FrEVL: Leveraging Frozen Pretrained Embeddings for Efficient
Vision-Language Understanding
Supplementary Material

A. Theoretical Analysis of Representation Suf-
ficiency

To understand when frozen embeddings suffice for down-
stream tasks, we analyze the information-theoretic proper-
ties of our approach. Let H(Y'|V, T') denote the conditional
entropy of task labels given perfect visual and textual infor-
mation, and #(Y|v, t) denote the conditional entropy given
only frozen embeddings.

For a downstream task with label space ), the perfor-
mance gap between using full representations and frozen
embeddings is bounded by:

Apert < C - [H(Y|v,t) = H(Y|V, T)] (1)
where C' depends on the task loss function and model ca-
pacity.

Let f*:V x T — ) be the optimal predictor using full
representations, and g* : R% x R% — ) be the optimal

predictor using frozen embeddings. The performance gap
can be expressed as:

Apf:rf = E[@(g* (Va t)a Y)} - ]E[g(f*(v; T)7 Y)] (2)
< Ellg*(v,t) = fF(V,T)] )
</ Var[Y|v,t] — Var[Y |V, T] “4)

Using the relationship between variance and entropy for
discrete distributions with bounded support:

Var[Y'|X] < K - H(Y|X) )

where K depends on the label space cardinality. Combining
these inequalities yields the desired bound.

This bound reveals that performance degradation de-
pends on how much task-relevant information is lost during
the encoding process. For tasks where embeddings preserve
most discriminative information (e.g., semantic similarity),
the gap is small. However, for tasks requiring information
not captured during pretraining (e.g., counting, OCR), the
gap can be arbitrarily large. This theoretical insight explains
our empirical findings and provides guidance on task suit-
ability.

Implications for Pretraining Objectives. The theorem
suggests that improving frozen embedding approaches re-
quires pretraining objectives that minimize H(Y|v,t) for a
wide range of downstream tasks Y. Current contrastive ob-
jectives optimize for image-text alignment but may discard
information crucial for other tasks. Future work might ex-
plore multi-task pretraining or information-maximizing ob-
jectives that preserve more diverse task-relevant signals in
the final embeddings.

B. Implementation Details

Hardware and Software Configuration. All experi-
ments were conducted on NVIDIA V100 16GB GPUs. We
used PyTorch 2.0.1 with CUDA 11.8, transformers 4.35.0
for baseline models, OpenCLIP 2.20.0 for our encoder vari-
ants. For efficiency purposes, we used mixed precision
training using PyTorch AMP and gradient checkpointing.

Training Hyperparameters. Table | shows the detailed
hyperparameters for each dataset. The learning rates range
from 2e-5 to 1e-4 depending on the dataset complexity, with
warmup steps varying from 500 to 2000. Training epochs
were set between 20 and 40 epochs based on convergence
behavior, and batch sizes were either 256 or 512 depending
on memory constraints and dataset size.

Table 1. Dataset-specific training configurations

Dataset ‘ LR  Warmup Epochs Batch Size
COoCo le-4 1000 30 512
VQA v2 5e-5 2000 20 512
SNLI-VE | le-4 1500 30 512
MMMU 2e-5 500 40 256
MMBench | 2e-5 500 40 256

Architecture Details. Our fusion network architecture
consists of several key components. The projection lay-
ers perform linear transformation from the embedding di-
mension of 768 for CLIP-L to a hidden dimension of 512,



followed by GELU activation and LayerNorm. The cross-
attention blocks contain 4 transformer layers with 8 atten-
tion heads at 64 dimensions per head, FFN hidden dimen-
sion of 2048 representing a 4x expansion, pre-LayerNorm
configuration, and dropout of 0.1 on both attention and
FFN. The fusion layer concatenates [v,t,v © t,|v — t|]
to produce 2048-dimensional features. Finally, the predic-
tion head consists of a two-layer MLP that transforms from
2048 to 1024 dimensions and then to the output dimension,
using GELU activation and dropout of 0.1.

Data Preprocessing. Images are preprocessed using
CLIP’s standard pipeline. We first resize images to 224x224
using bicubic interpolation, normalize with CLIP statistics.
We use random horizontal flip during training (except for
VQA v2 dataset). We do not employ additional augmen-
tation to preserve embedding quality. Text preprocessing
follows CLIP tokenization with maximum sequence length
of 77 tokens, and lowercase normalization.

Embedding Storage and Caching. For efficiency, we
implement a caching system. We compute the pre-
computed embeddings which are stored in HDF5 format
with compression, reducing storage from 6KB to 2KB per
sample while maintaining numerical precision.

C. Human Evaluation Details

Table 2. Human evaluation with inter-rater agreement

Quality (1-5) Preference Agreement
Method Relevance  Coherence | Win% Lose% K «
Human | 4.68+0.52 471x048 | - - ] 0856 0871
BLIP 4.31+£0.617 4.38+0.571 | 48.3 39.2 | 0.823 0.841
FrEVL-B | 4.19+0.65  4.28+0.61 429 44.6 | 0.834 0.848

Random | 2.43+0.89% 2.16+0.927 | 87 784 | - -

FSignificant vs FFEVL (p < 0.05). x: Cohen’s kappa, a:: Krippendorff’s
alpha

Inter-Annotator Agreement. Table 2 demonstrates high
inter-annotator agreement for FrEVL outputs with Cohen’s
x = 0.834 and Krippendorff’s o« = 0.848, indicating
consistent quality. The agreement levels match those for
full model outputs, suggesting that frozen embedding ap-
proaches do not produce more ambiguous or inconsistent
results despite their architectural constraints.

