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1. Metrics definition
Here, we present the definitions of all metrics used in this
paper: F-measure (FM), Negative Rate Metric (NRM), Dis-
tance Reciprocal Distortion (DRD), and Peak Signal to
Noise Ratio (PSNR).

F-measure (FM) or F1-score: measures prediction accu-
racy:

FM =
2×Recall × Precision

Recall + Precision
, (1)

where Recall = TP
TP+FN , Precision = TP

TP+FP , and TP,
FP, FN denote True Positive, False Positive, and False Neg-
ative predictions, respectively.

Negative Rate Metric (NRM): quantifies pixel-level mis-
matches between predicted and ground truth (GT) images:

NRM =
NRFN +NRFP

2
, (2)

where NRFN = FN
FN+TP and NRFP = FP

FP+TN .

Distance Reciprocal Distortion (DRD): measures distor-
tion between two binary images:

DRD =

∑N
k=1 DRDk

NUBN
, (3)

where DRDk is the distortion of the weighted sum of pixels
in a 5 × 5 block of the GT image and the predicted image.
NUBN is the number of non-uniform 8× 8 blocks in GT.

Peak Signal to Noise Ratio (PSNR): ratio between the
maximum possible pixel value Imax and the MSE (Mean
Square Error) between two images:

PSNR = 10 log10

(
I2max

MSE

)
. (4)

Root Mean Square Error (RMSE): square root of the
MSE between estimated and true values:

RMSE =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Yhw − Ŷhw)2 (5)

2. Loss function
The total loss function of our model combines three main
terms, each addressing a different aspect:

LTotal = LSAD + λ1LMSE + λ2Lorth, (6)

where λ1, λ2 are two penalty parameters selected empiri-
cally (See Section 5 for detailed hyperparameters values).

We assess the reconstruction quality of the MS images
using the Mean Square Error (MSE), which measures the
pixel-wise reconstruction quality as follows:

LMSE =
1

hwb

h∑
i=1

w∑
j=1

b∑
l=1

(Yijl − Ŷijl)
2, (7)

where Yijl is a pixel from the input MS cube, and Ŷijl is
the corresponding pixel from the reconstructed output.

Following [9], we complement MSE by the Spectral An-
gle Distance (SAD), related to the cosine similarity, to mea-
sure the spectral similarity between the input and output
spectral vectors:

LSAD(Yij., Ŷij.) = acos(
⟨Yij., Ŷij.⟩
∥Yij.∥∥Ŷij.∥

), (8)

where acos denotes the arccos function, Yij. is the input
spectral vector of the pixel at position i, j, Ŷij. is the corre-
sponding output spectral vector, and ⟨, ⟩ is the inner product.

To promote the extraction of independent abundance
maps, we enforce orthogonality between the rows of the
abundance matrix A as follows:

Lorth = ∥AAT − Ir∥1, (9)

where ∥.∥1 is the L1 norm, Ir is an r×r identity matrix, and
r is the rank, which consists of the remaining abundance
maps after pruning. This reduces linear correlation between
extracted abundances, so that a single element does not ap-
pear on several of them.

This multi-term loss function allows for a balanced op-
timization that considers pixel-wise accuracy, spectral fi-
delity, and abundance map independence.
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3. Algorithm Pseudo-code
The complete algorithmic workflow of the PRISM framework is formalized in the following algorithm :

Algorithm 1: PRISM: Progressive Pruning with MDL-based Rank Selection
Input: MS cube Y;
Initial number of components rinit;
Minimum number of components to evaluate rmin;
Hyperparameters λ1, λ2, λ3 and λSAD′ ;
Smoothing kernel K (for spatial convolution);
Output: Optimal Abundance Maps Aopt, Optimal Endmembers Eopt, Optimal Rank r

Initialize PRISM model with rinit components (all active);
active map indices← {1, 2, . . . , rinit};
best overall mdl cost←∞;
best model config← null;
best rank← rinit;
for k from rinit down to rmin do

Train PRISM model using only maps in active map indices until early stopping;
Let trained modelk be the converged model parameters;

// Evaluate current model and calculate MDL cost

Ak,Ek,Sk, Ŷ ← trained modelk(Y);
Lrecon ← LSAD(Y, Ŷ) + λ1LMSE(Y, Ŷ) // Reconstruction error L(D|H)
Lstruct ← λ2Lorth(Ak) // Structural complexity part of L(H)
Lrank penalty ← λ3 · k // Rank penalty part of L(H)
current mdl cost← Lrecon + Lstruct + Lrank penalty;

// Update best configuration if current MDL cost is lower
if current mdl cost < best overall mdl cost then

best overall mdl cost← current mdl cost;
best model config← trained modelk;
best rank← k;

