periodic pattern. Generated using a linear wave model,
Z = sin(fy X + vt) + cos(f,Y + vt), the dataset produces
linear wave patterns with diverse frequencies and velocities.



The broad imaginary dispersion in eigenvalues is a direct
outcome of this process. Randomized wave velocities and
frequencies further ensure the absence of a simple circular
eigenvalue pattern, reflecting the intricate interplay of these
variables.

Non-linear Data. Additionally, we defined a nonlinear
spatiotemporal function that produces a swirling pattern
centered in an N x N grid. The pattern’s evolution follows:

Z; j(t) =sin (% +0+ 0.215) exp (_2LO) ,

where (4,j) are spatial coordinates, T =
V(i—cz)2+(j—cy)? is the radial distance from
the center (¢, ¢,), and 0 = tan~'((j —¢,)/(i — cz)) is the
angular position. The sequence length is set to 7', ensuring
sufficient temporal variability.

We train a Koopman operator using an Auto Encoder-
based framework. The encoder maps high-dimensional ob-
servations to a latent space where a linear Koopman oper-
ator approximates temporal evolution. The decoder recon-
structs the original observations from these latent represen-
tations. After training, we extract Koopman eigenvalues and
eigenfunctions, visualizing the learned modes.

Fig. 6(d) shows sample eigenfunctions corresponding to
different eigenvalues, which are complex-valued. The real
and imaginary components of the eigenvalues (Fig. 6(f)) in-
dicate periodic dynamics, where eigenvalues near the unit
circle correspond to persistent oscillatory modes. The ob-
tained modes qualitatively align with the dominant swirling
features in the original data, confirming that the Koopman
operator effectively captures the system’s latent dynamics.

These results demonstrate the potential of Koopman-
based representations for learning structured temporal pat-
terns in complex spatiotemporal datasets. Further analy-
sis—including robustness to noise and generalization across
different parameter settings—remains an interesting direc-
tion for future work.

6.2. Detailed Ablation Study Setting

To evaluate the effectiveness of the key components in our
proposed ViTKoop framework, we conducted an ablation
study focusing on four critical aspects: the presence of the
Koopman operator, the choice of the Auto Encoder architec-
ture, the approximation method for the Koopman operator,
and the model’s long-term forecasting capability. In these
experiments, we set the number of input image frames to
20. The results of the simulated non-linear data (see supp.
6.1 for a detailed description of the ablation study settings)
are presented in Table 5 and discussed below.

Effectiveness of the Koopman Operator. To assess the
impact of the Koopman operator, we compared ViTKoop

with a baseline model that replaces the Koopman opera-
tor with a simple linear transformation in the latent space.
As shown in Table 5, the absence of the Koopman opera-
tor leads to a significant degradation in prediction accuracy,
particularly for long-term forecasts. This finding confirms
that the Koopman operator effectively captures the under-
lying temporal dynamics, resulting in more accurate future
state predictions.

Choice of Auto Encoder Architecture. We evaluated
different Auto Encoder architectures, including a convo-
lutional neural network (CNN)-based Auto Encoder, a
ResNet-based Auto Encoder, and the Vision Transformer
(ViT)-based Auto Encoder used in our proposed model. The
results indicate that the ViT-based Auto Encoder achieves
the highest accuracy, demonstrating its superior ability to
extract spatiotemporal features from satellite image se-
quences. The CNN-based Auto Encoder struggles to
capture long-range dependencies, while the ResNet-based
model offers slightly better performance but still falls short
of the ViT-based approach. The self-attention mechanism
in ViT aggregates information across the entire image, en-
abling the model to capture global spatial dependencies that
CNNs cannot easily model due to their limited receptive
fields. This global information aggregation is crucial for
satellite imagery, where phenomena often span large spatial
extents and distant pixels may have significant correlations.

Approximation Method for the Koopman Operator.
We investigated various approaches for approximating the
Koopman operator, including the Fourier-based approxima-
tion (our proposed method), Dynamic Mode Decomposi-
tion (DMD), and Extended DMD (EDMD). The results in
Table 5 show that the Fourier-based approximation achieves
the best balance between accuracy and computational effi-
ciency. While EDMD provides competitive accuracy, it in-
curs a higher computational cost, making it less practical
for large-scale satellite image forecasting.

