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Abstract

Rail surface defects can develop into rail cracking, lead-
ing to rail failures that pose serious threats to transporta-
tion safety. Assessing the severity level of these surface
defects is critical for proactive maintenance and long-term
asset management. However, existing vision-based inspec-
tion systems primarily focus on classifying defect types or
locating their positions on the rail surface, offering lim-
ited assistance for maintenance planning. To address this
gap, we present a unified deep learning framework for au-
tomated rail surface defect severity evaluation. Our frame-
work produces direct and interpretable evaluations of the
overall surface condition, ranging from level 0 (no de-
fect) to level 7 (severe defect), to support effective main-
tenance decision-making. The framework comprises three
key components: (i) a segmentation module that identifies
rail surfaces, eliminating interference from background pix-
els, (ii) an alignment module that standardizes the pose of
rail surfaces to mitigate scale and rotation variance, and
(iii) a classification module that predicts defect severity on
the aligned rail surfaces. On a new benchmark of expert-
labeled high-resolution images, our system achieves 81.8%
main-diagonal and 95.9% tri-diagonal accuracy, process-
ing up to 47 images per second. These results demonstrate
the reliability and efficiency of our framework for large-
scale rail surface monitoring. The dataset and code are
available at https://github.com/cvlab-stonybrook/RailEval.

1. Introduction
Rail transportation plays a crucial role in modern society,
and rail track maintenance is essential to ensure safety. Ac-
cording to the Federal Railroad Administration (FRA) Of-
fice of Safety database [8], in 2024, 1,707 train accidents
were reported in the United States, with approximately 24%
attributed to track-related causes, making them the second
leading factor. These failures not only result in financial
loss exceeding $315 million, but also threaten public safety.

Among the various track-related issues, surface-level rail
defects are especially critical. Known as Rolling Contact

Figure 1. Sample images of different rail surface severity levels.
(a) shows a sample image of severity level 0 (no defect), (b) shows
a spalling defect at severity level 3, (c) shows a flaking defect at
severity level 5, and (d) presents shelling at severity level 7.

Fatigue (RCF), these defects, such as spalling, flaking, and
shells (as shown in Fig. 1), develop under repeated wheel-
rail interactions and can accelerate the formation of subsur-
face cracks that lead to structural rail failures. Furthermore,
these visible surface defects can obscure internal damage
during non-visual inspections such as ultrasonic testing [1],
underscoring the importance of timely and accurate surface
condition evaluation.

To support efficient and safe rail operations, mainte-
nance planners and field inspectors need to conduct timely,
objective assessments of rail surface condition. Tradi-
tional manual inspection methods are inherently subjec-
tive, and machine vision technology is used to augment
these inspections by ensuring consistency across evalua-
tions. While rail-bound inspection vehicles have enabled
scalable vision-based rail surface monitoring, most cur-
rent systems [14, 26, 27, 30, 31] focus on detecting de-
fect types and locations, overlooking the severity of sur-
face wear. This omission limits their utility for maintenance
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Figure 2. Image Acquisition System (Figure courtesy of [20]).
The RailScope system [15] consists of two rail surface image sen-
sor heads, one for each rail, and central computer/control elec-
tronics. Inside each sensor head is a laser light source that is used
to illuminate the rail and a high-resolution digital camera to cap-
ture the rail surface images. As the vehicle travels down the track,
high-resolution images of the rail surface are acquired.

planning, where severity levels are critical for prioritizing
and scheduling track grinding, repair, or replacement [1].

In this paper, we present a deep learning-based frame-
work for classifying surface defect severity to support main-
tenance planning and enhance rail transportation safety.
Our method analyzes high-resolution rail images captured
by the RailScope system [15], as shown in Fig. 2. Each rail
surface image is categorized into one of eight severity lev-
els (0 to 7), defined by domain experts to reflect operational
maintenance thresholds. Fig. 3 illustrates examples from
different severity levels: level 0 indicates no damage, level
4 shows moderate damage requiring maintenance, and level
7 signifies severe defects that necessitate track replacement.

