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Abstract

Most recent work on action segmentation relies on pre-
computed frame features from models trained on other tasks
and typically focuses on framewise encoding and labeling
without explicitly modeling action segments. To overcome
these limitations, we introduce the End-to-End Action Seg-
mentation Transformer (EAST), which processes raw video
frames directly – eliminating the need for pre-extracted fea-
tures and enabling true end-to-end training. Our contri-
butions are as follows: (1) a lightweight adapter design
for effective fine-tuning of large backbones; (2) an effi-
cient segmentation-by-detection framework for leveraging
action proposals predicted over a coarsely downsampled
video; and (3) a novel action-proposal-based data aug-
mentation strategy. EAST achieves SOTA performance on
standard benchmarks, including GTEA, 50Salads, Break-
fast, and Assembly-101.

1. Introduction
Action segmentation is a basic vision problem that involves
labeling frames of an untrimmed video with their corre-
sponding action classes. The problem poses many chal-
lenges, including the inherent ambiguity of action bound-
aries, and significant computational demands of processing
long video sequences.

Recent approaches typically address these challenges by
using pre-computed frame features, e.g., I3D [6] or TSM
[23]. Such features are known to be suboptimal [8], be-
cause they have been previously extracted by other meth-
ods trained on vision tasks that are different from action
segmentation (e.g., action recognition). Furthermore, due
to memory and computational constraints, most approaches
focus on framewise representations [9, 25, 39] that lack
explicit modeling of action instances (with few exceptions
[27, 37] that increase complexity). Consequently, they ne-
glect the bottom-up/top-down integration of frame and ac-
tion representations, which was once essential in traditional
frameworks [1, 5, 15, 29, 31]. Finally, as datasets for action

segmentation are significantly smaller than for other tasks
(e.g., action recognition), previous work resorts to data aug-
mentation and self-supervised learning [2, 19, 28]. How-
ever, these methods typically augment only local frame fea-
tures, and do not augment action instances.

To address these limitations, we propose the End-to-End
Action Segmentation Transformer (EAST). As shown in
Fig. 1, EAST consists of the following modules: (a) a large
backbone, (b) a detector that predicts action proposals over
coarsely sampled frames; (c) an aggregator that combines
the proposals to infer class distributions for all frames at the
original (unsampled) frame rate; and (d) a refinement mod-
ule for predicting the final framewise labels. With EAST,
we make the following three key contributions.

First, we enable efficient end-to-end training of EAST by
introducing lightweight Contract-Expand Adapters (CEA)
into a large backbone network. CEA reduces complexity
by compressing and expanding features around depth-wise
convolutions. This allows efficient fine-tuning of the large
backbone to extract multiscale features directly from raw
RGB frames, ensuring they are optimized for action seg-
mentation rather than for unrelated vision tasks. While re-
cent methods such as Bridge-Prompt [20] and FACT [27]
also claim end-to-end training from RGB inputs, their train-
ing strategy consists of disjoint stages – first training the
backbone, then freezing features to train the rest of their
segmentation model. In contrast, EAST is trained truly end-
to-end, without freezing features at any stage.

Second, unlike most recent work that focuses on frame-
wise labeling without explicitly modeling the temporal ex-
tent of action instances, EAST performs action segmenta-
tion by detection. Specifically, EAST detects action propos-
als over a downsampled input by regressing action bound-
aries over the sampled frames. The proposals are then in-
tegrated and refined for the final segmentation. This pro-
vides two key advantages: improved efficiency by detect-
ing action proposals on coarsely sampled frames (e.g., 1–6
fps), and enhanced framewise classification by explicitly
considering the context of detected action segments. It is
worth noting that temporal downsampling does not affect
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Figure 1. EAST consists of a frozen backbone with trainable adapters for efficient feature adaptation, a transformer-based detector for
regressing action boundaries over coarsely sampled frames (low FPS), an aggregator for combining the action proposals to predict a class
distribution of every frame at the original frame-rate (high FPS), and a refinement module to perform final framewise classification.

the ground truth or evaluation, as our boundary regression
is specified relative to timestamps within the video. These
boundary detections are mapped to the original full frame
rate, and serve as useful constraints for final action segmen-
tation over all frames.

Third, we introduce a novel proposal-based data aug-
mentation method to enhance EAST training. In training,
our experiments show that the high-confidence action pro-
posals generally align well with the ground truth, creating
an easier learning signal for the subsequent proposal aggre-
gation and refinement stages. To encourage learning from
more challenging cases, we augment training by selectively
removing high-confidence proposals before passing the re-
maining proposals to the subsequent EAST modules.

With these contributions, EAST achieves state-of-the-art
performance on standard benchmarks, including the GTEA,
50Salads, Breakfast, and Assembly-101 datasets. Our ap-
proach outperforms existing methods across all metrics.