Agreement analysis by task type reveals varying levels of
consensus across different datasets. The highest agreement
was observed on SNLI-VE with x = 0.867 due to clear
entailment decisions, moderate agreement on VQA with
k = 0.821 reflecting some answer ambiguity, and lower

agreement on COCO with k = 0.798 due to subjective cap-
tion quality assessments.

Qualitative Patterns. Manual analysis of outputs reveals
clear patterns in success and failure cases. FrEVL excels
when tasks require semantic matching, scene understand-
ing, or general object recognition. Failures concentrate
on counting (’three dogs” — “’dogs”), spatial relationships
(“cat on the left of the dog” — “cat and dog”), text in images
(missing store signs), and fine-grained attributes ("’spotted
dalmatian” — “dog”). These patterns align perfectly with
our theoretical analysis of what information frozen embed-
dings can and cannot capture.

Error Analysis. Categorizing 500 error cases from hu-
man evaluation reveals distinct failure modes. Missing de-
tails account for 38% of errors, involving omitted specific
attributes, counts, or fine-grained information. Spatial er-
rors comprise 24% of failures with incorrect or missing spa-
tial relationships. Hallucination represents 18% of errors
where the model adds information not present in the image.
Misalignment accounts for 12% of cases with correct infor-
mation but poor relevance to the query. The remaining 8%
consists of other errors including grammatical mistakes and
incomplete responses.

Annotation Guidelines. Annotators were provided with
detailed guidelines covering three key criteria. For rele-
vance, annotators assessed how well the output addresses
the input query or task. For coherence, they evaluated
whether the output is grammatically correct and logically
consistent. For preference, they determined which output
they would prefer in a real application. Training included
100 calibration examples with discussion to ensure consis-
tent standards.

D. Detailed Efficiency Analysis

Memory-Constrained Environments. On edge devices
with 4GB memory limits, FrEVL’s 2.3GB footprint en-
ables deployment where 8.7GB+ full models cannot run at
all. For batch processing scenarios, FrEVL maintains effi-
cient memory scaling up to batch size 256 on 16GB GPUs,
compared to batch size 64 limits for full models. This
4x throughput advantage compounds in production systems
handling high request volumes.

The memory breakdown for FrEVL-B consists of
274MB for model parameters calculated as 68.4M x 4
bytes, 896MB for activation memory with batch size 32,
approximately 1.1GB for PyTorch overhead, resulting in a
total memory footprint of 2.3GB.



Energy and Cost Analysis. Table 3 presents detailed en-
ergy measurements over a 24-hour period. In 24/7 deploy-
ment scenarios, energy savings translate directly to opera-
tional costs. At 0.12 per kWh, FrEVL saves approximately
11,400 annually per deployment compared to full models.
For organizations running hundreds of instances, this repre-
sents millions in reduced operational expenses. The envi-
ronmental impact is equally significant, with each deploy-
ment saving 73.6 tons of C'O4 annually using US grid emis-
sion factors.

Table 3. Energy consumption over 24-hour period

Method | AvgPower Total kWh  Annual Cost

BLIP 389W 9.34 $410
FrEVL-B 187W 4.49 $197

Latency-Sensitive Applications. For real-time applica-
tions, FrEVL’s consistent 2ms inference latency after em-
bedding extraction enables deployment in interactive sys-
tems. The predictable performance characteristics, without
the variable latency of autoregressive generation, simplify
system design and capacity planning. However, applica-
tions requiring dynamic visual inputs must account for em-
bedding extraction time, reducing effective speedup to 2.3x
rather than theoretical maximums.

The latency breakdown shows 18ms for embedding ex-
traction using CLIP-L/14, 2ms for fusion network forward
pass, resulting in 20ms total end-to-end latency compared
to 46ms for the full BLIP model.

Pre-Computation Opportunities. Many real-world sce-
narios allow embedding pre-computation across various do-
mains. E-commerce platforms with fixed product catalogs
can pre-compute embeddings during catalog updates. For
a 1M product catalog, storage of 6GB can be compressed
to 2GB with update time of 4.2 hours on a single GPU
and query latency of just 2ms for fusion only. Content
moderation systems can embed user-uploaded media dur-
ing upload, adding only 18ms processing overhead to up-
loadss while achieving 2ms moderation latency and 500
decisions per second throughput. Educational applications
with curated content libraries benefit from one-time setup
for course materials, enabling instant response for student
queries and scaling to thousands of concurrent users.

Scaling Analysis. Table 4 shows performance character-
istics across deployment scales. The consistent 2.5-3x
speedup across hardware platforms demonstrates FrEVL’s
architectural efficiency rather than optimization for specific
accelerators.

Table 4. Scaling comparison with hardware

Hardware ‘ FrEVL FPS  BLIP FPS  Speedup
V100 (16GB) 412 156 2.6x
A100 (40GB) 512 172 3.0x
8xA100 cluster 3,847 1,243 3.1x
TPU v4 892 298 3.0x
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