Classifying defect severity from these images poses sev-
eral challenges, including background interference and vari-
ations in the rotation, scale, and position of the rail surface
within each frame. To address these issues, our framework
comprises three core components: i) a segmentation mod-
ule that predicts binary masks to extract the rail surface
region and suppress background noise; ii) an alignment
module that estimates a geometric transformation from the
masked image to normalize the pose of the cropped rail sur-
face, and applies it to the original input to preserve rail sur-
face information and reduce errors from segmentation, and
iii) a classification module that predicts the severity level
from the normalized rail surface crop.

A further challenge lies in the limited availability of an-
notated real-world data, particularly for high-severity de-
fects. Because rail defects are typically corrected through
routine maintenance, severe cases are infrequent in standard
operations. To address this, we introduce a new benchmark
dataset collected at the Transportation Technology Cen-
ter (TTC), consisting of 1,132 high-resolution (1200×1600)
rail surface images captured from the High Tonnage Loop,

Figure 3. Examples of the 8 different severity levels. 0 means no
defects, and 7 means the most serious defects.

where defects are intentionally allowed to develop for re-
search purposes. All the images are labeled by field experts
using an eight-level severity scale. The TTC benchmark
dataset spans all severity levels and provides a valuable re-
source for future research in rail inspection and infrastruc-
ture monitoring.

We evaluate our proposed framework on the TTC bench-
mark dataset. Our method achieves a main-diagonal ac-
curacy of 81.8% (exact severity match), a tri-diagonal ac-
curacy of 95.9% (±1 severity tolerance), and an inference
speed of 47 frames per second (FPS) using batched inputs.

To enhance reliability, we incorporate an anomaly detec-
tion module designed to identify rail images that fall out-
side the defined eight-level severity scale. These outlier
cases often feature under-represented visual patterns, such
as rail joints, switches, or welds, which can lead to unre-
liable severity predictions. The module filters such images
from automated processing, flagging them for human in-
spection. It achieves an accuracy of 99.78%. This filtering
reduces the risk of misclassification in out-of-distribution
(OOD) scenarios, without interfering with standard auto-
mated analysis. Overall, our framework combines high ef-
ficiency and accuracy to support reliable, low-latency, high-
throughput vision-based inspection workflows, serving as
an assistive tool for rail inspectors and maintenance plan-
ners in infrastructure monitoring and decision-making.

Our contributions are summarized as follows:
• A unified deep learning framework for rail surface defect

severity classification, integrating segmentation, align-
ment, and classification modules, and achieving 81.8%
accuracy at 47 FPS.

• A new benchmark dataset from the TTC with expert an-
notations covering all eight severity levels.

• An anomaly detection module for filtering out OOD cases
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for human inspection, achieving 99.78% accuracy.

2. Related works
Track inspection is a longstanding challenge, involving
evaluation of track components such as fasteners [9, 19],
joint bars [2], and railroad ties [18, 23]. Rail defect evalua-
tion is particularly crucial, as defects can arise from various
factors like environmental conditions, train speed, and ton-
nage. Although Ultrasonic Nondestructive Testing (NDT)
has been the standard for internal flaw inspection [1, 3, 32],
it lacks sensitivity to surface-level degradation. The risk
of surface defects propagating into subsurface cracks and
causing rail failure highlights the need for inspection meth-
ods focusing on rail surface defects.

Two major technologies for rail surface defect evaluation
are: 1) Eddy Current Inspection: This method uses alternat-
ing magnetic fields to induce eddy currents in the rail. Sur-
face defects are detected when these currents are disrupted.
However, this method is sensitive to variations in lift-off, re-
quiring a consistent distance between the probe and the rail
surface [22]. 2) Image-based Inspection: This method de-
tects rail surface defects through analysis of rail images. Af-
ter collecting an image dataset, machine learning algorithms
are applied to identify defects in the rail surface. Early ma-
chine vision approaches include a filter-based system fo-
cused on corrugation, using Gabor filters to extract texture
information [21]. Li et al. [17] developed a vision system
that enhances images and uses a maximum entropy thresh-
olding algorithm to detect defects. With the advancement of
deep learning, vision-based methods have improved signif-
icantly. Shang et al. [26] introduced a two-stage model that
locates rail surfaces and uses a convolutional neural network
(CNN) for detecting defective rails. Faghih-Roohi et al. [7]
used CNNs to classify various rail surface types. Chen et al.
[6] employed a Faster RCNN architecture for defect detec-
tion and location. However, these systems primarily focus
on defect detection or type classification and do not address
severity level estimation, which is essential for maintenance
prioritization. Comprehensive surveys of surface inspection
methods can be found in [10, 16].

