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In this supplementary material, we provide the following:
• Severity level definitions used by expert annotators
• Additional details on segmentation and alignment results
• Classification module backbone comparisons and data

augmentation analyses

1. Severity Level Annotation Criteria
We adopt a standardized 8-level severity scale defined and
annotated by domain experts, with levels ranging from 0
(no defect) to 7 (severe surface deterioration). These levels
are based on observable surface features, including defect
geometry, visual prominence, and material degradation:
• Level 0: No visible surface defects.
• Level 1: Barely perceptible surface marks with clearly

regular patterning.
• Level 2: Clear, distinct surface cracks without pitting at

the crack tip.
• Level 3: Visible cracking with small pits up to 4 mm in

diameter.
• Level 4: Pitting with a diameter greater than 4 mm but

less than 10 mm.
• Level 5: Isolated pitting, shelling, or spalling with a di-

ameter greater than 10 mm and depth up to 5 mm.
• Level 6: Shelling, spalling, and consistent pitting greater

than 10 mm in diameter.
• Level 7: Severe shelling/spalling and any defect greater

than 16 mm in diameter and longer than 20 mm.
This expert-defined severity scale not only enables consis-
tent training and evaluation of the framework but also di-
rectly supports rail maintenance decision-making by pro-
viding actionable defect categories for inspection prioriti-
zation and repair planning.

2. Segmentation and Alignment on the Propri-
etary Dataset

2.1. Dataset Description
The proprietary dataset contains 939 rail images captured
by the RailScope platform [8] across various active service

Table 1. Comparison of rail surface segmentation results. We re-
port the mean and standard deviation of the Jaccard Index, model
parameter count, and inference time. ∗ indicates the inference time
reported in [10]. Best results highlighted in bold.

Method Mean JI Std JI # Params (M) Inference Time (s)

Baseline[10] 0.986 0.031 - 4.8∗

7-layer U-Net 0.985 0.012 42 0.012
8-layer U-Net 0.987 0.012 54 0.015

Ours 0.991 0.010 2 0.015

tracks in North America. Each image is accompanied by an
expert-labeled rail surface mask, which is used to train and
evaluate the segmentation and alignment modules.

2.2. Segmentation Results
We assess the performance of our segmentation module us-
ing the Jaccard Index (JI):

J(Rs, Rg) =
|Rs

⋂
Rg|

|Rs

⋃
Rg|

, (1)

where Rs is the predicted rail surface region and Rg is the
ground truth rail surface mask.

Table 1 presents a comparison of our MobileNetV2-
ASPP-based segmentation module, U-Net baselines, and
the structured random forest baseline from [10]. Our model
achieves a mean JI of 0.991 and a standard deviation of
0.010, outperforming all baselines both in accuracy and
consistency. The low standard deviation (0.031 → 0.010,
a 67% reduction) reflects significantly improved prediction
stability across diverse track conditions.

In terms of model complexity, our module contains only
2 million parameters, reducing model size by over 95%
compared to the U-Net variants. Additionally, the inference
time is over 48 times faster than the CPU-based baseline,
owing to GPU-accelerated deep learning.

Fig. 2 further compares segmentation outputs visually.
The MobileNet-ASPP model produces cleaner, straighter
rail boundaries and fewer artifacts compared to U-Net,
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Figure 1. Examples of segmentation results. (a), (b) and (d) show
input images, ground truth masks, and predicted masks, respec-
tively. (c) and (e) overlay the masks onto the original images. Re-
sults are produced by the proposed module with input resolution
512× 512, upsampled to 1200× 1600.

Figure 2. Qualitative comparison of segmentation results. (a)
shows input images, (b) are ground truth masks, (c) are U-Net out-
puts, and (d) are from the proposed MobileNet-ASPP model [11].

which exhibits larger deviations from ground truth masks.
These results reinforce the effectiveness of our lightweight
and accurate segmentation design.

2.3. Alignment Results
Unlike the baseline method, which relies on hard-coded rail
surface edge alignment, our approach introduces a learned
alignment module that predicts an affine transformation to
reposition the rail surface to a canonical view.

We first evaluate the alignment module using ground
truth masks to extract rail surface segments. As shown in
Tab. 2, this setup achieves a mean Jaccard Index (JI) of
0.983 with a standard deviation of 0.024. Fig. 3 shows qual-
itative results, where the module effectively aligns the rail
surface to the image center. Surprisingly, alignment perfor-
mance improves when using predicted segmentation masks
instead of ground truth masks. This indicates that our com-
bined training allows the segmentation and alignment mod-
ules to co-adapt, resulting in better downstream quality. Ad-
ditionally, we find that using segmentation masks from the

Table 2. Rail surface alignment performance using different seg-
mentation masks.

