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1. Metrics definition

Here, we present the definitions of all metrics used in this
paper: F-measure (FM), Negative Rate Metric (NRM), Dis-
tance Reciprocal Distortion (DRD), and Peak Signal to
Noise Ratio (PSNR).

F-measure (FM) or F1-score: measures prediction accu-
racy:

FM - 2 x Recall x Precisiony 0

Recall + Precision

where Recall = m, Precision = %, and TP,
FP, FN denote True Positive, False Positive, and False Neg-

ative predictions, respectively.

Negative Rate Metric (NRM): quantifies pixel-level mis-
matches between predicted and ground truth (GT) images:
NR NR
NRM — FN -QF FP , 2
where NRpy = FN+TP and NRpp = FP}l%'
Distance Reciprocal Distortion (DRD): measures distor-
tion between two binary images:

S o, DRDy, )
NUBN
where D R Dy, is the distortion of the weighted sum of pixels

in a 5 x 5 block of the GT image and the predicted image.
NUBN is the number of non-uniform 8 x 8 blocks in GT.

Peak Signal to Noise Ratio (PSNR): ratio between the
maximum possible pixel value I,,,,, and the MSE (Mean
Square Error) between two images:

DRD =

2
PSNR = 10log,, ( MWSE> . &)

Root Mean Square Error (RMSE): square root of the
MSE between estimated and true values:
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2. Loss function

The total loss function of our model combines three main
terms, each addressing a different aspect:

Lrotal = Lsap + MLuyse + AoLorths (6)

where \;, Ao are two penalty parameters selected empiri-
cally (See Section 5 for detailed hyperparameters values).

We assess the reconstruction quality of the MS images
using the Mean Square Error (MSE), which measures the
pixel-wise reconstruction quality as follows:

b
Lyvse = ﬁ Z DO (Yu

where Y;;; is a pixel from the input MS cube, and Yijl is
the corresponding pixel from the reconstructed output.

Following [9], we complement MSE by the Spectral An-
gle Distance (SAD), related to the cosine similarity, to mea-
sure the spectral similarity between the input and output
spectral vectors:

~Yi): )

(Yij, Yis.)
1Y 1Y a5l
where acos denotes the arccos function, Y;. is the input
spectral vector of the pixel at position ¢, j, Y 4. 1s the corre-
sponding output spectral vector, and (, ) is the inner product.

To promote the extraction of independent abundance
maps, we enforce orthogonality between the rows of the
abundance matrix A as follows:

Lortn = ||AAT — 1|y, )

‘CSAD(YU 7Y ) OS( )7 (8)

where ||.||1 is the Ly norm, I, is an r X r identity matrix, and
r is the rank, which consists of the remaining abundance
maps after pruning. This reduces linear correlation between
extracted abundances, so that a single element does not ap-
pear on several of them.

This multi-term loss function allows for a balanced op-
timization that considers pixel-wise accuracy, spectral fi-
delity, and abundance map independence.
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3. Algorithm Pseudo-code

The complete algorithmic workflow of the PRISM framework is formalized in the following algorithm :

Algorithm 1: PRISM: Progressive Pruning with MDL-based Rank Selection

Input: MS cube Y;

Initial number of components 7;,,¢;

Minimum number of components to evaluate r;,;,;

Hyperparameters A1, As, A3 and Agap-;

Smoothing kernel K (for spatial convolution);

Output: Optimal Abundance Maps A ¢, Optimal Endmembers E,,;, Optimal Rank r

Initialize PRISM model with r;,,;; components (all active);
active_map_indices < {1,2,...,7init }
best_overall_mdl_cost < 0o;

best_model_config < null;

best_rank <— 7;,:¢;

for k from r;,;; down to 7.4, do

Train PRISM model using only maps in active_map_-indices until early stopping;
Let trained_model; be the converged model parameters;

// Evaluate current model and calculate MDL cost

Ay, Ey, Sk, Y « trained_modely (Y);

Lyccon £SAD(Y,?) + AlﬁMSE(Y7Y) // Reconstruction error L(D|H)
Lgtruct < XoLortn(Ay) // Structural complexity part of L(H)

Lyank penalty < A3 -k // Rank penalty part of L(H)

current_mdl_cost < Lrecon + Lstruct + Lrank,pena,lty;

// Update best configuration if current MDL cost is lower
if current_mdi_cost < best_overall_mdl_cost then

best_overall_mdl_cost <— current_mdl_cost;

best_model_config < trained_modely;

best_rank < k;