Ma et al. [20] were the first to emphasize the importance
of rail surface severity-level evaluation, but the lack of code
and data hinders reproducibility. They used the Generalized
Hough transform and edge maps from a trained structured
random forest to segment rail surfaces and a stacked ensem-
ble of Support Vector Machine (SVM) classifiers for sever-
ity classification. However, their system suffers from high
latency, over 9 seconds per image. In contrast, our deep
learning framework achieves significantly faster inference
while improving classification accuracy. The framework
is designed for assistive deployment, supporting fast, auto-
mated evaluation while allowing human oversight in OOD
cases, aligning with safety-critical inspection goals.

3. Method

3.1. Overview
We propose a unified framework for classifying the sever-
ity of rail surface defects to support condition-based main-
tenance planning. The system operates on high-resolution
rail surface images collected by the RailScope platform [15]
and comprises three key modules: a segmentation mod-
ule that isolates the rail surface region, removing irrelevant
background content; an alignment module that estimates
an affine transformation to normalize the pose and scale of
the rail surface, addressing variations caused by motion and
viewpoint; and a classification module that predicts a sever-
ity level from 0 to 7 based on the aligned crop. The full
pipeline is illustrated in Fig. 4. Given a captured image, the
segmentation module first predicts a binary mask to locate
the rail surface. This masked region is then processed by the
alignment module, which estimates a transformation matrix
to center and standardize the geometry of the rail segment.
The aligned crop is finally passed to the classification mod-
ule, which outputs a defect severity prediction.

The segmentation and alignment modules are pretrained
on a separate proprietary dataset and remain fixed through-
out training and evaluation on our benchmark. Their archi-
tecture and integration are essential for enabling reliable rail
surface location and geometric normalization under real-
world operating conditions.

An additional anomaly detection module is included to
identify and filter out rail images that fall outside the defined
severity scale, such as those containing rail joints, welds,
or switches. These outliers are excluded from automated
severity classification and flagged for human review, adding
an extra layer of reliability to the system.

3.2. Segmentation module
To suppress background interference in assessing the rail
surface defect severity levels in the captured rail images, we
employ a segmentation module that isolates the rail surface
region. Unlike the prior approaches based on edge detection
[20, 30], we formulate this as a binary semantic segmenta-
tion task that classifies each pixel as either rail surface (1) or
background (0). The module adopts a lightweight encoder-
decoder structure with a MobileNetV2 backbone [24] and
an ASPP-based decoder [4], with skip connections to pre-
serve spatial details. Input images are resized to 512× 512
before segmentation.

Its output, a binary mask, is used to extract the rail sur-
face via element-wise multiplication, removing background
content before alignment. This focuses the alignment mod-
ule on rail geometry alone, reducing distractions from back-
ground noise. Segmenting first also decouples background
variation from pose normalization, resulting in more stable
and accurate transformations.
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Figure 4. Illustration of the pipeline. The model takes the captured image as input. The segmentation module predicts the rail surface
mask, then the alignment module predicts the transformation matrix and applies it to the input to correct the pose of the rail surface, and
finally, the classification module outputs the prediction of the rail track surface defect severity level.

Figure 5. The architecture of the standalone alignment module.
Modified from the spatial transformer [13], the input of the masked
rail surface is passed to a location net that predicts transformation
parameters θ. These parameters are then regressed to an affine
transformation matrix. Finally, the affine transformation is applied
to the input and produces the corrected rail surface.

3.3. Alignment module

Due to vibrations and motion from the rail-bound vehicles,
captured rail surface segments often appear at varying po-
sitions, orientations, and scales. To normalize these vari-
ations, we incorporate an alignment module based on the
spatial transformer network (STN) framework [13]. This
module takes a masked rail surface image as input and pre-
dicts a 2× 3 affine transformation matrix, which is then ap-
plied to reposition the rail surface to the center of the image
frame (see Fig. 5).