// If more pruning is needed, select one map to prune for the next
iteration

if k > rmin then
Let Aactive be the set of abundance maps corresponding to active map indices from Ak;
Let Eactive be the set of endmembers corresponding to active map indices from Ek;
for each map Am in Aactive do
Am ← K ∗Am // Spatial convolution (smoothing)

for each pair of distinct maps (Ai,Aj) (and corresponding Ei, Ej from Eactive) do
Compute similarity Sij using Ai,Aj , Ei, Ej (using Eq. (11))

(i∗, j∗)← pair with maximum similarity;
map to prune← argminm∈{i∗,j∗} ∥Am∥F (using Ai∗ , Aj∗ from Aactive);

Remove map to prune from active map indices;
Prune connections producing map to prune in the pre-abundance convolution layer and corresponding

endmembers weights in decoder;

Load PRISM model with parameters from best model config;
Aopt,Eopt ← Loaded Best Model(Y);
r ← best rank;
return Aopt,Eopt, r
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4. Attention block
Figure 1 illustrates our Attention block. Point-wise convo-
lutions are indicated in green, dilated convolution in red and
classical depthwise convolution in blue.

Figure 1. Illustration of the Large Kernel Attention block.

We display some attention maps to visualize how the
model emphasizes relevant regions of the images. In Fig. 2,
we observe that the incorporated attention helps highlight
the regions of interest in the images.

Figure 2. Visualization of the attention maps at the output of the
attention block for different input images from MSTEx-2. The 1st
row shows the input images. The following rows show character-
istics attended at different iterations.

5. Implementation details
Our model is implemented using PyTorch 2.3.1 with
CUDA 11.2 on Python 3.10.12. The model architecture
incorporates non-negativity constraints using PyTorch’s
parametrize module, while pruning is implemented via the

nn.utils.prune module. DW convolutions in the encoder use
3× 3 kernels and are followed by BatchNorm2d and Elu.

For the MSTex 1 & 2 and Urban datasets, we employ
the Adam optimizer with a learning rate of 1e-4 for a max-
imum training epoch of 200, subject to early stopping (pa-
tience=10). For the MSBin dataset, which contains larger
images and thus requires more computational resources, we
adjust the parameters to 150 epochs with a learning rate of
0.001, maintaining the same early stopping criterion. Our
experiments revealed that the initial state has a significant
impact on model convergence, particularly given the com-
plexity of degradation in Historical Document Images. In-
put MS images are normalized to the range [0,1] using a
MinMax scheme.

Based on our experimental, we set λ1 = 5 × 10−2 for
the mean squared error (MSE), λ2 = 5 × 10−2 for the
orthogonality constraint in Eq. (6) and λ3 = 5 × 10−2.
The initial number of abundances rinit was set to 12, corre-
sponding to the number of spectral bands available in MS-
Bin. This choice ensures an overdetermined or at least well-
determined unmixing problem, as having at least as many
spectral bands as endmembers is generally required for re-
liable spectral separation. We fixed rmin = 2, representing
at least the background and text components. Both ASC
and ANC were enforced using a softmax function with a
temperature parameter T = 0.5, ensuring that abundances
remain non-negative and sum to unity for each pixel. For
the Urban dataset, which exhibits more overlapping abun-
dance mixing, the orthogonality constraint λ2 is relaxed to
5× 10−3 while the temperature T is augmented to 2.

softmax(xi) =
exp(xi/T )∑K
j=1 exp(xj/T )

(10)

6. Similarity Measure
We recall the criterion we developed to perform a similarity
measure between the ith and jth abundance maps and their
corresponding endmembers as follows :

Si,j =
1

|⟨Ai −Aj ,1⟩|+ ϵ

⟨Ai,Aj⟩
∥Ai∥∥Aj∥

+ λSAD′LSAD′ (Ei, Ej), (11)

where ⟨·, ·⟩ is the Frobenius inner product, Ai is the
ith abundance map, which represents the smoothed ma-
trix form of the ith row of the abundance matrix A,
LSAD′(Ei,Ej) = π

2 − acos( ⟨Ei,Ej⟩
∥Ei∥∥Ej∥ ) is the complemen-

tary of the spectral angular distance between the ith and jth

columns of the endmembers matrix E, ∥ · ∥ represents the
Euclidean norm, | · | the absolute value, λSAD′ = 5 × 10−3

is a hyperparameter added to scale the SAD′ metric, and ϵ
is a small positive constant added to avoid division per zero.
The smoothing kernel used is defined as :

K =

 0.0369 0.0392 0.0400 0.0392 0.0369
0.0392 0.0416 0.0424 0.0416 0.0392
0.0400 0.0424 1.0000 0.0424 0.0400
0.0392 0.0416 0.0424 0.0416 0.0392
0.0369 0.0392 0.0400 0.0392 0.0369


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Figure 3. Ablation of the spatial component in the pairwise similarity measure. The figure shows three abundance map pairs: (a) and
(b) represent cases where high similarity is desired, while (c) represents a case where low similarity is expected. The spatial component
achieves this discrimination through: (1) Inverse scaling by the absolute of the activation sum differences between pairs |⟨Ai −Aj ,1⟩|,
which penalizes pairs with very different abundance distributions, and (2) Spatial smoothing of abundance by convolution with kernel K.