// If more pruning is needed, select one map to prune for the next
iteration
if & > 7,5, then
Let A ctive be the set of abundance maps corresponding to active_map_indices from Ay;
Let Eyctive be the set of endmembers corresponding to active_map_indices from Ey;
for each map A, in Ayctive do
L A+ Kx A, // Spatial convolution (smoothing)
for each pair of distinct maps (A;, A;) (and corresponding E;, E; from Egyiye) do
| Compute similarity S;; using A;, A;, E;, Ej (using Eq. (11))

(#*,7*) < pair with maximum similarity;
map-to_prune <— arg min,, ¢ f;« ;«1 | Al 7 (using Aj«, Aj« from Agerive);
Remove map_to_prune from active_map_indices;

Prune connections producing map_to_prune in the pre-abundance convolution layer and corresponding
endmembers weights in decoder;

Load PRISM model with parameters from best_model_config;
A,pi, Eopr < Loaded Best-Model(Y);

r < best_rank;

return A, Eqpe, 7




4. Attention block

Figure | illustrates our Attention block. Point-wise convo-
lutions are indicated in green, dilated convolution in red and
classical depthwise convolution in blue.

I BXNXHXW
44

I

BN + ELU

1x1 - Conv

LKA Core X e—
Ixl,d=1 ]
1x1- Conv

7x7,d=3 ]
DW-D-Conv

DW-Conv

BN + ELU
1x1 - Conv

1

| BXNXHXW

Figure 1. Illustration of the Large Kernel Attention block.

We display some attention maps to visualize how the
model emphasizes relevant regions of the images. In Fig. 2,
we observe that the incorporated attention helps highlight
the regions of interest in the images.
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Figure 2. Visualization of the attention maps at the output of the
attention block for different input images from MSTEx-2. The 1st
row shows the input images. The following rows show character-
istics attended at different iterations.

5. Implementation details

Our model is implemented using PyTorch 2.3.1 with
CUDA 11.2 on Python 3.10.12. The model architecture
incorporates non-negativity constraints using PyTorch’s
parametrize module, while pruning is implemented via the

nn.utils.prune module. DW convolutions in the encoder use
3 x 3 kernels and are followed by BatchNorm2d and Elu.

For the MSTex 1 & 2 and Urban datasets, we employ
the Adam optimizer with a learning rate of le-4 for a max-
imum training epoch of 200, subject to early stopping (pa-
tience=10). For the MSBin dataset, which contains larger
images and thus requires more computational resources, we
adjust the parameters to 150 epochs with a learning rate of
0.001, maintaining the same early stopping criterion. Our
experiments revealed that the initial state has a significant
impact on model convergence, particularly given the com-
plexity of degradation in Historical Document Images. In-
put MS images are normalized to the range [0,1] using a
MinMax scheme.

Based on our experimental, we set \; = 5 X 102 for
the mean squared error (MSE), Ay = 5 x 1072 for the
orthogonality constraint in Eq. (6) and A3 = 5 x 1072
The initial number of abundances r;,,;; was set to 12, corre-
sponding to the number of spectral bands available in MS-
Bin. This choice ensures an overdetermined or at least well-
determined unmixing problem, as having at least as many
spectral bands as endmembers is generally required for re-
liable spectral separation. We fixed r,,,;,, = 2, representing
at least the background and text components. Both ASC
and ANC were enforced using a softmax function with a
temperature parameter 7' = 0.5, ensuring that abundances
remain non-negative and sum to unity for each pixel. For
the Urban dataset, which exhibits more overlapping abun-
dance mixing, the orthogonality constraint A, is relaxed to
5 x 1072 while the temperature T is augmented to 2.

softmax(z;) = __exp@i/T) (10)

3o exp(a/T)
6. Similarity Measure

We recall the criterion we developed to perform a similarity

measure between the i*” and j*" abundance maps and their
corresponding endmembers as follows :

1 (Ai, Aj)
[(Ai = Ay, D] + € [[Aalll| Az
where (-,-) is the Frobenius inner product, A; is the
1*" abundance map, which represents the smoothed ma-
trix form of the it® row of the abundance matrix A,
Lsap (B, Ej) = 5§ — acos(%) is the complemen-

Sij = + Asap’ Lsapr (Ei, Ej), (11)

tary of the spectral angular distance between the i*" and ;%"
columns of the endmembers matrix E, || - || represents the
Euclidean norm, | - | the absolute value, Agapr = 5 x 1073
is a hyperparameter added to scale the SAD’ metric, and e
is a small positive constant added to avoid division per zero.
The smoothing kernel used is defined as :
0.0369 0.0392 0.0400 0.0392 0.0369
0.0392 0.0416 0.0424 0.0416 0.0392
K = | 0.0400 0.0424 1.0000 0.0424 0.0400