To preserve detail, the alignment module operates on
the full-resolution image (1200× 1600). The segmentation
mask is upsampled to this resolution and used to isolate the
rail surface. The resulting masked image is passed to the
alignment module, which estimates the transformation ma-
trix. This transformation is applied to the original image
to produce a standardized, centered view of the rail surface
segment for downstream classification.

3.4. Classification module
Following segmentation and alignment, we obtain a pose-
normalized image in which the rail surface is centered and
scaled to a fixed width of 535 pixels, corresponding to the
dataset-wide average. From this standardized representa-
tion, we resize it to 448 × 448 pixels before feeding it into
the classification module to assess surface condition.

The classification module predicts one of the eight sever-
ity levels (0–7) based on the visual characteristics of the
aligned rail segment. It is trained using the Cross-Entropy
(CE) loss between the predicted severity score and the
ground truth label:

Lcls = CE(pred, label) (1)

We use ResNet18 [12] as the backbone of our classifica-
tion module, selected for its balance of accuracy, efficiency,
and suitability for deployment.

3.5. Anomaly detection module
While the classification module is trained to assign rail sur-
face segments to one of eight severity levels (0–7), certain
inputs fall outside this predefined taxonomy, such as welds,
joints, and switches, which are not represented in the train-
ing data. These OOD cases exhibit geometry or texture pat-
terns that differ significantly from the benchmark distribu-
tion, where a single, clearly visible rail surface is consis-
tently present. If not explicitly handled, such inputs can
lead to unreliable predictions. Fig. 6 shows representative
examples of anomalous rail images.

We formulate anomaly detection as a binary classifi-
cation task, aiming to distinguish between in-distribution
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Figure 6. Examples of out-of-distribution rail surface inputs
flagged by our anomaly detection module. These include welds,
joints, and switches, which are excluded from severity classifica-
tion and routed for manual inspection.

rail surface images and anomalous inputs exhibiting rare or
structurally distinct patterns. The module is trained using
benchmark images as normal examples and a curated set of
anomaly images as outliers.

Although the benchmark dataset contains only clean, in-
distribution images, the anomaly detection module is in-
tended for real-world field inspection. It operates along-
side the main classification pipeline to flag inputs that devi-
ate from the expected distribution. These flagged cases are
then routed for manual review to ensure reliable handling of
atypical or ambiguous inputs.

4. Experiments & Results

Datasets. We conduct experiments on two datasets: a
benchmark dataset for severity classification and a curated
anomaly dataset for out-of-distribution detection. The rail
surface images are collected using the RailScope system
[15], a state-of-the-art image acquisition platform that cap-
tures top-down views of the rail head in real-time. Equipped
with a laser light source and a high-resolution CCD digital
camera, the system produces images with sufficient detail to
identify pitting, spalling, and surface cracking. The bench-
mark dataset contains 1,132 rail images. Each image is la-
beled by domain experts using an eight-level severity scale,
from level 0 (no visible defect) to level 7 (severe degrada-
tion). The labeling criteria are provided in the supplemen-
tary material. The distribution of severity levels is shown in
Tab. 1. In addition, we construct an anomaly dataset con-
taining 181 OOD images, such as rail joints, switches, and
welds. These images do not conform to the geometry or ap-
pearance of standard rail surfaces and are used to train and
evaluate the performance of our anomaly detection module.
All results are reported using 4-fold cross-validation with
stratified splits to maintain class proportions across equally
sized subsets.
Evaluation metrics. For severity classification, we report
both main-diagonal accuracy and tri-diagonal accuracy,

Table 1. Image counts per severity level in the benchmark dataset.

Severity Level 0 1 2 3 4 5 6 7

Image Count 118 160 91 163 66 277 167 90

following Ma et al. [20]. The main-diagonal accuracy mea-
sures exact matches between the predicted and the ground
truth severity levels. The tri-diagonal accuracy allows for
the predictions within ±1 of the ground truth label, re-
flecting practical tolerance during field assessments where
severity may transition gradually due to grinding or annota-
tion ambiguity. For anomaly detection, we report a standard
classification accuracy to reflect the module’s ability to dis-
tinguish OOD cases from normal rail surfaces.

