A. Experimental Setup

Implementation framework. All agents are orchestrated with crewAT v0.75.0', which provides the task queue, tool
interface, and inter-agent messaging used throughout AQUAH.

Paramlnitializer workflow. For illustration we focus on the Paramlnitializer Agent, whose logic is divided between two
Python functions. describe_basin_for_crest () prompts a vision-enabled LLM to summarise basin physiography
from DEM, flow-accumulation, drainage-direction rasters, and a locator map; est imate_crest_args () then launches a
CrewAl agent that mines PDF manuals and websites to propose a physically plausible CREST parameter vector. A provider-
agnostic wrapper converts images to the base-64 or PIL. Image formats required by OpenAl, Anthropic, or Gemini APIs;
oversized payloads are iteratively down-scaled and JPEG-compressed to satisfy the strictest quota (5 MB for Claude).

Large-language models. Five mainstream models are queried via their native endpoints: GPT-40 (gpt-40), Claude-4
Sonnet (claude-4-sonnet-20250514), GPT-0l (01), Claude-4 Opus (claude-4-opus—-20250514), and Gemini-
2.5 Flash (gemini-2.5-flash-preview-05-20). Text-only prompts use a deterministic temperature of 0, whereas
vision prompts use 0.3.

Earth-observation data. Input layers are fetched on demand from public repositories: HydroSHEDS 90 m DEM, flow-
accumulation, and drainage-direction rasters (https://hydrosheds.org/); USGS 3DEP high-resolution DEMs
(https://apps.nationalmap.gov/downloader/); MRMS precipitation archives (https://mtarchive.
geol.iastate.edu/); FEWS-NET potential-evapotranspiration grids (https://earlywarning.usgs.gov/
fews/product /81); and USGS NWIS discharge records (https://waterdata.usgs.gov/nwis). All layers
are clipped to the basin polygon produced by the CONTEXTPARSER agent and re-projected to a common grid before model
execution.

B. CREST

EF5/CREST model description. The EF5/CREST (Coupled Routing and Excess STorage) hydrologic modelling frame-
work—originating from the University of Oklahoma in collaboration with NASA—combines distributed water-balance cal-
culations with kinematic-wave routing to deliver rapid, spatially explicit flood simulations. Over the past decade it has
evolved into a versatile research and operational tool: CREST-iIMAP couples hydrologic and hydraulic components for real-
time inundation mapping [13]; continental-scale calibration and validation have demonstrated robust skill across the CONUS
domain [6]; the framework has been leveraged to diagnose forcing uncertainties such as the impact of IMERG precipitation
upgrades on streamflow prediction [27]; and a recent synthesis highlights continued advances and emerging applications
across global flood forecasting, drought assessment, and land—surface interaction studies [15]. These studies underscore the
model family’s breadth and its suitability for the automated, agent-driven workflows pursued in AQUAH.

EF5/CREST Parameter Cheat-Sheet. The EF5/CREST hydrologic model framework separates calibration parameters
into two broad blocks: (i) runoff generation governed by the CREST/Water-Balance scheme and (ii) kinematic-wave routing
[7, 15]. Tables 2 and 3 list the key parameters, their recommended search ranges, and the qualitative hydrologic response
when each value increases. This compact sheet is intended as a quick reference for modellers when setting up automatic or
manual calibration routines.

C. Evaluation Criteria

The quality of each AQUAH-generated simulation is assessed through a two-tier protocol that combines objective statistical
metrics and human expert review. The former quantify the numerical agreement between simulated and observed discharge,
while the latter capture practitioner-oriented aspects such as interpretability and report readability.

Objective Verification Metrics Following established hydrological practice, five complementary statistics are evaluated
over the full period (see Table 4). These are: the Nash—Sutcliffe efficiency (NSE, —oo—1, ideal 1), which summarises over-
all predictive skill; the Kling—Gupta efficiency (KGE, ideal 1) that balances correlation, bias and variability; the Pearson
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Figure 6. A schematic of the hydrologic processes represented by the latest EFS/CREST model

correlation coefficient (CC, ideal 1); the root mean square error (RMSE), where lower values indicate smaller deviations;
and the relative bias (BIAS), whose optimum is 0. Together they diagnose both the accuracy and reliability of the CREST
simulations across all flow regimes.

Final Report Evaluation Beyond the objective metrics, every report is first uploaded to the latest o3 large-language model
for automated grading and then independently assessed—under blinded conditions—by a team of professional hydrologists,
both parties applying the same four-axis rubric. Model Completeness gauges the suitability of data sources, openness of
parameter disclosure, and overall workflow transparency; Simulation Results reflects the fidelity of hydrographs and accom-
panying statistics, including treatment of uncertainties; Reasonableness judges the physical plausibility of parameter choices,
underlying assumptions, and recommended next steps; and Clarity measures readability, logical flow, figure and table quality,



Table 2. CREST / Water-Balance parameters

Parameter Meaning Range  Effect when value increases

WM Maximum soil-water storage capacity (mm) 5-250 More storage = less direct runoff.

