
DIVE-Doc: Downscaling foundational Image Visual Encoder into hierarchical
architecture for DocVQA
Supplementary Materials

Rayane Bencharef1,2, Abderrahmane Rahiche1, Mohamed Cheriet1
1Synchromedia Laboratory, École de Technologie Supérieure (ETS), Montreal, Canada

2INU Champollion, ISIS Castres, Université de Toulouse, France

Abstract

We provide here supplementary details to ensure the repro-
ducibility of our experiments.

1. Teacher-free VS Connected-Teacher distilla-
tion

Teacher HDD
Storage

VRAM
(MiB)

Required
GPU

Training
time (H)

Results
(ANLS)

On-
stream 20 (GB) 25000 3 40 81

Off-
stream

200
(GB) 21300 2 36 81

Table 1. Comparison on-stream/off-stream distillation on
DocVQA dataset. The off-stream method is less resource-
constrained while achieving the same performance as on-stream
distillation.

In order to save some VRAM footprints, we stored all
teacher’s embeddings in a database (h5 file) and created
a mapping table that stores all image IDs of the original
dataset and their corresponding row indices in the vector
database to make the retrieval easier during the training pro-
cess. Therefore, we avoid the need to load and run the
teacher as it is already trained.
Table 1 shows the results of teacher-free and connected
teacher approaches. As shown, both approaches achieve
the same results. However, the off-stream method saves 4
hours of training and 3700 MiB of memory allocation while
adding 180 GB to save the vector database on the disk.
Therefore, this approach can be beneficial for laboratories
or independent which have large disk storage capabilities
but limited computational resources.

Email contact: rayane.bencharef.1@ens.etsmtl.ca

2. Training Hyperparameter
Table 2 provides hyperparameter details for each training
stage. During the distillation stage, models are pretrained
for 20 epochs with an initial learning rate of 3e−4. Then
for the fine-tuning stage, we train the whole models of each
resolution for 3 epochs using a maximum learning rate of
3e−5 and a warm-up scheduler with a ratio of 0.15. For
the visual encoder evaluation, we train the added decoders
of specific tasks for 5 and 3 epochs, using learning rates
of 3e−4 and 9e−4, for document classification and layout
analysis, respectively. We use Adam optimizer with β =
(0.9, 0.999), ϵ = 1e−8 for all experiments and a weight
decay of 0.01 for the fine-tuning step. We also set the batch
size to 16 for all experiments.

Task/training stage Learning
Rate Optimizer Epochs Batch

Size

VQA (Distillation) 3e−4 Adam 20 16

VQA (Finetuning) 3e−5 Adam 3 16

Classification 3e−4 Adam 5 16

Layout Analysis 9e−4 Adam 3 16

Table 2. Hyperparameters. The hyperparameters used for each
training stage.



3. Distillation Algorithm
Here we provide a snap-code algorithm of the distillation
step (Stage I).

Algorithm 1: Distillation Training Stage
Input : Student encoder fS , Student sequence

lengths NS , Teacher sequence length NT ,
Dataset D, Batch size B, Dataloading
function Dataloader, Optimizer function
Adam, Learning rate η, Epochs E,
Reshape function 1d patch to 2d feature
map reshape, Flatten function 2d feature
map to 1d patch flatten

Output: Trained student encoder f∗
S

1 optimizer← Adam(fS .parameters(), η);
2 dataloader← Dataloader(D, B);
3 if NS < NT then
4 fmap ← bicubic; // upsample mapping

5 else if NS > NT then
6 fmap ← bilinear; // downsample

mapping

7 for epoch = 1 to E do
8 foreach batch (I, vT ) in dataloader do
9 vS ← fS .ve(I);

10 if NS ̸= NT then
11 vS ← reshape(vS);
12 vS ← fmap(v

S , NT );
13 vS ← flatten(vS);

14 vS
′ ← fS .lproj(v

S);
15 L ← MSE(vS

′
, vT );

16 optimizer.zero grad();
17 L.backward();
18 optimizer.step();

19 return f∗
S


	Teacher-free VS Connected-Teacher distillation
	Training Hyperparameter
	Distillation Algorithm

