
Supplementary Materials for TAP-VL: Text
Layout Aware Pretraining for Enriched
Vision-Language Models

A. Implementation Details
For all considered architectures, we used a uniform training
procedure that involves applying LoRa [28] to the LLM and
fine-tuning the vision projection module while keeping the
ViT frozen. When implementing TAP-VL, we additionally
pretrained and fine-tuned the OCR module during the Text
Layout-Aware Pretraining and OCR-to-Language Align-
ment stages. Both the baseline models and TAP-VL were
fine-tuned using the same mixture of datasets described in
the next section (OCR-Vision-to-Language Alignment). All
experiments were conducted on 8 Nvidia A100 (40G) GPUs
using bfloat16 precision. The OCR system used in this pa-
per is Textract OCR* [1–3, 36, 46].

A.1. Training Datasets
For our experiments, we employed two distinct dataset
combinations for the OCR-to-Language Alignment and
OCR-Vision-to-Language Alignment phases. The datasets
used in these phases, along with their evaluation metrics and
splits, are detailed in Tab. 7.
OCR-to-Language Alignment: This phase was dedicated
to OCR-centric VQA datasets, where answers can be di-
rectly inferred from the OCR text including: DocVQA, In-
foVQA, ChartQA, OCRVQA, TextVQA, and STVQA.
OCR-Vision-to-Language Alignment was trained on a
combination of OCR-centric and non-OCR-centric datasets,
specifically DocVQA, InfoVQA, ChartQA, OCRVQA,
TextVQA, STVQA, TextCaps, COCO, and VQAv2.

A.2. Training hyperparameters
In each stage of TAP-VL’s training, the OCR module con-
sistently generated 32 query tokens. Additionally, the
AdamW optimizer [40] and the Cosine Annealing sched-
uler [41] were uniformly applied. Beyond these constants,
each stage was characterized by its own distinct set of hy-
perparameters
Text Layout-Aware Pretraining: The pretraining stage
comprised 140,000 training steps, with a learning rate 1e→4
and and a batch size of 224. The OCR module was trained
with a maximum of 512 token in the OCR module and a
masking probability of 0.15. More information about the
pretraining optimization can be found in Tab. 8.
OCR-to-Language Alignment: Detailed in Tab. 8, this
stage maintained a uniform structure across models, with
300K training steps, 1000 warmup steps, a learning rate of
2e→5, and a batch size of 24 for InstructBlip and 32 for the

*https://aws.amazon.com/textract/

Template
Could you write a short image caption?
Could you write a short image description?
What does this image show?
Could you write a short description for the image?
Could you write a description for the photo?
Could you provide a description of what is presented in the photo?
Could you briefly describe the content of the image?
Can you briefly explain what you see in the image?
Could you use a few words to describe what you perceive in the photo?
Could you provide a short depiction of the picture?
Could you use a few words to illustrate what is happening in the picture?

Table 6. Instruction Templates for Captioning. Overview of
templates employed across captioning datasets to guide caption
generation.

other models. The OCR branch’s maximum token length
was set to 1,024 for this training phase.
OCR-Vision-to-Language Alignment: In Tab. 9, we
present the hyperparameters for the OCR-vision-to-
language alignment phase. This phase mirrored the prior
alignment stage’s training steps, batch size, warmup proce-
dure, and learning rates. During the training phase, the OCR
module was trainable for all models except Qwen-VL. The
image resolution used to feed the frozen vision encoder was
the original one used by the baseline models, with Instruct-
Blip XL and XXL set at 224, LLaVA-1.6 at 336, and Qwen-
VL at 448. The maximum OCR module length was set to
2,000 tokens for TAP-VLInstructBlip XL and 1,400 for the other
configurations. The LLM prompt length was constrained
by RAM limitations, set to different maximums tailored to
each model configuration.

A.3. Instruction templates
For the VQA-based datasets, we use the given question as
the instruction. For the captioning datasets, we randomly
select an instruction that asks the model to describe the im-
age among the one in Tab. 6.

A.4. Pretraining data preparation:
Each document contains OCR tokens, denoted as
t1, t2, . . . , tn with corresponding bounding boxes
b1,b2, . . . ,bn. To create training pairs, we randomly
mask spans of OCR tokens along with their positional
information. Specifically, we:
• Sample M spans, each defined by a start index si and an

end index ei.
• Replace tokens and bounding boxes in each span (si, si+
1, . . . , ei) with a special token <extra id i> and the
minimal bounding box covering the span, respectively
(following the method in [10]).