Long-Term Forecasting Capability. We analyzed the
model’s performance at different forecasting horizons:
short-term (5 frames), mid-term (20 frames), and long-term
(100 frames). The results reveal that ViTKoop maintains
stable accuracy even in the long term, whereas the baseline
models show significant error accumulation over time. The
Koopman operator’s ability to model temporal dynamics in
a linearized latent space contributes to this stability, mak-
ing it particularly well-suited for long-term satellite image
prediction tasks.

Summary of Ablation Study Results. Our ablation
study confirms that each design choice in our proposed



method positively impacts performance. In particular,
when comparing different approximation methods for the
Koopman operator—namely Fourier-based, DMD, and
EDMD—we observed that the Fourier-based approxima-
tion enables the most accurate long-term predictions. This
indicates that the Fourier-based Koopman operator not
only captures the underlying dynamics more effectively but
also maintains stability over extended forecasting horizons,
making it especially suitable for long-term satellite image
prediction tasks.

6.3. Dataset Details

SEVIR. The Mean Squared Error used in optimiza-
tion, we also incorporate the Critical Success Index
(CSI), commonly used in precipitation nowcasting and
defined as CSI = g #Miiletsi ZFaiams- 10 count
#Hits (truth=1, pred=1), #Misses (truth=1, pred=0), and
#F.Alarms (truth=0, pred=1), the prediction and ground
truth are rescaled to the range [0,255] and then binarized
at thresholds {16, 74, 133, 160, 181,219}. We report CST at

each threshold and also their mean, CSI-M.

5min. 10 min.

Figure 7. Samples of the SEVIR dataset.

ICAR-ENSO. To evaluate our model, we use the
Nino3.4 index, which represents the area-averaged SST
anomalies in the region 170° —120°W, 5°S — 5°N, a crucial
indicator of this climate event. We measure forecast quality
using the correlation skill C¥12°3-4 [19] of the three-month
moving average Nino3.4 index:

CNinoBA — ZN(X B X)(Y — Y)
VEN(X = XX (Y - )2

calculated on the entire test set of size N. Here, Y €
RN XK denotes the ground-truth of the Nino3.4 index at K
forecast steps, and X € RY*X is the corresponding model
prediction.

0 hour 1 hour 2 hour 11 hour

e RX

)

Figure 8. Samples of the ENSO dataset.

EarthNet2021. Remote sensing datacubes represent
scenes from the Sentinel-2 mission [14], covering a
spatial extent of 128 x 128 pixels at 20m resolution

(2.56kmx2.56km total area), and providing surface
reflectance every 5 days in four wavelength bands (blue,
green, red, and near-infrared, referred to as RGBI). Each
datacube is complemented by a binary data quality mask
indicating the presence of clouds. The EarthNet2021 Chal-
lenge also provides weather datacubes from E-OBS [41]
for each day. These weather datacubes cover 80 x 80 pixels
at a resolution of 1.28 km (i.e., 102.4kmx102.4 km total
area) and include precipitation, air pressure at sea level,
and daily mean, minimum, and maximum temperature.
Prior work has shown these variables to be correlated with
vegetation greenness [23, 24, 51], encoding information
about plant stressors (e.g., low soil moisture, high vapor
pressure deficit) and meteorological variables (e.g., wind
speed). Additionally, time-invariant data layers of elevation
from the EU-DEM digital elevation model [4] are provided
at both high and low resolutions. Remote sensing and
weather datacubes are spatially aligned so that multiple
remote sensing datacubes fit within the geographical extent
of a single weather datacube. A more detailed description
of the data provided through EarthNet2021 is given by
[39].

To prepare the data for our modeling, we applied addi-
tional preprocessing steps. The high-resolution elevation
data were replicated for each time step, while the low-
resolution elevation data (matching the meteorological data
resolution) were not used. Daily meteorological data were
aggregated into 5-day intervals to match the frequency of
the remote sensing data. From the original daily mean tem-
perature, daily total precipitation, and daily mean sea-level
pressure, we computed their means over each 5-day inter-
val. For daily minimum and maximum temperatures, we
took the minimum and maximum values across the same 5-
day period, respectively. We used only the subset of weather
data matching the spatial extent of the remote sensing dat-
acubes; data outside this domain were discarded. Due to
persistent cloud coverage in some samples, data complete-
ness within individual datacubes varied significantly. We
removed three datacubes from the training set that were en-
tirely cloud-contaminated during the context period.