2. Related Work
This section reviews closely related work.

Efficient Training. While end-to-end training offers
known advantages, memory and computational constraints
often make it impractical. Parameter-efficient fine-tuning
(PEFT) methods, such as adapters [12], LoRA [14], and
prefix-tuning [22], address these limitations by reducing the
number of trainable parameters. However, PEFT’s poten-
tial for video understanding, particularly action segmen-
tation, remains largely unexplored. AdaTAD [26] intro-
duces Temporal-Informative Adapters (TIA) for action de-
tection, using depth-wise convolutions (DWConv) [13] to
enhance temporal reasoning. While TIA improves perfor-
mance over standard adapters [12], it also increases com-
plexity and slows convergence. To address this, we propose
the Contract-Expand Adapter (CEA), designed specifically
for action segmentation. CEA applies feature compression
and expansion around the DWConv. This reduces the com-
putational load within the adapter, achieving both the per-
formance gains of TIA and the benefits of standard adapters
– lower complexity and faster convergence.

Temporal Action Segmentation has been tackled with
multi-stage framewise networks like MS-TCN [9], AS-

Former [39], and DiffAct [25]. However, these lack explicit
action instance representations and require post-processing,
hindering end-to-end training. More recent approaches
(UVAST [4], FACT [27], BaFormer [37]) model actions us-
ing query tokens alongside frame tokens, but at the cost of
significantly increased complexity.

Importantly, most recent methods operate on all frames,
at the input frame rate, and do not use action boundaries to
constrain framewise labeling [9, 39]. This limits their abil-
ity to handle downsampled videos, a critical requirement for
efficient end-to-end training with long videos. In contrast,
we perform efficient action-boundary regression on multi-
scale frame features, followed by the integration of the ac-
tion proposals ”top-down” for final framewise classifica-
tion. This enables competitive performance of EAST even
with downsampled input, significantly reducing model and
computational complexity, compared to methods requiring
full, unsampled video sequences [9, 39].

Test-Time Post-Processing and Data Augmentation.
To improve performance, some approaches resort to post-
processing, such as, e.g., Viterbi decoding [4]. However,
Viterbi decoding is computationally expensive and incom-
patible with end-to-end training. To enable robust training
on relatively small action segmentation datasets, prior work
uses data augmentation [2, 25], which are either simplistic
– e.g., feature masking [25] – or overly complex – e.g., re-
inforcement learning based sequence generation [2]. The
latter would be difficult to optimize within an end-to-end
framework. In contrast, we introduce a new data augmen-
tation method that manipulates action proposals to enforce
EAST training under higher uncertainty conditions, seam-
lessly integrating within our end-to-end training. To our
knowledge, this is the first work to apply proposal-based
data augmentation for action segmentation.

3. Specification of EAST
EAST consists of a backbone, detector, integrator, and re-
finement module, as shown in Fig. 1. Given an untrimmed
RGB video, V ∈ RT×H×W×3, as input, the backbone takes
a downsampled sequence, V′ ∈ RT ′×H×W×3, where H
and W are the frame height and width, and T ′ is the num-
ber of coarsely sampled frames, T ′ ≪ T . Frames are uni-
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formly sampled at an empirically optimized rate to facili-
tate efficient end-to-end training. The backbone output is
passed to the detector to predict: (i) Initial frame labels,
Ŷ1 = {(ti, ŷi)}T

′
i=1, where ti is the timestamp of frame i

in the original (unsampled) video V, and ŷi is its predicted
class; and (ii) Action proposals, Ŝ = {(t̂sn, t̂en,πn)}Nn=1,
where N is the number of action proposals, t̂sn and t̂en de-
note the predicted start and end timestamps in V of nth
action proposal, and πn is the predicted class distribution,
πn = {πn(a) : a ∈ A}, over the set of action classes, A,
including a background class. For each sampled frame in
V′, the detector regresses timestamps of action boundaries
in the unsampled V, rather than their frame indices. This
enables the use of variable downsampling frame rates based
on available memory and computational resources.

EAST’s integrator takes the action proposals in Ŝ as in-
put, and combines them to predict a class distribution of ev-
ery frame of the unsampled V. These predictions are then
progressively refined through multiple stages of the stan-
dard Temporal Convolutional Network (TCN) [9] for final
framewise classification, Ŷ2, over all T frames.

Our end-to-end training uses the proposed new data aug-
mentation method, where Ŝ is corrupted by randomly re-
moving a subset of the most confident proposals, before
producing Ŷ2. In the following, we provide a more detailed
specification of EAST.

3.1. Contract-Expand Adapter

In training, EAST fine-tunes a pre-trained video founda-
tion model on a given action segmentation dataset. As
the backbone, we use ViT-G [40], pre-trained with Video-
MAEv2 [36] on related vision tasks. To facilitate efficient
end-to-end training within memory and computational con-
straints, we design a lightweight Contract-Expand Adapter
(CEA), and integrate it into ViT-G. Building on the recent
approaches to feature adaptation [12, 26], we insert CEA
between the backbone’s layers. As shown in Fig. 2, CAE
adapts the features x of the previous layer with a resid-
ual, which results in the adapted features x′ that are further
passed to the following layer.