Segmentation Source Mean JI Std JI

Ground Truth Masks 0.983 0.024
U-Net 0.972 0.012
MobileNet-ASPP 0.989 0.007

Figure 3. Examples of alignment results. (a) masked rail surface,
(b) ground truth aligned region, (c) our module output, (d) overlay
of (b) in green and (c) in red; yellow indicates intersection.

Table 3. RMSE comparison between final alignment outputs and
ground truth segments.

Method RMSE

Repositioned masked segment 7.09
Transformed original image 7.00

U-Net model results in a lower alignment score (mean JI of
0.972), suggesting that the alignment module is sensitive to
the quality of the segmentation output.

To further assess the impact of how the transformation
is applied, we compare two options: directly using the
repositioned masked rail segment or applying the predicted
transformation matrix to the original image. We compute
the Root Mean Square Error (RMSE) between these out-
puts and the ground truth rail surface segments. As shown
in Tab. 3, applying the transformation to the original im-
age yields a lower RMSE, indicating more accurate spatial
alignment and fewer inherited artifacts.

To avoid propagation of segmentation errors, we apply
the predicted affine transformation directly to the original
image rather than to the masked rail surface. This preserves
finer surface details and mitigates artifacts introduced by
the segmentation masks. As illustrated in Fig. 4, directly
using the repositioned masked segment can inherit noise or
boundary errors, while applying the transformation to the
original image yields more accurate and cleaner alignment
results for downstream classification.

3. Classification Module
3.1. Model Selection
We benchmark a variety of image classification architec-
tures, including ResNet, DenseNet, EfficientNetV2, Mo-
bileNet, Swin Transformer, and Vision Transformers (ViT),



Figure 4. Alignment output comparison. (a) repositioned masked
rail surface, (b) transformed original image segment, (c) ground
truth rail segment.

to assess their suitability for the rail surface severity classi-
fication task. All models are initialized with ImageNet [2]
pre-trained weights and fine-tuned on our dataset.

Tab. 4 reports each model’s classification accuracy and
inference speed. While VGG16 achieves the highest accu-
racy at 80.74%, and Swin-S follows closely with 80.57%,
both models fall behind in efficiency. In contrast, ResNet18
delivers the fastest inference speed at 95 FPS and main-
tains a competitive accuracy of 79.06%, just 1–2% lower
than the top models. We observe that deeper or more com-
plex architectures (e.g., ResNet50+, DenseNet, and Vision
Transformers) do not yield substantial accuracy gains. This
suggests that the rail surface dataset does not benefit signif-

Table 4. Rail Surface Classification Results: Prediction accuracy
and inference speed across different models. Best results are in
bold, second best are underlined.

Model Accuracy (%) Infer. speed (FPS)

VGG16[13] 80.74 46
VGG19[13] 79.42 42
ResNet18[5] 79.06 95
ResNet34[5] 80.21 77
ResNet50[5] 77.39 58
ResNet101[5] 78.45 40
DenseNet121[7] 77.65 34
ResNeXt50[15] 77.65 41
ResNeXt101[15] 74.91 37
MobileNetV2[12] 76.59 74
MobileNetV3S[6] 77.92 73
MobileNetV3L[6] 78.45 67
EfficientNetV2s[14] 80.21 31
ViT[3] 69.88 70
Swin-T[9] 79.15 47
Swin-S[9] 80.57 28

Table 5. Classification accuracy using different data augmentation
strategies.

Augmentation Method Accuracy (%)

Ours w/o Aug. 79.06
+ Pixel-level Aug. 81.80
+ Mixup[17] 79.86
+ CutMix[16] 81.18
+ FMix[4] 77.92
+ GridMask[1] 79.59

icantly from deeper representational capacity.
Given the relatively narrow spread in accuracy across

models and our emphasis on efficiency, we select ResNet18
as the classification backbone for our final framework due
to its favorable balance between speed and accuracy.

3.2. Data Augmentation Analysis
To enhance the robustness and generalization of our classifi-
cation model, we evaluate several data augmentation strate-
gies. These include pixel-level augmentations (brightness,
contrast, Gaussian blur, ISO noise, and JPEG compres-
sion) and mixed sample data augmentation (MSDA) meth-
ods such as Mixup [17], CutMix [16], FMix [4], and Grid-
Mask [1].

Tab. 5 presents the results. Pixel-level augmentations
yield the most significant improvement, increasing accu-
racy by 2.74% over the baseline (from 79.06% to 81.80%).



Among MSDA methods, CutMix achieves the highest ac-
curacy (81.18%), but still falls short of pixel-level augmen-
tation. Mixup and GridMask offer only marginal improve-
ments, while FMix reduces performance, likely due to ex-
cessive structural distortion of defect features.

Based on these results, we adopt pixel-level augmenta-
tions as our default strategy for training the final classifica-
tion module.
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