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1. Proposed Methods
In this section, we present the proposed methods from teams
that are not included in the main report due to space con-
straints.

1.1. MobileNetV3-Based FIQA (by Conquerit)
The Conquerit Team used a MobileNetV3-Large [5] archi-
tecture. To evaluate and guide the training of their quality
regression model, they adopt a correlation-based loss that
encourages both value accuracy and ranking consistency
between predicted scores ŷ and ground-truth quality scores
y ∈ [0, 1].

Lcorr = α · LPLCC + (1− α) · LRank, (1)

where α ∈ [0, 1] controls the balance between the two
losses. The Pairwise Rank Loss approximates SRCC:

LRank = Eij [log(1+exp(−(ŷi− ŷj) ·sign(yi−yj)))]. (2)

To enhance robustness against label noise and focus
learning on harder examples, they propose a modified re-
gression loss that combines label smoothing with a focal
weighting scheme. This formulation, referred to as Focal
Label Smoothing Loss, builds on the intuition of focal loss
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while adapting it to continuous regression targets. Given
predicted score ŷ and ground truth score y, they first apply
label smoothing:

ỹ = y + ϵ · N (0, 1), (3)

where ϵ is the smoothing strength. This helps regular-
ize overconfident predictions and improves generalization.
Next, they compute the squared error between predictions
and smoothed targets:

MSE = (ŷ − ỹ)2. (4)

They then apply a focal weighting to emphasize difficult
samples:

wfocal = (1− e−MSE)γ , (5)

where γ is the focusing parameter that increases the loss
contribution of harder examples (i.e. larger errors). The loss
is computed as

Lfocal-smooth = s · wfocal · MSE, (6)

where s is an optional scaling factor for numerical stability
or emphasis tuning.

The final training objective balances the correlation loss
and the focal label smoothing loss using another weighting
parameter λ:

Ltotal = λ · Lcorr + (1− λ) · Lfocal-smooth. (7)
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Figure 1. BIT ssvgg.

Training details. They use ReduceLROnPlateau learn-
ing rate annealing during training. They use input size of
(224,224,3) with normalization to (-1,1).

Testing details. Input images are resized to (240,240,3),
center-cropped to (224,224,3) and normalized to (-1,1).

1.2. Dual-Branch Network with Local and Global
Perception for Face Image Quality Assess-
ment (by BIT ssvgg)

The BIT ssvgg Team observed that, to effectively assess the
perceptual quality of facial images, it was crucial to capture
both fine-grained local distortions and holistic structural
degradations. Motivated by this, they adopted a dual-branch
network design that leveraged complementary inductive bi-
ases, as shown in Fig. 1. Specifically, one branch was
based on MobileNetV2 [9], which captured localized tex-
ture variations and high-frequency artifacts through its hi-
erarchical depthwise convolutional design and small recep-
tive fields. However, while efficient, MobileNetV2 tended
to lack global context aggregation, which is essential for as-
sessing structure-aware degradations such as defocus blur,
over-smoothing, or global compression artifacts.

To compensate for this limitation, they introduced a
second branch composed of large-kernel convolutions [3],
which are known to emulate long-range dependencies with-
out the computational overhead of attention modules. This
branch emphasized global spatial interactions, enabling the
model to better perceive large-scale structural degradation
patterns across the entire face region. By aggregating the
outputs from both local-detail-oriented and global-context-
aware branches, their network effectively balanced sensi-
tivity to local quality distortions with awareness of holistic
structural integrity, which is especially critical in face IQA
tasks where both local fidelity and global facial symmetry
are important.

Training details. They implemented their model using
the PyTorch framework and trained it on a single NVIDIA
RTX 4090 GPU. The network was optimized using the
Adam optimizer with a learning rate of 2e-5 and a weight
decay of 5e-4. The training process took approximately 2
hours. They adopted standard data preprocessing strategies

Figure 2. 2077Agent.

including resizing, normalization, and random horizontal
flipping. They trained for a total of 50 epochs.

Testing details. The input images are resized to 224×336
for testing.