Fig. 2 illustrates key differences of CEA from previous
approaches. The Standard Adapter [12] consists of down-
projection and up-projection layers with a non-linear acti-
vation. However, the Standard Adapter does not explic-
itly model temporal context, making it unsuitable for ac-
tion segmentation. The Temporal Interaction Adapter (TIA)
[26] incorporates temporal depth-wise convolutional layers
(DWConv) to aggregate temporal context. TIA first re-
shapes a given input feature of shape (B,C, T,H,W ) to
(B×H×W,C, T ), and then applies the same DWConv in-
dependently to each spatial location (h,w) ∈ H ×W . This
results in a high computational cost, which would make
TIA very challenging to incorporate in our end-to-end train-

ing. To meet our memory and computational constraints,
we adopt a simpler adapter design as follows.
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Figure 2. Adapters for efficient fine-tuning of a foundation
backbone are typically inserted between its layers. (a) Stan-
dard Adapter [12] (orange). (b) Temporal Interaction Adapter
(TIA) [26] (green). (c) Our Contract-Expand Adapter (CEA) (yel-
low). CEA consists of temporal depth-wise convolutions [13], and
parameter-free contract/expand layers.

Our key idea is to use spatial average pooling directly
within the adapter to reduce the number of spatial locations
|H×W | that share the same DWConv. This is based on the
hypothesis that, during backbone fine-tuning, spatial con-
text is less crucial for feature adaptation than temporal con-
text. Our spatial average pooling significantly reduces data
flow and computational complexity compared to TIA. After
applying DWConv to a few pooled spatial locations (h,w),
the resulting features are then appropriately copied to the
other H × W locations, spatially upscaling the enhanced
features before they are passed to the next backbone layer.

As our results show, not only does our contract-and-
expand strategy reduce GFLOPs, but it also improves both
convergence speed and overall performance. Placing the
spatial pooling outside the down- and up-projection layers
of the adapter degrades both performance and convergence
speed, highlighting the importance of its integration within
the core structure of our adapter.

CEA’s operations include the following:

x̄ = σ(W⊤
down · x)

x̄c = contractHW (x̄)

x̂m = W⊤
mid · DWConvk(x̄c)

x̄e = expandHW (x̂m)

x̂ = x̄e + x̄

x′ = α ·W⊤
up · x̂+ x

(1)

where x and x′ are the input and output features, and x̄ and
x̂ are intermediate features, as illustrated in Fig. 2. Wdown
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and Wup are projection weights, Wmid are weights of an
intermediate fully-connected layer, DWConvk is the depth-
wise convolution, α is a learnable scalar, and σ(·) is the
GELU activation function [11].

During fine-tuning, only the CEA modules inserted be-
tween the backbone layers are trained, while the backbone
remains frozen. With a temporal kernel size of 3 and a chan-
nel downsampling ratio of 4, the CEA comprises just 4.7%
of the backbone’s parameters. The CEA’s GFLOPs are al-
most identical to the Standard Adapter. Compared to the
Standard Adapter, CEA increases GFLOPs by an additional
0.04, while TIA increases it by an additional 5.8 GFLOPs.

3.2. Low-Frame-Rate Action Detection

While accounting for temporal context is widely recognized
as beneficial for action segmentation, memory and time
complexity constraints often limit the video length that can
be analyzed. Therefore, temporal downsampling seems like
a critical strategy to manage computational resources, es-
pecially for our end-to-end training. However, state-of-the-
art (SOTA) action segmentation models typically struggle
to maintain the high accuracy achieved at high frame rates
(FPS) when applied to low-FPS input.

To enable efficient end-to-end training with tempo-
ral downsampling, we adopt a segmentation-by-detection
framework, departing from SOTA approaches. Action pro-
posals are predicted on coarsely sampled frames and then
integrated at the original high frame rate for framewise clas-
sification. Inspired by anchor-free detectors (e.g., FCOS
[34] and ActionFormer [41]), we treat each sampled frame
as a query for its corresponding action proposal. This gen-
erates high-quality action proposals from low-FPS input.
Compared to SOTA methods that rely on separate frame and
action branches [27] or learnable queries [4], our approach
significantly simplifies training by directly predicting action
instances from sampled frames.

We first feed the backbone output X to a transformer en-
coder, which produces a multiscale feature pyramid Z =
{(z1i , . . . , zLi )}T

′
i=1, capturing long-range temporal depen-

dencies. This encoder consists of a shallow convolutional
projection followed by a Transformer network with a multi-
head self-attention, which operates at varying temporal
scales by downsampling with strided depthwise 1D convo-
lutions. The transformer encoder output is passed to a con-
volutional decoder with classification and regression heads.
The classification head uses a 1D convolution across the L
pyramid levels in Z to predict the class distribution of ev-
ery frame, πi = {πi(a) : a ∈ A}, i = {1, . . . , T ′}, where
A is the set of action classes including a background class,
πi(a) ∈ [0, 1], and

P
a∈A πi(a) = 1. Simultaneously, for

every frame i, the regression head convolves Z across the
levels to predict time offsets d̂si and d̂ei to the start and end
timestamps of the action instances to which ith frame be-

longs. In this way, every frame i generates the correspond-
ing action proposal with the start and end timestamps esti-
mated as t̂si = ti − d̂si and t̂ei = ti + d̂ei .