The final evaluation metric, EarthNetScore (ENS), is the
harmonic mean of four different metrics, computed only on
non-masked pixels:

¢ Median Absolute Deviation (MAD). Computes the me-
dian absolute deviation between target pixels and pre-
dicted pixels for a robust measure of proximity.

¢ Ordinary Least Squares (OLS). Evaluates trend capture
in vegetation by first computing NDVI maps for both tar-
get and predicted series, then fitting OLS models over
time per pixel, and comparing fitted slopes.

» Earth Mover’s Distance (EMD). Similar to OLS but fo-
cuses on pixel distribution by computing the Wasserstein-
1 distance between target and predicted NDVI values.



e Structural Similarity Index (SSIM). Captures percep-
tual similarity by averaging SSIM over channels and
timesteps.

7. Implementation Details
7.1. Model Architecture

In our implementation, we employ a Tiny Vision Trans-
former (Tiny ViT) [50]-based Auto Encoder for feature ex-
traction and reconstruction. The encoder and decoder are
both designed as ViT models with the following config-
uration: an input resolution of (64,64), a patch size of
(2,2), single input and output channels (in_chans = 1,
out_chans = 1), 16 attention heads (head_num = 16), an
embedding dimension of 768 (embed_dim = 768), and a
depth of 16 transformer layers (depth = 16). The encoded
latent representation is then processed by the Koopman op-
erator module for time-series forecasting.

The Koopman operator is applied in the latent space,
employing a spectral decomposition of the system dynam-
ics to model temporal evolution. The forward propaga-
tion includes Fourier transforms for extracting dominant
frequency components, followed by iterative updates with
the learned Koopman matrix. The reconstructed output is
obtained by applying the inverse Fourier transform and de-
coding the transformed latent representations.

7.2. Training

Our model is implemented using PyTorch. The Koopman
operator is parameterized with complex-valued weights and
operates in the Fourier domain. The training is conducted
for Ty, = 12 in SEVIR, Ty, = 14 in ICAR-ENSO, and
Towt = 20 in EarthNet2021 time steps with a batch size
of B. The network is trained using the Adam optimizer
with an initial learning rate of 10~#. During training, in-
put sequences are incrementally updated using the predicted
frames to enforce temporal consistency.

7.3. Solving PDEs by the Koopman Operator

In many scientific and engineering applications, partial dif-
ferential equations (PDEs) serve as fundamental tools to
model complex phenomena such as fluid dynamics, quan-
tum mechanics, and civil engineering problems [10]. De-
spite significant progress [45], many important PDEs (e.g.,
the Navier—Stokes equations) still lack analytic solutions
[15], motivating the development of various numerical and
data-driven methods for approximating their solutions [30].

Let ® = @ (D;R%) be a Banach space of inputs and
I' = T' (D;R%) a Banach space of solutions, both defined
on a bounded open set D C R?. Traditional PDE solvers
seek to approximate a solution operator

Q:(¢u737’71) =,

which reduces to Q : ¢ — 7 when the boundary and initial
conditions vp and v; are fixed. In practice, a parametric
version Qy ~ Q is often considered to facilitate optimiza-
tion problems [27].

The inherent nonlinearity and potential non-autonomy of
these dynamic systems render long-term prediction a daunt-
ing challenge. A natural strategy to simplify the learning
task is to transform the original nonlinear system into one
that evolves linearly. In our framework, this is achieved via
the Koopman operator.

For a suitably chosen observation function g : I' —
G(R% x T), the time-dependent Koopman operator /¢
propagates the observable in a linear fashion:

g(ve4e) = Ko g(n),

with the instantaneous evolution given by

L Kg(n) —g(w)
0rg(e) = lim 6 :

Intuitively, rather than directly predicting the high-
dimensional, nonlinear state y(x;), we lift the system into
a latent space via g(7:), where its evolution is governed by
a linear operator. This linearization is key to enabling effi-
cient long-term predictions.