All experiments are conducted on a platform equipped
with an Intel Xeon Gold 5218 CPU and a single NVIDIA
TITAN RTX GPU. Our implementation is based on Py-
Torch. For training the classification module, we use the
Adam optimizer with a learning rate of 1e−4. The seg-
mentation and alignment modules are pretrained on a pro-
prietary dataset and remain fixed during all experiments on
the benchmark. Additional details and evaluations of these
modules are provided in the supplementary material.

4.1. Segmentation and Alignment Results
The segmentation and alignment modules are pretrained
on a proprietary dataset and applied directly to the bench-
mark without additional fine-tuning. This zero-shot transfer
works effectively because of the consistent geometric struc-
ture of the rail surfaces—specifically, the approximately
parallel boundaries of the rail head—which facilitates gen-
eralization across severity levels and imaging conditions.

As illustrated in Fig. 7, we present qualitative exam-
ples from severity levels 1, 3, 5, and 7. The first column
shows the original rail surface images. The second column
displays the predicted binary segmentation masks. These
masks generally exhibit high-quality delineation of the rail
surface, although minor imperfections, such as small holes
or missing sections, can be observed (in rows 1 and 3).

The third column presents the output of the alignment
module, where the predicted affine transformation matrix
is applied directly to the original image. This design helps
avoid propagating segmentation errors: applying the pre-
dicted transformation to the original image, rather than the
masked one (as in Fig. 5), prevents small imperfections,
such as holes or boundary artifacts, from being carried into
the aligned output. As a result, the output remains stable
and visually consistent, preserving fine-grained details and
surface continuity. The fourth column overlays a standard-
ized target region (in red) on each aligned image to illustrate
the effectiveness of our design. The rail surfaces are con-
sistently centered and cropped at a standardized scale and
position across the benchmark dataset. This normalization
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Input Segmented Aligned Target

Figure 7. Qualitative results of the segmentation and alignment modules. From left to right: input rail image, predicted binary segmentation
mask, output of the alignment module after spatial transformation, and overlay of the fixed target region (in red) on the aligned image. The
proposed method successfully corrects the pose and scale of the rail surface while mitigating errors introduced by the segmentation mask.

reduces geometric variability in the input and enables the
classification module to focus on surface condition differ-
ences rather than irrelevant pose or alignment variations.

In summary, the segmentation and alignment mod-
ules jointly produce clean, consistently framed rail surface
crops. By tolerating minor segmentation imperfections and
enforcing pose normalization, they ensure reliable, uniform
inputs for accurate downstream severity classification.

4.2. Classification Results
Quantitative Results. We first compare our baseline
framework (without augmentation) to a replicated imple-
mentation of Ma et al. [20], the only prior work addressing
rail surface defect severity classification. As shown in the
first two rows of Tab. 2, our method achieves substantially
better performance, with higher main-diagonal (79.1% vs.
71.7%) and tri-diagonal accuracy (95.3% vs. 92.3%), while

Table 2. Quantitative results: We report the main-diagonal and
tri-diagonal accuracy of our proposed framework, and inference
speed (FPS). ∗ denotes results replicated by us based on [20].

Method Main-diag Acc (%) Tri-diag Acc (%) Infer. speed (FPS)

Ma et al. [20] 71.7∗ 92.3∗ 0.1∗

Ours w/o Aug 79.1 95.3 47
Ours w/ Image-level Aug 81.2 95.6 47
Ours w/ Pixel-level Aug 81.8 95.9 47

also running over 400 times faster (47 FPS vs. 0.1 FPS).
This improvement is attributed to the greater learning ca-
pacity of deep neural networks and the use of GPU accel-
eration, in contrast to the previous CPU-bound pipeline of
random forests and SVMs.

We then assess the effect of different data augmentation
strategies, as shown in the last three rows of Tab. 2. Pixel-
level augmentations, including brightness/contrast adjust-
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Figure 8. Qualitative results of the classification module. We show example images and corresponding Grad-CAM activations [25] for all
eight severity levels. For minor defects (1, 2), the model attends to subtle surface scratches, often near the gauge side. For more severe cases
(6, 7), attention focuses directly on spalling or flaking regions, indicating the model uses meaningful visual cues for severity prediction.

ment, ISO noise, Gaussian blur, and JPEG compression,
result in the best performance, achieving 81.8% main-
diagonal and 95.9% tri-diagonal accuracy. These augmen-
tations enhance model robustness by introducing variation
in visual conditions without distorting the structural charac-
teristics of the defects. In contrast, mixed sample augmenta-
tion methods (e.g., CutMix[28], Mixup[29], FMix[11], and
GridMask[5]) lead to inferior results, as they often distort
the rail surface or create unrealistic texture combinations
that reduce label consistency and prediction reliability.