0.0392 0.0416 0.0424 0.0416 0.0392
0.0369 0.0392 0.0400 0.0392 0.0369
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Figure 3. Ablation of the spatial component in the pairwise similarity measure. The figure shows three abundance map pairs: (a) and
(b) represent cases where high similarity is desired, while (c) represents a case where low similarity is expected. The spatial component
achieves this discrimination through: (1) Inverse scaling by the absolute of the activation sum differences between pairs |(A; — A;, 1)/,
which penalizes pairs with very different abundance distributions, and (2) Spatial smoothing of abundance by convolution with kernel K.

The proposed similarity criterion comprises two comple-
mentary components: spectral similarity for identifying ma-
terials with similar spectral signatures, and spatial similar-
ity for comparing abundance distributions. As illustrated
in Fig. 3, pure correlation fails to identify similarity in pair
(a), which represents identical text regions, while yielding
low similarity values for pair (b), despite both regions corre-
sponding to the same background material. This limitation
arises because these regions share minimal spatial overlap,
with contact occurring only at boundary pixels. To address
these deficiencies, we introduced the inverse scaling factor
based on the absolute difference between abundance sums.
This modification enhances the similarity measure for both
pairs (a) and (b), while maintaining low similarity for pair
(c), which represents genuinely dissimilar materials (text &
paper). Furthermore, the incorporation of spatial smoothing
mitigates the fragmentation artifacts observed in pair (a), re-
sulting in appropriately high similarity scores for semanti-
cally related regions. This multi-component approach thus
provides a more robust measure of material similarity that
accounts for both spectral characteristics and spatial distri-
bution patterns.

7. Additional Experimental Results

7.1. Decomposition for enhanced binarization

Full decomposition of the image scene has a significant im-
pact on traditional tasks, such as image binarization. Typi-
cally, a well-segmented text image yields superior binariza-
tion performance. To demonstrate the impact of decompo-
sition on the binarization task, we have included this abla-
tion study. Specifically, we apply binarization directly to
one of the set images for each MS cube using one of the

SoTA binarization methods (Howe [2]), and we compare
these results with those obtained after our decomposition
process. This comparison allows us to illustrate the advan-
tages of our approach in enhancing the performance of sub-
sequent image-processing tasks. Due to the orthogonality
regularization, the resulting abundance maps exhibit near-
binary characteristics, enabling straightforward binarization
through a winner-takes-all strategy where each pixel is as-
signed to the class with the maximum abundance value.

Table 1. Binarization difference on MSTEx 1 & 2, with and with-
out decomposition.

Method | FM? DRD, NRM| PSNRt

76.96 6.63 8.94 14.94
86.47 3.11 7.30 17.24
+9.51 -3.52 -164 +2.30

Binarization only (Howe) [2]
Decomposition + binarization (Ours)
Difference

Table 2. Binarization difference on MSBin BT.

Method ‘ FM1 DRDJ NRM| PSNRt
Binarization only (Howe) [2] 62.48 28.73 20.76 11.70
Decomposition + binarization (Ours) 92.35 7.90 4.68 15.95

Difference +29.87 —-2083 -16.08 +4.25

Table 3. Binarization difference on MSBin EA.
Method | FMt DRD, NRM| PSNR{

14.06 51.69 45.02 8.88
69.77 32.84 18.01 10.76
+55.71 —-18.85 —27.02 +1.89

Binarization only (Howe) [2]
Decomposition + binarization (Ours)
Difference

As seen on Tabs. | to 3, without decomposition, the bi-
narization achieves lower performance compared to the ap-
proach that incorporates decomposition, especially for the
highly degraded images such as in MSBin EA book. More-
over, the binarization-only approach involves a manual in-
tervention to select the best suitable image for binarization.



7.2. Extended Visual Results for Text Extraction

Figure 4 shows the highly degraded sample EA58 from MSBin, where the Howe method fails to extract text content and
instead misclassifies darker background areas as text regions. Despite some imperfections, PRISM succeeds in extracting it.
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Figure 4. Example of a highly degraded sample from MSBin EA book where the Howe method fails to identify any text.