To operationalize this idea, we integrate the Koopman
operator framework with an Auto Encoder. The Auto En-
coder learns a nonlinear mapping from the original PDE
solution y(z;) to a low-dimensional latent representation
z; =~ g(7v:). In this latent space, the evolution is approx-
imated by a linear operator:

~ kt+e
Ziye = K:t Zy.

This approach leverages the expressive power of deep learn-
ing to capture the complex features of the PDE solution
while exploiting the simplicity of linear dynamics in the la-
tent space for prediction.

By unifying Koopman operator theory with the Auto En-
coder framework, our method transforms the original non-
linear dynamics into a linear evolution in the latent space,
thereby simplifying the prediction task and enhancing com-
putational efficiency. This formulation is consistent with
the derivations and notation presented in the next subsec-
tion, ensuring a coherent theoretical foundation for our ap-
proach.

7.4. Time-Dependent Koopman Operator.

Partial differential equations (PDEs) are fundamental in sci-
ence and engineering but frequently lack closed-form solu-
tions, necessitating computational approximations [10, 15].
Let ® = @ (D;Rd¢) be a Banach space of inputs and
I' =T (D;Rdv) be a Banach space of solutions, where
both spaces are defined on a bounded open set D C R<. In



traditional PDE solvers, one seeks to approximate a solu-
tion operator Q that maps the input function ¢ (with fixed
boundary and initial conditions g, ) to the solution y:

Oy () = (L) (x¢) + (), @€ DXT, (12)

v (xy) =B, x €0DXT, (13)
v (xo) =71, o € D x {0}. (14)
Here, T = [0, 00) denotes the time domain, £, is a dif-

ferential operator dependent on ¢, and 7)(-) is a prescribed
function in an appropriate function space.

Rather than directly solving for the high-dimensional
state 7y (x ), our approach shifts the focus to a set of observ-
ables g : I' — G, where g(+;) encapsulates the essential
features of the state at time ¢. Although the state evolution
governed by the PDEs is nonlinear, we posit that there exists
a time-dependent Koopman operator k!¢ that propagates
these observables in a linear fashion:

g8(ve4e) = Kiog (). (15)

Taking the limit as ¢ — 0, we obtain the infinitesimal gen-
erator of the Koopman operator:

) ,Ct—l-E _
atg(’yt) — 11m t g(’Yt) g(’yt) . (16)
e—0 15

This formulation offers an intuitive perspective: while
~(z+) evolves nonlinearly, the observable g(~;) is governed
by a linear operator. This linearization is the cornerstone
of our method and underlies our integration of Koopman
theory with an Auto Encoder, which efficiently predicts the
evolution of time-series satellite image data.

Furthermore, the connection to the Lax pair (M, ) in
integrable PDEs—where M satisfies an eigenvalue prob-
lem and its evolution is determined by A via

MM + [M,N] =0, (17)

and identifying

A = lim K§+6g(%) —g(7t)

e—0 £

; (18)

reinforces the rigorous foundation of the Koopman ap-
proach. This connection justifies employing Koopman op-
erators for PDE-based time-series forecasting in our frame-
work.

7.5. Koopman Operator Approximation.

Building upon the intuitive derivation above, we now
describe a computational strategy for approximating the
Koopman operator in a finite-dimensional setting. Inspired
by dynamic mode decomposition (DMD) techniques—such
as Hankel-DMD [1], sHankel-DMD [8], and HAVOK

[5]—we construct a Krylov sequence of observables with
a temporal step size € € [0, 00):

Ron=1[g(0),8(), 8(v2e), -, g(me)], (19

Ry =g (0), Kig (0), KEKGg (0). -

(20)

K e Kig (o) |.