In summary, the detector of EAST performs structured
prediction X → {(πi, t̂

s
i , t̂

e
i )}T

′
i=1, which is mapped to the

initial frame labels Ŷ1 as ŷi = argmaxa∈A πi(a), and the
set of T ′ action proposals Ŝ = {(t̂sn, t̂en,πn)}Nn=1, N = T ′.

3.3. High-Frame-Rate Aggregation and Refinement
After generating action proposals Ŝ from the downsampled
V′, they are combined to estimate the class distributions,
pi = {pi(a) : a∈A}, of all frames in the unsampled V.
To this end, each frame i = 1, . . . , T of V aggregates the
class distributions {πn} of all proposals whose temporal
intervals cover the timestamp of ith frame, t̂sn ≤ ti ≤ t̂en:

pi(a) ∝
NX

n=1

πn(a) · �(t̂sn ≤ ti ≤ t̂en), (2)

where “∝” denotes proportionality up to a normalizing con-
stant, �(·) is a binary indicator, and

P
a∈A pi(a)=1.

The aggregated class distributions of all frames,
{pi}Ti=1, are passed to a 3-stage temporal convolutional net-
work (TCN) [9] for final frame classification Ŷ2. Similar re-
finement strategies are used in MS-TCN [9] and ASFormer
[39]. The aggregation of action proposals in (2) helps im-
prove temporal smoothness of frame labels in Ŷ2 relative to
the initial prediction Ŷ1.

3.4. Training Loss Functions
In training, predictions Ŷ1 and Ŝ over sampled frames in
V ′, i = 1, . . . , T ′, incur loss, L, defined as

L =
1

T+

T ′X

i=1

Lc(yi, ŷi) + λr�(ŷi)Lr([t
s
n(i), t

e
n(i)], [t̂

s
i , t̂

e
i ]),

(3)
where Lc denotes the focal loss [24]; yi is the ground-truth
class; λr is a weighting hyperparameter; �(·) is a binary in-
dicator that equals 0 if ith frame is classified as background,
and 1, otherwise; T+ is the total number of sampled frames
classified as an action T+ =

PT ′

i=1 �(ŷi); Lr is the DIoU
loss [42] for regression; [tsn(i), t

e
n(i)] denotes the time inter-

val of nth ground-truth action instance closest to the pre-
dicted interval [t̂si , t̂

e
i ] of ith action proposal. Note that the

regression loss is applied only to action proposals classified
as an action excluding background.

The final frame classification Ŷ2 is supervised with the
cross entropy loss and smoothness loss, as in [9].

3.5. Proposal-Based Data Augmentation
This section introduces a new proposal-based data augmen-
tation, which is seamlessly integrated into our end-to-end
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training. It enforces high uncertainty in the input to the
aggregation and TCN modules, reflecting the likely condi-
tions during testing. Integrating existing data augmentation
methods that manipulate or generate frame sequences into
end-to-end training is challenging due to memory and com-
plexity constraints. In contrast, our method is both efficient
and effective, as it operates on significantly fewer proposals
than frames in the video.

Our method randomly removes K < A out of the top
A most confident action proposals from Ŝ , resulting in Ŝ ′.
In our experiments, we choose A = 30, because videos
of the existing action-segmentation datasets typically have
a maximum of 30 action instances. Confidence of a pro-
posal, κn, is estimated as its maximum class score κn =
maxa∈A πn(a). This reduces the average confidence of the
remaining proposals in Ŝ ′ passed to the aggregation mod-
ule, where they “compete” under increased uncertainty to
assign their class distributions to frames in (2). It is worth
noting that due to the random removals, Ŝ ′ may still include
some of the top-scoring proposals from Ŝ , which facilitates
prediction of Ŷ2. Multiple random proposal removals are
applied to generate multiple versions of Ŝ ′, and thus per-
form data augmentation.

4. Results
Datasets. For evaluation, we use the GTEA [10], 50Salads
[33], Breakfast [17], and Assembly101 [30] datasets.
• GTEA [10] consists of 28 egocentric videos, annotated

with 11 action classes. The videos span approximately 1
minute and include around 19 action instances.

• 50Salads [33] is a collection of 50 top-view videos of
salad preparation with 17 action classes. The average
length of these videos is 6 minutes, with approximately
20 action instances per video.

• Breakfast [17] consists of 1712 videos showing 48 break-
fast preparation actions from a third-person perspective.
The videos have an average length of 2 minutes, but they
may significantly vary in duration.

• Assembly101 [30] consists of 4321 videos and 202 action
classes based on 11 verbs and 61 objects. The dataset
features people assembling and disassembling 101 toys.
The videos have on average 24 action instances over a
duration of 7.1 minutes.
Consistent with previous work, we perform five-fold

cross-validation on 50Salads, and four-fold cross-validation
on GTEA and Breakfast, using the standard splits [4, 21, 38,
39]. For Assembly101, we use the official training and val-
idation splits specified in [30].