1.3. Knowledge Distillation for Improved Efficient
MOdel(EMO) Image Quality Assessment (by
2077Agent)

The 2077Agent Team first trained a high-capacity Efficient
Model (EMO) [11] on the Generic Face IQA (GFIQA)
dataset to establish the teacher model. To meet the compe-
tition’s constraints on parameter count and computational
complexity, they then designed and deployed a lightweight
student model (shown in Fig. 2), enhancing its perfor-
mance through a knowledge distillation strategy. Further-
more, they introduced optimized loss functions tailored to
the evaluation metrics SRCC and PLCC to further improve
the model’s predictive accuracy.

Training details. Teacher and student networks share the
same overall design—an initial convolutional layer that
downsamples the input, followed by four hierarchical stages
of improved inverted residual mobile blocks (iiRMB), and
ending in a small regression head—but differ in depth,
width, and resolution [11].

The teacher network processes 512×512 inputs and con-
tains roughly 5 million parameters. After a three-layer stem



(two 3 × 3 strided convolutions and a 1 × 1 projection),
it has four stages with depths {3, 3, 9, 3}. The embedding
dimensions at each stage are {48, 72, 160, 288} with ex-
pansion ratios {2.0, 3.0, 4.0, 4.0}. Early stages use Batch-
Norm+SiLU; later stages use LayerNorm+GELU. Regular-
ization is minimal (attn drop=0, drop=0), with a drop-
path rate of 0.05 and layer-scale initialized to 10−6. Fi-
nally, the feature map is global-average-pooled and passed
through two BatchNorm+ReLU bottleneck layers before a
sigmoid output [9–12].

The student network scaled down to 1 million parameters
and 224× 224 inputs, the student mirrors the teacher’s lay-
out but with depths {2, 2, 8, 3} and embedding dimensions
{32, 48, 80, 180}. Expansion ratios are {2.0, 2.5, 3.0, 3.5},
attention head dims {16, 16, 20, 20}, and a 7×7 window. It
uses the same BN+SiLU / LN+GELU scheme and a drop-
path rate of 0.04036. Its regression head is identical to the
teacher’s, ensuring comparable output capacity at a fraction
of the size.

This training was conducted in two stages. First, the
teacher model with approximately 5 × 106 parameters was
trained for 100 epochs on a general face image quality as-
sessment dataset. During training, they applied the follow-
ing augmentations: Normalize; RandCropOrResize
to randomly crop or resize images to 512 × 512;
RandHorizontalFlip; and ToTensor. Optimization
was performed with Adam (initial learning rate 1 × 10−4,
weight decay 1× 10−5) alongside a StepLR schedule that
decayed the learning rate by a factor of 0.1 every 5 epochs.
Upon completion, the teacher’s weights were frozen.

Next, they instantiated a student model under the same
data loading and augmentation pipeline, and they performed
widely used knowledge distillation method [2, 8] using a
HybridLoss (α = 0.75) together with an MSE distilla-
tion loss (temperature = 4.0, weight = 0.5) to boost both
SRCC and PLCC performance. The entire process ran on a
single RTX 3090 GPU and took about 20 hours of training
time.

Testing details. To avoid excessive computational load,
they directly resize all test data to (224, 224) before feeding
them into the network.

1.4. LightHSPA: An Efficient and Lightweight
Face Image Quality Assessment Network (by
DERS)

The DERS Team proposed LightHSPA, a lightweight and
efficient end-to-end convolutional neural network designed
specifically for face image quality assessment (FIQA) under
strict computational constraints. The architecture is com-
posed of three main modules:

• Efficient Backbone: They employed a highly effi-
cient feature extraction backbone inspired by Mo-

bileNetV2 [9]. It utilizes depthwise separable convolu-
tions and inverted residual blocks to minimize param-
eter count and computational complexity (FLOPs). To
further enhance feature representation with minimal
overhead, they integrated a lightweight channel atten-
tion and an efficient spatial attention mechanism at the
end of the backbone.

• Lightweight HSPA Attention: To capture non-local
dependencies and global facial context, they de-
veloped LightHSPA, a lightweight version of the
High-order Self-attention with Projection Awareness
(HSPA) mechanism. This module uses depthwise
separable convolutions and adaptive pooling to sig-
nificantly reduce the computational cost of the self-
attention operation, making it suitable for an efficient
model. This module was used during experimentation
to explore performance trade-offs.

• Compact Quality Head: A compact regression head
predicts the final quality score. It uses multi-scale
global pooling (average and max) to create a robust
feature vector from the final feature map. This vec-
tor is then processed by a small multi-layer perceptron
(MLP) with dropout and batch normalization to pro-
duce a single scalar quality score.