This sequence is analogous to those used in Krylov sub-

space methods for eigenvalue computations [40]. To further

capture the temporal dynamics, we arrange these observ-
ables into a structured Hankel matrix:

g (70) g (7e) g (Yne)

Hann =

g (W(ernfl)E)
(2D

g (m}l)e) g (v.ma)

Here, m € NT denotes the embedding dimension, and
the columns of H,,x, span a Krylov subspace K C
G (RD x T):

K = span (Ry) ~ span (H(mn,n)) - (22)

If n > dim(K) — 1, we approximate the Koopman operator
by projecting it onto K. Let £*° : G (R™ x T) — K
be this Galerkin projection. For any test function h €
G (R x T'), we enforce

(KT h(n). g(ie)) = (K" h(n),8(0e)) o
Vi=0,...,m,

where (-, ) denotes the inner product. Under appropriate

conditions, as m — oo, the projected operator X:*¢ con-

verges to the true Koopman operator ! [22]:

lim IKEh(ve) —Kih(v) || du = 0, Vh.
m— o0 Q(RdW ><T)
(24)
In practice, we approximate the Koopman operator by en-
forcing that the Hankel matrix evolves as

Hpsen(k+1) = KTV 4, (k), VE=1,...,n,
(25
where H,,, x (k) denotes the k-th column of H,, x .

A major challenge in applying these ideas to time-
dependent systems is the computational cost of online op-
timization for capturing temporal evolution. To alleviate
this, following [25], we assume that for sufficiently small
€, the Koopman operator exhibits approximate temporal in-
variance. This assumption allows us to perform an offline



temporal averaging:

_ 1 rt
K. = lim -

t—oo ¢ 0

g () g (Yree) dr

n
~ argmin Z [ Himxn(k+1) — PHopsn (k)| F-
PeRdy+1

(26)

For a fixed ¢, this averaged operator K. : G (R4 x T) —
K provides a computationally efficient offline approxima-
tion of the Koopman operator, suitable for long-term pre-
diction tasks in PDE applications.

The successful implementation of this framework de-
pends critically on two factors: achieving high temporal
resolution via offline optimization of the Koopman opera-
tor, and designing an observation function g(-) that satisfies
ergodicity conditions within acceptable error bounds. Al-
though these challenges are significant, our exploration of
neural network architectures—specifically, Koopman Auto
Encoders—offers a promising pathway to effectively in-
tegrate Koopman theory into the prediction of time-series
satellite imagery.

7.6. Neural Approximation of Koopman Operators

A key challenge in implementing this approach lies in de-
signing an effective neural architecture to enable Koopman-
operator-driven PDE solutions. Here, we present the
ViTKoop with koopman operator-based multi-step fore-
casting framework, which comprises six integrated compo-
nents:

(1) Latent Encoding: The initial PDE input ¢; =
¢ (D x t) from Egs. (12-14) undergoes transformation
through an encoder network to produce g (7;) in space
g (Rd?f« X T). This encoder implements the observation
function g () using a single nonlinear layer with tanh (-)
activation. Refer to Figure 3 for visual representation.
(2) Fourier Transformation: A Fourier transform maps
g () to its frequency domain representation gx () =
F og (7). Following [26], we employ fast Fourier trans-
form with frequency mode truncation at w. This transfor-
mation serves two purposes:

First, it facilitates efficient computation of iterative up-
dates:

Y (Ttte) = i T (wt,y¢) 0 (ye) dys,
Xt

27)

Second, the frequency truncation naturally decomposes
the system into low-frequency components, which typ-
ically exhibit greater stability and ergodicity, and high-
frequency components requiring separate treatment. This
decomposition enables focused Koopman operator learn-
ing on more stable modes while preserving high-
frequency information through dedicated processing.

V;xtEDXt.

(3) Koopman Operator Learning: Working with gz (7;) at
timesteps ¢t € eNT, we construct a Hankel matrix 7:Zm><n
with embedding dimension m. The framework employs
a0 x o linear layer to learn K. : G (R% x T') — K fol-

lowing Egs. (25-26). This enables future state prediction

-~ T
through gr (ﬁ(m+n)€) = {/Cs,Han (n)} (m). The
parameter r provides temporal resolution control, allow-
ing finer-grained evolution modeling.

(4) Inverse Spectral Transform: Predicted states undergo
inverse Fourier transformation: g (ﬁ(m_m)s) = Flo
gr (ﬁ(m_s_n)g). This reconstruction excludes previously
filtered high-frequency components, which are handled
separately.