Metrics. As in SOTA action segmentation approaches,
we use framewise classification accuracy (Acc), edit score
(Edit), and F1-scores (F1@{10, 25, 50}) at overlap thresh-
olds of 10%, 25%, and 50% [18]. Edit score measures
similarity between the predicted and ground-truth action

sequences. F1-scores evaluate localization of action in-
stances. We also report the average precision at Intersection
over Union (IoU) thresholds of {0.3, 0.4, 0.5, 0.6, 0.7} and
the mean average precision (mAP) of our action proposals
predicted by EAST’s detector.

Implementation Details. EAST is implemented using
PyTorch 2.0.1 and MMAction2 [7] on H100 GPUs. EAST
consists of a backbone, detector, aggregator and TCN. The
backbone is VideoMAEv2 [36] with ViT-G [40], pre-trained
as in [36]. Parameters of the backbone are frozen to their
pre-trained values, and fine-tuned with our CEA adapters
placed between ViT-G blocks of VideoMAEv2, with the
adapter’s learning rate set to 2e-4. The adapter’s projection
layer weights and α are initialized to 0 and 1, respectively.

During training, video clips are randomly cropped to 768
frames. The frame sampling rate (FPS) is treated as an em-
pirically optimized hyperparameter tested in Tab. 9. We
use the following FPS: 3 for GTEA, 1 for 50salads, 3 for
Breakfast, 6 for Assembly101. Backbone frame features,
X , are extracted using non-overlapping temporal windows
of size 16 (stride = 16 frames) and a spatial resolution of
160x160. For inference on videos exceeding 768 frames,
a 0.25 overlap sliding window approach is employed. Pre-
dicted action boundary timestamps are regressed directly in
seconds. These are then multiplied by the FPS to gener-
ate high-FPS frame-wise predictions, ensuring consistency
with prior work for comparison. EAST is trained in two
stages for stable convergence. First, the backbone and de-
tector are trained end-to-end for 300 epochs on GTEA, 150
epochs on 50Salads, 30 epochs on Breakfast, and 15 epochs
on Assembly101. Subsequently, the entire EAST is trained
for 50 epochs using our data augmentation method. As in
[25, 27], model selection is performed on the validation set
based on the average metrics.

4.1. Features and Training Efficiency
In this section, we compare EAST with SOTA on the two
largest datasets Breakfast and Assembly101 to evaluate:
frame feature representation and training efficiency. As
SOTA representatives, for comparison, we choose FACT
[27], LTContext [3], ASFormer [39], and MSTCN [9].

The SOTA methods use precomputed I3D features [6]
for Breakfast and TSM features [23] for Assembly101. To
ensure consistency in the frame features across the SOTA
methods and EAST, we extracted MAEv2 frame features
for all the methods, including ours, using the ViT-G back-
bone pretrained with VideoMAEv2 [36]. Tab. 1 shows
that the SOTA methods improve performance on Breakfast
when using precomputed MAEv2 features, while LTCon-
text with MAEv2 features fails to do so on Assembly101.
On both datasets, end-to-end trained EAST using the same
pretrained ViT-G achieves superior performance.

Tab. 4 compares per-epoch time, total training time, and
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Method Feature F1@{10,25,50} Edit Acc
MSTCN [9] I3D 52.6 48.1 37.9 61.7 66.3
(’CVPR19) MAEv2* 59.9 55.1 43.9 65.0 68.5

ASFormer [39] I3D 76.0 70.6 57.4 75.0 73.5
(’BMCV21) MAEv2* 78.7 73.6 60.8 76.8 75.0

LTContext [3] I3D 77.6 72.6 60.1 77.0 74.2
(’ICCV23) MAEv2* 80.6 75.7 64.1 75.2 76.6

FACT [27]
(’CVPR24)

I3D 81.4 76.5 66.2 79.7 76.2
I3D* 78.4 73.3 62.2 77.4 75.5

MAEv2* 80.6 75.9 65.3 78.9 77.2
EAST MAEv2 85.6 81.5 71.6 83.5 82.2

Table 1. Impact of feature representation on Breakfast. *: results
from official code. SOTA methods use precomputed I3D features
on Breakfast. To ensure a consistent feature representation, we
compare SOTA and EAST using MAEv2 frame features extracted
by the ViT-G backbone pretrained with VideoMAEv2 [36] across
all the methods. Results are averaged across four standard splits.

Method Feature F1@{10,25,50} Edit Acc
LTContext [3] TSM 33.9 30.0 22.6 30.4 41.2

(’ICCV23) MAEv2 31.3 27.9 21.1 27.8 40.3
EAST MAEv2 42.3 39.4 32.8 39.9 48.4

Table 2. Impact of feature representation on Assembly101. LT-
Context [3] uses precomputed TSM features on Assembly101. For
fair comparison, we evaluate LTContext and EAST when both
methods use MAEv2 frame features extracted by the ViT-G back-
bone pretrained with VideoMAEv2 [36].