The entire model is designed to be configurable (e.g., via
width multiplier) to balance the trade-off between perfor-
mance (SRCC/PLCC) and efficiency (parameters/FLOPs).

Training details. Their model was implemented in Py-
Torch and trained on a single NVIDIA 4090 GPU for 200
epochs, taking approximately 9 hours. They used the Adam
optimizer with an initial learning rate of 2 × 10−3 and a
weight decay of 1 × 10−4, employing a step learning rate
scheduler that decayed the rate by a factor of 0.1 every
5 epochs. Only the official 30,000 in-the-wild face im-
ages from the competition were used for training. Their
training strategy involved minimizing Mean Squared Error
(MSE) loss and applying data augmentation, including ran-
dom cropping to 224× 224 patches and random horizontal
flipping.

Testing details. Their model takes a single face image as
input and outputs a single perceptual quality score. No test-
time augmentation (TTA) or other post-processing steps
were used. They ran the model on the original image reso-
lutions as provided in the test set.

2. Details about RankCORE

This appendix provides details about the RankCORE model
developed by the ISeeCV Team.



Self-Supervised Adaptive Ranking (SSAR). Traditional
Perceptual Quality Assessment (PQA) methods [6, 7] re-
quire large datasets of images annotated with scalar quality
scores—a process that is expensive, subjective, and time-
consuming. Self-supervised learning (SSL) [1] sidesteps
this requirement by exploiting relative relationships be-
tween samples rather than absolute labels.

They observed that common image degradations—such
as Gaussian blur, additive noise, and interpolation arti-
facts—monotonically degrade perceptual quality: if I is an
original face, then its transformed version I ′ = Ts(I) al-
ways satisfies

q(I ′) < q(I),

where Ts is a transformation at severity s ∈ [0, 1]. They
leveraged this inherent ordering to train a PQA network us-
ing margin-based ranking loss, enabling the model to learn
absolute prediction of quality without ever seeing ground-
truth scores.

For each pair (I, I ′), with predicted scores q̂(I), q̂(I ′),
and severity s, they defined margin

m(s) = λ s, λ > 0

and optimized:

Ladaptive(I, I
′; s) = max

(
0, −(q̂(I)− q̂(I ′)) +m(s)

)
.

Here, larger severities enforce larger margins, compelling
the network to respect greater quality gaps when distortions
are harsher.

Score-Stratified Uniform Sampler (SSUS). They intro-
duced SSUS, which uniformly selects score-strata and then
uniformly samples within each stratum to guarantee bal-
anced coverage of the full score distribution. This ensured
that rare or underrepresented score regions were seen as
often as dense ones, reducing bias and improving model
robustness. It also promoted gradient diversity, stabilized
training, and could be extended by weighting specific bins.

CoReFace: Correlation-Robust Face Quality Estima-
tion. To penalize both local prediction errors and global
ranking mistakes, they adopted a composite Wing-PLCC
loss. It is well known that MSE is not sensitive to out-
liers, while L1 loss doesn’t penalize mid-range errors in
regression. WingLoss [4] brings the best of both worlds.
To the best of their knowledge, WingLoss has not been fun-
damentally explored for face perceptual quality assessment.
WingLoss [4] (ω = 0.03, ϵ = 2) gives logarithmic sensitivity
around small absolute errors while retaining linear behavior
for larger discrepancies, helping the network focus on hard-
to-distinguish quality levels, as shown in Eq. (8). Addition-
ally, they leveraged the Pearson Linear Correlation Coeffi-
cient (PLCC) metric as a differentiable loss function. They

augmented this with a global PLCC term to align predic-
tions with the mean-opinion-score distribution, as defined
in Eq. (9).

WingLoss =

{
w ln

(
1 + |x|

ϵ

)
, if |x| < w

|x| − C, otherwise
(8)

PLCCLoss(y, ŷ) = 1−
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)√∑n
i=1(yi − ȳ)2

√∑n
i=1(ŷi − ¯̂y)2

(9)
The final CoReFaceLoss is defined as the weighted sum

of Eq. (8) and Eq. (9):

CoReFaceLoss = α ·WingLoss+β ·PLCCLoss (10)
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