(5) Low-level Component Processing: Leveraging the
property that shallow convolutional layers amplify low-
level components [33], we implement network C to ex-
tract and predict low-level information g¢ (;). The pre-
diction follows [gc (Fi+1)2) »- - » & (Fismsne)] =
Clg(@ i), 8 (Q(Hm)s)]T. For complex PDEs, ad-
vanced architectures incorporating inception modules
[44] may be employed.

(6) Image Reconstruction: The framework combines pre-
dictions from both pathways through weighted averaging:

gu (Tm+nye) = (1= 2) & (Am+nye) + A8 (m+nye)»
where A € [0,1] balances spectral components. A
nonlinear decoder with tanh () activation implements
g ' () ~ g;' ("), producing the final solution state
a(m—i-n)a inR%.

Based on the framework described in upper mechanisms,
we propose an alternative iterative update approach that dif-
fers from Eq. (27). Given t' > t € N, our formulation is
expressed as:

i =g (F oK o Fog (G men)

Processing in component 1-4

; (28)
+ Co g (’Y[tfms,t]) ):| (m) .
—_— ——
Integration of component 1 and 5
Here, 3 _me ¢ represents the vector [3; e, - - . , V¢, where

m € N denotes the delay-embedding dimension. Drawing
inspiration from the architecture of Fourier neural operators
[26], a multi-unit koopman operator structure can be con-
structed by sequential replication of component (2)-(5) x
times.

The objective function for our koopman operator frame-
work is formulated as:

L=alfy —yelr

m
_ A (29)
+ B E Hg ! °cg (’Yt—ims) - ’Yt—ime”Fa
=0



where parameters «, 8 € (0,00) determine the relative
importance of prediction and reconstruction components.
This approach of decomposing the loss function into dis-
tinct components aligns with methodologies employed in
recent studies on nonlinear dynamic system identification
[6, 7, 12]. While our framework shares conceptual ele-
ments with previous work on neural network parameteri-
zation of Koopman operators [29], it introduces novel el-
ements specifically designed for PDE solutions, including
frequency-based decomposition and adaptive temporal res-
olution. We now proceed to demonstrate the effective-
ness of our approach through various computational exper-
1ments.

7.7. Forecasting Algorithm

Our forecasting algorithm predicts future frames in a satel-
lite imagery time series using an iterative autoregressive ap-
proach. Algorithm 1 outlines the prediction procedure. The
algorithm takes a batch of input data and outputs the pre-
dicted future images. First, we extract the input data and the
corresponding mask from the batch (lines 1-2). The mask
helps focus on relevant regions during prediction.

The core of our approach is the iterative prediction loop
(lines 3-12), which generates predictions for each future
time step from O to 75, — 1. At each iteration:

* We extract the ground-truth target frame for the current
time step ¢ for evaluation.

* We apply our kernel function to the current input se-
quence (x;), which produces two outputs: the predicted
next frame (im_pred) and a reconstruction of the input
(im_re). The kernel implements a spatio-temporal model
capturing both spatial patterns and temporal dynamics.

* We calculate the temporal prediction error between the
predicted frame and the ground-truth frame to evaluate
accuracy.

* For the first time step ({ = 0), we initialize the predic-
tion tensor; for subsequent steps, we concatenate the new
prediction along the temporal dimension.

* Crucially, we update the input sequence with the cur-
rent prediction (line 12), allowing the model to use its
own outputs for subsequent forecasts. This autoregressive
mechanism enables increasingly longer-term predictions.

Algorithm 1 Forecasting Algorithm.

Input: Input batch

Output: Predicted future images
1: Extract input from batch: = < batch
2: Extract mask from batch: mask < batch
3: fort =0toT,,; —1do

4:  Get target frame x; at time ¢

5. Apply kernel to x; sequence: im_pred,im._re <—
kernel(z+)

6:  Calculate temporal error: t_error < loss(im_pred, y)

7. if ¢ = 0 then

8: Initialize predictions: pred <— im_pred[:,-1:,:,:]

9: else

10 Append new  prediction: pred —

torch.cat((pred, im_pred[:,-1:,:,:]), 1)

11:  endif

12:  Update input sequence with current prediction: x <—
im_pred

13: end for

14: return pred
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