Methods MSTCN++ ASFormer LTContext DiffAct FACT EAST
GFLOPS 4.5 7.6 7.8 63.0 5.5 9.2

Table 3. Computational cost in GFLOPS, measured on a 5-minute
video using the setup from [27].

GPU memory usage of SOTA methods and EAST on Break-
fast using NVIDIA H100s. Note that the SOTA methods in
Tab. 4 rely on pre-computed features and in their reports
exclude feature extraction time and memory usage. There-
fore, the comparison of training efficiency is unfavorable to
EAST, whose reported numbers in Tab. 4 account for the
full pipeline, including training the large backbone. Tab. 4
shows EAST achieves total training time comparable to LT-
Context – the fastest feature-based Transformer – despite
processing RGB frames.

For a fair comparison with prior work that does not sup-
port direct RGB input and relies on pre-computed features,
we account for feature extraction costs in Tab. 14 in the
supplement. As Tab. 14 demonstrates, SOTA methods re-
quire significantly more resources – e.g., FACT needs 300.3
hours for I3D feature extraction plus 122.3 hours for model
training (total 422.6 hours), making it 36.4× longer than
EAST’s end-to-end training. EAST uses only 40GB of
memory during training, which is highly efficient consider-
ing the ViT-G backbone alone requires 6GB for per-frame
feature extraction. In contrast, prior work requires 25TB to
extract I3D features for a 10-minute video. Our efficiency

Method MSTCN ASFormer LTContext FACT EAST
Time per Epoch (min) 25.0 99.0 4.5 48.9 23.3

Number of Epochs 50 120 150 150 30
Training Duration (h) 20.8 198.0 11.3 122.3 11.6

Peak GPU Memory (MiB) 2464 5014 7358 18990 40804

Table 4. Comparison of training efficiency on Breakfast in terms
of per-epoch time, total training time, total epochs, and memory
usage on an H100 GPU. Our EAST matches MSTCN’s per-epoch
time, and reduces overall training time due to faster convergence of
learning and capability to work with downsampled videos. Higher
memory usage of EAST is due to taking the RGB input rather than
pre-computed features.

Dataset Method 0.3 0.4 0.5 0.6 0.7 mAP

GTEA

No adapter 89.4 87.1 83.0 74.0 66.1 79.9
Standard [12] 94.9 92.9 90.3 83.4 75.6 87.4

TIA [26] 94.7 92.9 88.2 83.1 76.4 87.1
CEA 95.2 93.8 91.1 84.9 77.9 88.6

Breakfast

No adapter 64.7 61.9 58.3 52.0 42.8 55.9
Standard [12] 73.8 71.3 68.0 62.2 53.9 65.9

TIA [26] 74.9 72.5 69.2 63.7 54.8 67.0
CEA 75.8 73.2 70.1 63.9 55.7 67.7

Table 5. Average precision at varying IoUs and mAP of EAST’s
detector on Breakfast for different adapters used in fine-tuning of
the ViT-G backbone. The row denoted with ”No adapter” reports
the results when ViT-G is not fine-tuned, i.e., when EAST uses pre-
computed MAEv2 frame features of the frozen ViT-G pretrained
with VideoMAEv2.

stems from segmentation-by-detection enabling low frame-
sampling rates (1-6 fps) versus high-FPS SOTA methods.
For inference on a 10-minute 50Salads video, EAST uses
only 4.3K GFLOPs—lower than all prior work when com-
bining their feature extraction and model GFLOPs (Tab 3).
While EAST has 152.58M parameters (mainly ViT-G), the
added components are proportionally smaller than SOTA
relative to their backbones (e.g., I3D’s 24.57M parameters).

4.2. CEA Adapter and Backbones
This section evaluates the proposed CEA adapter for fine-
tuning the backbone alongside different backbone net-
works. We analyze their impact on EAST’s detector perfor-
mance, as the accuracy of its output – i.e., action proposals
– is critical for the effectiveness of the subsequent aggre-
gation and refinement modules. To assess this, we report
average precision across varying IoU thresholds and mAP.

Adapter. Table 5 compares the performance of EAST’s
detector on GTEA and Breakfast when using different
adapters for fine-tuning the ViT-G backbone, including the
Standard Adapter [12], TIA [26], and our proposed CEA.
We also conduct an ablation study where ViT remains
frozen during training, without any adapter-based fine-
tuning. In this setting, EAST effectively operates with pre-
computed MAEv2 frame features extracted from the ViT-
G backbone pretrained with VideoMAEv2 [36]. Our CEA
gives the best performance across all metrics. Regarding
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Methods Standard [12] TIA [26] CEA
GFLOPs 46.06 51.86 46.10

Table 6. Computational cost (GFLOPs) of different adapters used
for fine-tuning the backbone on a video sequence of 768 frames.

Figure 3. The plots of EAST’s detector mAP vs. training epochs
on Breakfast, for different adapters placed in the backbone, in-
cluding the Standard Adapter[12], TIA [26], and our proposed
CEA. The CEA adapter consistently achieves higher mAP across
all epochs, and exhibits a faster convergence rate compared to the
Standard and TIA adapters.