The proposed similarity criterion comprises two comple-
mentary components: spectral similarity for identifying ma-
terials with similar spectral signatures, and spatial similar-
ity for comparing abundance distributions. As illustrated
in Fig. 3, pure correlation fails to identify similarity in pair
(a), which represents identical text regions, while yielding
low similarity values for pair (b), despite both regions corre-
sponding to the same background material. This limitation
arises because these regions share minimal spatial overlap,
with contact occurring only at boundary pixels. To address
these deficiencies, we introduced the inverse scaling factor
based on the absolute difference between abundance sums.
This modification enhances the similarity measure for both
pairs (a) and (b), while maintaining low similarity for pair
(c), which represents genuinely dissimilar materials (text &
paper). Furthermore, the incorporation of spatial smoothing
mitigates the fragmentation artifacts observed in pair (a), re-
sulting in appropriately high similarity scores for semanti-
cally related regions. This multi-component approach thus
provides a more robust measure of material similarity that
accounts for both spectral characteristics and spatial distri-
bution patterns.

7. Additional Experimental Results

7.1. Decomposition for enhanced binarization
Full decomposition of the image scene has a significant im-
pact on traditional tasks, such as image binarization. Typi-
cally, a well-segmented text image yields superior binariza-
tion performance. To demonstrate the impact of decompo-
sition on the binarization task, we have included this abla-
tion study. Specifically, we apply binarization directly to
one of the set images for each MS cube using one of the

SoTA binarization methods (Howe [2]), and we compare
these results with those obtained after our decomposition
process. This comparison allows us to illustrate the advan-
tages of our approach in enhancing the performance of sub-
sequent image-processing tasks. Due to the orthogonality
regularization, the resulting abundance maps exhibit near-
binary characteristics, enabling straightforward binarization
through a winner-takes-all strategy where each pixel is as-
signed to the class with the maximum abundance value.

Table 1. Binarization difference on MSTEx 1 & 2, with and with-
out decomposition.

Method FM↑ DRD↓ NRM↓ PSNR↑

Binarization only (Howe) [2] 76.96 6.63 8.94 14.94
Decomposition + binarization (Ours) 86.47 3.11 7.30 17.24
Difference +9.51 −3.52 −1.64 +2.30

Table 2. Binarization difference on MSBin BT.
Method FM↑ DRD↓ NRM↓ PSNR↑

Binarization only (Howe) [2] 62.48 28.73 20.76 11.70
Decomposition + binarization (Ours) 92.35 7.90 4.68 15.95
Difference +29.87 −20.83 −16.08 +4.25

Table 3. Binarization difference on MSBin EA.
Method FM↑ DRD↓ NRM↓ PSNR↑

Binarization only (Howe) [2] 14.06 51.69 45.02 8.88
Decomposition + binarization (Ours) 69.77 32.84 18.01 10.76
Difference +55.71 −18.85 −27.02 +1.89

As seen on Tabs. 1 to 3, without decomposition, the bi-
narization achieves lower performance compared to the ap-
proach that incorporates decomposition, especially for the
highly degraded images such as in MSBin EA book. More-
over, the binarization-only approach involves a manual in-
tervention to select the best suitable image for binarization.
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7.2. Extended Visual Results for Text Extraction

Figure 4 shows the highly degraded sample EA58 from MSBin, where the Howe method fails to extract text content and
instead misclassifies darker background areas as text regions. Despite some imperfections, PRISM succeeds in extracting it.

(a) Pseudo color Image (b) Howe [2] (c) Ours (Decomposition) (d) Ours (Extracted text)

Figure 4. Example of a highly degraded sample from MSBin EA book where the Howe method fails to identify any text.

The extended analysis of different methods on the BT56 sample demonstrates that most approaches face challenges in
separating background from text content, especially in the degraded region visible in the top left corner. Furthermore,
distinguishing between different ink colors (red & brown) proves problematic for the majority of methods.