We evaluate the prediction performance of the best con-
figuration using the confusion matrix shown in Fig. 9. The

matrix shows a strong concentration of predictions along
the main diagonal, indicating reliable per-class classifica-
tion. Most off-diagonal errors occur within ±1 severity
level, particularly between levels 0–1, 3–4, and 5–6, re-
flecting the gradual and often ambiguous nature of surface
degradation. Misclassifications beyond this range are rare
and mainly between levels 1 and 3, which suggests that mild
severity levels may share similar visual features.
Qualitative Results. We visualize the classification mod-
ule’s prediction process using Grad-CAM [25], as shown
in Fig. 8. Representative examples from all eight sever-
ity levels are presented alongside their corresponding ac-
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Figure 9. Confusion matrix of predicted versus actual rail surface
severity levels. Our method shows strong diagonal alignment.

tivation maps. For level 0 (no defect), activations are dif-
fused across the rail surface, indicating the absence of a
specific defect region influencing the model’s prediction.
At lower severity levels (1–2), where defects typically ap-
pear as subtle scratches along the gauge side, the model’s
attention is appropriately located around these fine-grained
features. As severity increases (levels 3–7), defects be-
come more pronounced and visually diverse, manifesting
as dents, spalling, or flaking. In these cases, the model con-
sistently focuses on the precise defect regions regardless of
their type or position, demonstrating that its predictions are
guided by relevant visual cues. This behavior suggests that
the model is not overfitting to specific defect types or spa-
tial patterns, but instead generalizes well to a wide range of
damage appearances.

These observations highlight that the classification mod-
ule integrates diverse visual cues into a holistic assessment
of rail surface condition. Instead of relying on fixed patterns
or isolated features, it adapts to varying forms of surface
damage. This supports the interpretability of the predicted
severity level and makes it directly applicable to mainte-
nance decision-making.

4.3. Anomaly Detection Results
For the anomaly detection module, we define the 1,132
images from the benchmark dataset as normal, and a cu-
rated set of 181 out-of-distribution images, captured at rail
joints, welds, and switches, as anomalous. This is formu-
lated as a binary classification task. A ResNet18 model is
used as the backbone, achieving a classification accuracy
of 99.78%. This result indicates a clear visual distinction
between standard rail segments and under-represented rail
configurations. The integration of the anomaly detection
module enhances the robustness and deployment readiness
of the proposed framework for real-world applications.

Figure 10. Failure cases on rail images with profiles differing from
the benchmark. Environmental and operational variations in active
service result in rail profiles that the framework fails to recognize.

5. Limitations

While our framework effectively evaluates rail surface con-
dition on the proposed benchmark dataset, there are certain
limitations to consider. First, the benchmark dataset was
collected exclusively at the High Tonnage Loop at TTC over
a limited time, resulting in relatively consistent rail pro-
files. However, rail conditions in active service can exhibit
greater variability due to environmental and operational dif-
ferences. As shown in Fig. 10, our model encounters fail-
ures when processing rail profiles that deviate substantially
from those in the benchmark. Second, although our frame-
work achieves 47 FPS, far exceeding the prior art, it remains
below the 60 FPS target typically desired for full real-time
performance in high-speed inspection scenarios. Future op-
timization may help close this gap for seamless integration
into onboard or embedded inspection systems.

6. Conclusion

We presented a unified deep learning framework for vision-
based rail surface inspection, combining segmentation,
alignment, and classification modules. The system achieves
accurate and efficient severity prediction on high-resolution
rail images and incorporates an anomaly detection module
to flag out-of-distribution inputs for human review. Eval-
uated on a newly introduced TTC benchmark dataset, the
framework demonstrates strong classification performance
and fast inference speeds, making it suitable for assistive
deployment in industrial rail monitoring and maintenance
workflows. To further enhance generalization under diverse
operating conditions, future work will explore generative
or synthetic data techniques to enrich training diversity and
improve robustness in field deployments.
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