Backbone Dim Mem 0.3 0.4 0.5 0.6 0.7 mAP
ViT-S 384 3787 66.4 63.7 58.7 53.3 43.9 57.2
ViT-B 768 9434 68.9 66.6 62.8 55.3 47.3 60.2
ViT-L 1024 16920 73.1 69.4 65.6 58.3 49.3 63.1
ViT-G 1408 40804 78.8 76.3 72.4 65.0 56.7 69.8

Table 7. Evaluation of EAST’s detector on Breakfast when us-
ing different backbone networks. The table reports the backbone’s
output feature dimension (Dim), GPU memory usage (Mem, in
MiB) during training, average precision at varying IoUs, and mAP.

computational efficiency, Table 6 shows that our CEA re-
quires only 0.04 more GFLOPs than the Standard Adapter,
whereas TIA incurs an additional 5.8 GFLOPs, demonstrat-
ing CEA’s significantly lower computational cost compared
to TIA. Fig. 3 presents the plots of mAP vs. training epochs
on Breakfast, for different adapters placed in the backbone,
showing that CEA consistently achieves the best mAP in
every epoch.

Backbone. Tab. 7 compares EAST’s detector perfor-
mance on Breakfast when using different ViT backbones,
from the smallest ViT-S to the largest ViT-G, pre-trained
with VideoMAE [35] and VideoMAEv2 [36]. ViT-G is pre-
trained on the unlabeled hybrid dataset [36], while the other
ViT variants are pre-trained on the Kinetics-400 dataset
[43]. Tab. 7 shows that EAST with ViT-G outperforms the
other alternatives across all metrics. Therefore, we select
ViT-G as our default backbone, and set that its output fine-
tuned frame features X have a dimensionality of 1408. In
contrast, previous work uses pre-computed I3D [6] or TSM
[23] features with a dimensionality of 2048.

Dataset Method F1@10 F1@25 F1@50 Edit Acc

GTEA

Baseline 87.3 84.7 75.9 82.5 86.3
MSTCN 93.2 93.0 88.7 92.1 83.8
ASFormer 86.8 84.0 74.3 83.1 83.6
Proposal Aug 95.8 95.4 91.7 95.4 87.1

Breakfast

Baseline 78.2 74.2 65.8 75.1 77.6
MSTCN 85.6 81.3 71.5 83.4 80.3
ASFormer 84.1 79.9 69.7 82.2 80.2
Proposal Aug 86.2 82.2 71.8 84.5 82.8

Table 8. Action segmentation results using identical action pro-
posals from our detector, comparing refinement strategies. “Base-
line” denotes framewise classification via Eq. 2 without augmen-
tation (Sec. 3.5). “MSTCN” and “ASFormer” apply their respec-
tive refinement networks to our generated proposals. “Proposal
Aug” (EAST) incorporates our augmentation during training for
improved refinement learning. The comparison between Baseline
and Proposal Aug isolates our proposed augmentation’ impact.

FPS F1@{10,25,50} Edit Acc
1 84.1 79.8 69.6 81.7 80.4
3 86.2 82.2 71.8 84.5 82.8

Table 9. Sensitivity of EAST performance to the frame sampling
rate (FPS) on Breakfast.

Backbone Method F1@{10,25,50} Edit Acc

Frozen

MSTCN(’CVPR19) [9] 85.8 83.4 69.8 79.0 76.3
ASFormer(’BMCV21) [39] 90.1 88.8 79.2 84.6 79.7

UVAST(’ECCV22) [4] 92.7 91.3 81.0 92.1 80.2
RTK(’ICCV23) [16] 91.2 90.6 83.4 87.9 80.3

DiffAct (’ICCV23) [25] 92.5 91.5 84.7 89.6 82.2
FACT (’CVPR24 [27]) 93.5 92.1 84.1 91.4 86.1

BaFormer (’NIPS24 [37]) 92.0 91.3 83.5 88.7 83.0
ViT-G fine-tuned EAST 95.8 95.4 91.7 95.4 87.1

Table 10. Action segmentation on GTEA.

4.3. Aggregator and Sensitivity to FPS
Tab. 8 reports the action segmentation performance of
EAST’s aggregation and refinement modules on GTEA and
Breakfast. It also includes ablations where we replace the
aggregator and TCN module with the refinement stages of
MS-TCN [9] and ASFormer [39], or omit refinement of
EAST’s detector output altogether. The results demonstrate
that EAST’s aggregation and refinement gives the best seg-
mentation performance across all metrics on both datasets.

Tab. 9 evaluates EAST’s sensitivity to the video down-
sampling rate on Breakfast. EAST maintains SOTA per-
formance at low FPS rates and improves as the frame rate
increases, subject to memory and compute constraints.