The extended analysis of different methods on the BT56 sample demonstrates that most approaches face challenges in
separating background from text content, especially in the degraded region visible in the top left corner. Furthermore,
distinguishing between different ink colors (red & brown) proves problematic for the majority of methods.
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Figure 5. Extended version of Fig. 1 (from paper) on sample BT56 from MSBin dataset.
except for Howe, which only extracts text and Ours, which uses iterative pruning.
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Rank was fixed to 4 for the different methods,



7.3. Extended Results of Iterative Pruning on Urban Dataset

Following the method from [9], the RMSE between the generated abundances and the corresponding GT was computed,
selecting the best result from 10 independent runs to mitigate initialization effects for the three scenarios. In this setup, for
our method, the minimum rank possible 7,,;, was fixed to four for each run, abundance maps corresponding to each GT
scenario being saved. Results are displayed below in Tabs. 4 to 6.

Table 4. Quantitative comparison with HS unmixing methods on the Urban dataset for SIX elements. Best results are in bold
and the second best in blue.

Metric | Element | CNNAEU [8] Endnet [5] DAEU [6] OSPAEU [I] MTAEU [7] Ours

Asphalt 0.2270 0.1528 0.1322 0.2994 0.1517 0.1786

Grass 0.3622 0.2141 0.2352 0.1782 0.1862 0.2080

Tree 0.1972 0.0939 0.1492 0.1358 0.1152 0.1492

RMSE | | Roof 0.1252 0.1060 0.0915 0.1460 0.1152 0.0852
Soil 0.2096 0.2017 0.2195 0.2354 0.1395 0.1732

Metal 0.1710 0.2508 0.1606 0.0844 0.1808 0.1881

Average 0.2154 0.1699 0.1647 0.1847 0.1515 0.1637

Table 5. Quantitative comparison with HS unmixing methods on the Urban dataset for FIVE elements. Best results are in
bold and the second best in blue.

Metric | Element | CNNAEU [8] Endnet [5] DAEU [6] OSPAEU [1] MTAEU [7] Owurs

Asphalt 0.2499 0.1102 0.1266 0.3159 0.1295 0.2221

Grass 0.2563 0.1688 0.1856 0.2064 0.1620 0.2113

RMSE | Tree 0.2022 0.1082 0.1169 0.1644 0.1105 0.1197
Roof 0.1212 0.0870 0.1022 0.1563 0.0693  0.0591

Soil 0.2641 0.1534 0.1815 0.2410 0.1157 0.2326

Average 0.2187 0.1255 0.1426 0.2168 0.1117 0.1689

Table 6. Quantitative comparison with HS unmixing methods on the Urban dataset for FOUR elements. Best results are in
bold and the second best in blue.

Metric | Element | CNNAEU [8] Endnet [5] DAEU [6] OSPAEU [I] MTAEU [7] Ours

Asphalt 0.2369 0.1084 0.1703 0.3028 0.1426 0.0948

Grass 0.2756 0.1660 0.1678 0.2688 0.1346 0.1562

RMSE | | Tree 0.2070 0.1019 0.0762 0.2134 0.0951 0.1252
Roof 0.1876 0.0845 0.0867 0.2876 0.0904 0.0560

Average 0.2268 0.1152 0.1253 0.2682 0.1157 0.1081

PRISM demonstrates competitive performance compared to state-of-the-art hyperspectral unmixing methods on this
dataset, with particularly strong results for the roof abundance maps. While PRISM does not achieve the lowest RMSE
across all material classes, it consistently outperforms the CNNAEU baseline method that served as its architectural foun-
dation. Higher RMSE, especially for the Asphalt and Soil components, can be attributed to similarities between those two
materials, PRISM classifying some off-roads as Asphalt rather than Soil. This confusion is mitigated when these components
are combined into a single material in the last GT scenario, with PRISM achieving its best quantitative results.



7.4. Extended Ablation on MDL Cost

An extended ablation study highlights the effectiveness of the Minimum Description Length (MDL) principle. As illustrated
in Fig. 6, relying solely on the loss function leads to an overcomplete model, with the best results clustering around suboptimal
Ranks 4, 5, and 6. Qualitatively, these higher-rank solutions yield components with fragmented text materials, indicating a
less meaningful decomposition. In contrast, incorporating the total MDL cost not only improves the convergence properties
but also guides the model to a more robust solution. The MDL cost correctly identifies a stable and acceptable range of
solutions around Ranks 2, 3, and 4, with a clear global minimum at Rank 3. This confirms that the MDL cost is crucial for
preventing the model from overfitting and for correctly determining the true number of latent components in the data.
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Figure 6. Ablation on rank selection with and without the MDL Cost.
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