B Infiltration curve exponent 0.1-20 Steeper curve = more surface runoff.

M Fraction of impervious area 0.01-0.50 Larger imperviousness = more runoff.

KE PET utilisation / evapotranspiration coefficient 0.001-1.0 Higher ET loss = less runoff.

FC Saturated hydraulic conductivity proxy (mm h™—1) 0-150 Faster infiltration = less runoff.

Iwu Initial soil-water content (mm) 0-25 Wetter initial state = higher early runoff.

Table 3. Kinematic-wave routing parameters
Parameter Meaning Range Effect when value increases
TH Drainage-area threshold (km?) 30-300 Smaller threshold = finer channel network.
UNDER Interflow velocity multiplier (m s—1) 0.0001-3.0  Larger velocity = quicker runoff response.
LEAKI Leakage factor from interflow layer 0.01-1.0 Higher leakage = faster hydrograph rise.
ISU Initial subsurface storage unit 0-1 x 107®>  Non-zero may cause spurious early peak; keep
near zero.

ALPHA Muskingum—Cunge « for channel cells 0.01-3.0 Larger value slows flood-wave translation.
BETA Muskingum—Cunge [ for channel cells 0.01-1.0 Bigger [ likewise slows and attenuates wave.
ALPHAO « for overland/non-channel cells 0.01-5.0 Controls overland flow speed; /3 fixed at 0.6.

Table 4. Verification metrics used in this study. QL (Q%,) is the observed (simulated) discharge at time step t; Q,,, and Q,;,, are their
respective means; p and o are the mean and standard deviation; 7" is the total number of time steps. CC — Pearson correlation coefficient,
BIAS - relative bias, RMSE — root mean square error, NSE — Nash—Sutcliffe efficiency, KGE — Kling—Gupta efficiency with & = 0sim/Tobs

and B = psim / tobs- The last column gives each metric’s theoretical range and its perfect value (in parentheses).

Metric (abbr.) Equation Range (perfect)
T t Ot )2
Nash-Sutcliffe efficiency NSE) NSE =1-— Zf;l( :bs 75”“) (—o0, 1] (1)
Zt:l (Qobs - Qobs)2
T
Relative bias (BIAS) BIAS = %Z( b — Q) (—00, 00) (0)
t=1
L T
Root mean square error (RMSE) RMSFE = T Z(inm - Qébs)2 [0, o) (0)
t=1
T t _ 7). t _ P
Correlation coefficient (CC) CC = th:1( = Qs‘m)(QT"bs QObS)i [—1, 1] (1)
VL (@l — Qun)® VS L Qs — Do)?
Kling-Gupta efficiency (KGE) KGE =1—+/(CC —1)2+ (a —1)2 + (8 — 1)2 (=00, 1] (1)

and adherence to scientific-writing norms. Each axis is scored on an integer 0-10 scale by the expert panel and the LLM;
the two values are averaged to obtain the axis score, and the unweighted mean across the four axes yields an overall quality
index (see the UI mock-up in Fig. 7).

Example Analysis Figure 8 contrasts two reports generated from the identical prompt “I want to simulate the streamflow
of the Mad—Redwood basin from 2020 to 2022.” Panel (a) shows B5_030.pdf, produced by the gemini-2.5-flash agent,
while panel (b) shows B5_223.pdf from gpt—-ol. Although both agents follow the same workflow, their outputs diverge
noticeably: B5_030 omits several key figures, lowering its Model Completeness score, and its poor NSE drags down the
Simulation Results. In contrast, BS_22 3 includes all requisite graphics and attains a substantially better NSE (0.578), which,
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Figure 7. Human-grading interface used in this study. Experts (and an LLM co-evaluator) assign 0—10 star scores on four axes—Model
Completeness, Simulation Results, Reasonableness, and Clarity—and record whether they would adopt the agent in professional hydrologic
work.

together with clearer recommendations, yields higher marks across all four grading axes and a superior overall index. This
example underscores how agent choice can strongly influence both the technical fidelity and presentation quality of first-pass
hydrologic simulations.



(a)

(b)

Mad-Redwood Basin Hydrological Analysis
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5. Model Performance Metrics
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Figure 8. Side-by-side grading example for two hydrological reports generated by different LLM agents. Panel (a) shows the report
B5_030.pdf produced by gemini-2.5-flash, while panel (b) displays B5_223.pdf from gpt-o1. Both were created from the same
prompt, “I want to simulate the streamflow of the Mad—Redwood basin from 2020 to 2022.” The table underneath presents the averaged
human + LLM scores on the four-axis rubric. Owing to missing figures, B5_030 lags in Model Completeness; its poorer NSE also lowers
the Simulation Results score. In contrast, BS_223 achieves notably higher marks across all axes, leading to a superior overall quality index.
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