4.4. Comparison with SOTA
Tables 10–13 compare EAST with SOTA on four datasets.
EAST consistently outperforms prior work across all
datasets, achieving substantial improvements in all metrics.
On Assembly101, EAST surpasses previous methods by 7.2
points in accuracy and 9.5 points in Edit score. Further-
more, EAST demonstrates F1@50 score gains of 7.0, 3.6,
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Backbone Method F1@{10,25,50} Edit Acc

Frozen

MSTCN(’CVPR19) [9] 76.3 74.0 64.5 67.9 80.7
ASFormer(’BMCV21) [39] 85.1 83.4 76.0 79.6 85.6

UVAST(’ECCV22)[4] 89.1 87.6 81.7 83.9 87.4
RTK(’ICCV23) [16] 87.4 86.1 79.5 81.4 85.9

LTContext(’ICCV23) [3] 89.4 87.7 82.0 83.2 87.7
DiffAct (’ICCV23) [25] 90.1 89.2 83.7 85.0 88.9

BaFormer (’NIPS24 [37]) 89.3 88.4 83.9 84.2 89.5
ViT-G fine-tuned EAST 93.1 91.9 88.6 88.4 91.9

Table 11. Action segmentation on 50salads.

Backbone Method F1@{10,25,50} Edit Acc

Frozen

MSTCN(’CVPR19) [9] 52.6 48.1 37.9 61.7 66.3
ASFormer(’BMCV21) [39] 76.0 70.6 57.4 75.0 73.5

UVAST(’ECCV22)[4] 75.9 70.0 57.2 76.5 66.0
RTK(’ICCV23) [16] 76.9 72.4 60.5 76.1 73.3

LTContext(’ICCV23) [3] 77.6 72.6 60.1 77.0 74.2
DiffAct (’ICCV23) [25] 80.3 75.9 64.6 78.4 76.4
FACT (’CVPR24) [27] 81.4 76.5 66.2 79.7 76.2

BaFormer (’NIPS24 [37]) 79.2 74.9 63.2 77.3 76.6
ViT-G fine-tuned EAST 86.2 82.2 71.8 84.5 82.8

Table 12. Action segmentation Breakfast.

Backbone Method F1@{10,25,50} Edit Acc

Frozen

MS-TCN++ (PAMI’20) [21] 31.6 27.8 20.6 30.7 37.1
UVAST (ECCV’22) [4] 32.1 28.3 20.8 31.5 37.4

ASFormer (’BMCV21) [39] 33.4 29.2 21.4 30.5 38.8
C2F-TCN (TPAMI’23) [32] 33.3 29.0 21.3 32.4 39.2
LTContext (’ICCV23) [3] 33.9 30.0 22.6 30.4 41.2

ViT-G fine-tuned EAST 42.3 39.4 32.8 39.9 48.4

Table 13. Action segmentation on Assembly101.

5.2, and 10.2 percentage points on the GTEA, 50Salads,
Breakfast, and Assembly101 datasets, respectively.

While maintaining comparable per-epoch processing
times to prior work, EAST significantly reduces the total
number of training epochs required for convergence. On
Breakfast, EAST converges in 30 epochs, compared to 150
for FACT [27] and 1000 for DiffAct [25]. On Assembly101,
EAST requires only 12 epochs, whereas LTContext [3] and
C2F-TCN [32] require 120 and 200 epochs.

4.5. Qualitative Results

Fig. 4 compares of EAST segmentation results with
the ground truth and SOTA on sample videos from
GTEA, Breakfast, and Assembly101. In the top example
video from GTEA, EAST successfully detects all actions,
whereas the other methods miss at least one action. On
the middle example video from Breakfast, the SOTA meth-
ods exhibit varying degrees of missed actions, spurious pre-
dictions, or oversegmentation. In contrast, EAST provides
high-quality segmentation closely aligned with the ground
truth. Finally, in the bottom video from Assembly101,
EAST fails to detect a brief action instance and incorrectly
identifies an action boundary too early – both of these are
ambiguous edge cases that are challenging to discern even
through visual inspection.

Figure 4. Segmentation results on sample videos from GTEA
(top), Breakfast (middle), and Assembly101 (bottom). For each
video sequence, the top row shows the color-coded ground-truth
action instances, middle row shows EAST output, and bottom row
shows SOTA results generated using publicly available models.

5. Conclusion

We have introduced EAST – the first fully end-to-end train-
able action segmenter. EAST performs segmentation by
detection, which enables temporal downsampling of input
videos, significantly reducing computational costs. EAST
takes RGB frames, sampled at a low frame rate, as input
to a large-scale backbone. The backbone is fine-tuned us-
ing our Contract-Expand Adapter (CAE). CAE is especially
effective in reducing the computational costs of end-to-end
training by leveraging spatial pooling. The backbone fea-
tures are passed to the detector to predict action propos-
als, which are then aggregated and refined to produce final
framewise labeling at the original unsampled frame rate.
We have also specified a novel proposal-based data aug-
mentation that increases uncertainty of the detector’s out-
put during training, effectively simulating test-time condi-
tions. EAST outperforms prior work across all metrics on
the GTEA, 50Salads, Breakfast, and Assembly101 datasets,
while maintaining comparable processing times, even with
the additional step of extracting frame features by the back-
bone. We have conducted a comprehensive ablation study
to evaluate EAST’s performance under various configura-
tions. Additional results are presented in the supplements.
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