(a) MS Cube (b) Pseudo color image

(c) OSPAEU [1] (d) Howe [2] (e) MS-Former [3]

(f) SKKHM [4] (g) Endnet [5] (h) DAEU [6]

(i) MTAEU [7] (j) CNNAEU [8] (k) Ours

Figure 5. Extended version of Fig. 1 (from paper) on sample BT56 from MSBin dataset. Rank was fixed to 4 for the different methods,
except for Howe, which only extracts text and Ours, which uses iterative pruning.
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7.3. Extended Results of Iterative Pruning on Urban Dataset

Following the method from [9], the RMSE between the generated abundances and the corresponding GT was computed,
selecting the best result from 10 independent runs to mitigate initialization effects for the three scenarios. In this setup, for
our method, the minimum rank possible rmin was fixed to four for each run, abundance maps corresponding to each GT
scenario being saved. Results are displayed below in Tabs. 4 to 6.

Table 4. Quantitative comparison with HS unmixing methods on the Urban dataset for SIX elements. Best results are in bold
and the second best in blue.

Metric Element CNNAEU [8] Endnet [5] DAEU [6] OSPAEU [1] MTAEU [7] Ours

RMSE ↓

Asphalt 0.2270 0.1528 0.1322 0.2994 0.1517 0.1786

Grass 0.3622 0.2141 0.2352 0.1782 0.1862 0.2080

Tree 0.1972 0.0939 0.1492 0.1358 0.1152 0.1492

Roof 0.1252 0.1060 0.0915 0.1460 0.1152 0.0852

Soil 0.2096 0.2017 0.2195 0.2354 0.1395 0.1732

Metal 0.1710 0.2508 0.1606 0.0844 0.1808 0.1881

Average 0.2154 0.1699 0.1647 0.1847 0.1515 0.1637

Table 5. Quantitative comparison with HS unmixing methods on the Urban dataset for FIVE elements. Best results are in
bold and the second best in blue.

Metric Element CNNAEU [8] Endnet [5] DAEU [6] OSPAEU [1] MTAEU [7] Ours

RMSE ↓

Asphalt 0.2499 0.1102 0.1266 0.3159 0.1295 0.2221

Grass 0.2563 0.1688 0.1856 0.2064 0.1620 0.2113

Tree 0.2022 0.1082 0.1169 0.1644 0.1105 0.1197

Roof 0.1212 0.0870 0.1022 0.1563 0.0693 0.0591

Soil 0.2641 0.1534 0.1815 0.2410 0.1157 0.2326

Average 0.2187 0.1255 0.1426 0.2168 0.1117 0.1689

Table 6. Quantitative comparison with HS unmixing methods on the Urban dataset for FOUR elements. Best results are in
bold and the second best in blue.

Metric Element CNNAEU [8] Endnet [5] DAEU [6] OSPAEU [1] MTAEU [7] Ours

RMSE ↓

Asphalt 0.2369 0.1084 0.1703 0.3028 0.1426 0.0948

Grass 0.2756 0.1660 0.1678 0.2688 0.1346 0.1562

Tree 0.2070 0.1019 0.0762 0.2134 0.0951 0.1252

Roof 0.1876 0.0845 0.0867 0.2876 0.0904 0.0560

Average 0.2268 0.1152 0.1253 0.2682 0.1157 0.1081

PRISM demonstrates competitive performance compared to state-of-the-art hyperspectral unmixing methods on this
dataset, with particularly strong results for the roof abundance maps. While PRISM does not achieve the lowest RMSE
across all material classes, it consistently outperforms the CNNAEU baseline method that served as its architectural foun-
dation. Higher RMSE, especially for the Asphalt and Soil components, can be attributed to similarities between those two
materials, PRISM classifying some off-roads as Asphalt rather than Soil. This confusion is mitigated when these components
are combined into a single material in the last GT scenario, with PRISM achieving its best quantitative results.
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7.4. Extended Ablation on MDL Cost
An extended ablation study highlights the effectiveness of the Minimum Description Length (MDL) principle. As illustrated
in Fig. 6, relying solely on the loss function leads to an overcomplete model, with the best results clustering around suboptimal
Ranks 4, 5, and 6. Qualitatively, these higher-rank solutions yield components with fragmented text materials, indicating a
less meaningful decomposition. In contrast, incorporating the total MDL cost not only improves the convergence properties
but also guides the model to a more robust solution. The MDL cost correctly identifies a stable and acceptable range of
solutions around Ranks 2, 3, and 4, with a clear global minimum at Rank 3. This confirms that the MDL cost is crucial for
preventing the model from overfitting and for correctly determining the true number of latent components in the data.

Figure 6. Ablation on rank selection with and without the MDL Cost.
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