• Generate pairs consisting of the noisy OCR input and
the masked words, i.e., the original tokens in the masked
spans. The masked words are represented as a sequence



Task Dataset Description Train split Eval split Metric

Scene-Text VQA
TextVQA [50] Text-oriented VQA on natural images train val vqa-score(↑)

STVQA [9] Text-oriented VQA on natural images train test ANLS(↑)
OCRVQA [45] Text-oriented VQA on natural images train - Acc@1(↑)

Document Understanding

DocVQA [43] VQA on single page scanned documents train test ANLS(↑)
InfoVQA [44] VQA on infographic images train test ANLS(↑)
ChartQA [42] VQA on chart images train (human) - RA

Dude [31] VQA on multipage scanned documents - test ANLS(↑)
Image Caption COCO [15] Captioning of natural images train test CIDEr(↑)
Scene-Text Caption TextCaps [49] Text-oriented Captioning of natural images train test CIDEr(↑)
General VQA VQAv2 [26] VQA on natural images train val vqa-score(↑)

Table 7. Datasets used during the finetuning stages.

Stage # Steps Batch Size Base LR # Warmup steps Weight Decay OCR-Q Prompt # OCR module token Mask density

Pretraining 140K 224 1e→ 4 1000 0.05 <extra id i> {masked words i} 512 0.15
Alignment 300K 24† 2e→ 5 1000 0.05 Question: {Instruction} 1024 0

Table 8. Model hyperparameters used during the Text Layout-Aware Pretraining and OCR-to-language Alignment. † Qwen-VL
and LLaVA was trained using a batch size of 32 during the OCR-to-language Alignment.

VL Model # Steps # LLM token # OCR module token LoRA (ω, r, dropout,modules) OCR module Image resolution

InstructBlip 300K 1024 2000 16, 32, 0.05, [Wq,Wv] Trained 224
InstructBlip XXL 300K 400 1024 16, 32, 0.05, [Wq,Wv] Trained 224
LLaVA-1.6 300K 400 1024 16, 32, 0.05, [Wq,Wv] Trained 336
Qwen-VL 100K 600 1400 16, 32, 0.05, [Wq,Wv] Frozen 448

Table 9. Hyperparameters for OCR-Vision-to-Language Alignment. Parameters such as batch size, learning rate, warm-up period, and
optimizer are not specified here, as they remain consistent with those used in the OCR-to-Language Alignment stage.

(<extra id i> value i>)i=M
i=1 where value i is

the original text in the i-th masked span.

A.5. Layout-Aware pretraining

For all the pretraining objectives, the OCR encoder pro-
duces rich embeddings from the noisy OCR. We denote
these embeddings as O ↑ RB→l→docr , where B is the batch
size, l is the number of noisy OCR tokens, and docr is the
dimensionality of the embeddings. Additionally, we define
Rq ↑ RB→K→d to represent the learnable queries, where
B is the batch size, K is the number of learnable queries,
and d is their dimensionality. The representation of the M

mask words, preceded by the task specific special token, is
denoted as Rm ↑ RB→(2M+1)→d.

OCR-Grounded Mask Denoising: In this pretraining
objective, we use a <dec> special token. The OCR-Q pro-
cesses Rq through its self-attention (SA) layers, while pro-
cessing Rm using causal self-attention (CSA) layers condi-
tioned on Rq . This results in mask-words representations
that integrate contextual information from the queries to-
kens. Subsequently, the queries representations are updated
using the noisy OCR content using a cross-attention (CA)

layer. Two finals feed-forward (FF) layers are applied on
top of Rq and Rm. Formally, we compute:
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where (in) and (out) represent the input and output rep-
resentations.

We then apply a language modeling loss LLM over the
output representations R(out)

m to recover the original masked
content. Specifically, we pass R(out)

m through a softmax
function to obtain the predicted token probabilities:

ŷi = Softmax
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m

)
(3)

The language modeling loss LLM is then computed using
the cross-entropy between the predicted probabilities and
the ground truth tokens (y)Mi=1:
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log (ŷj |yt<j) . (4)



OCR-Mask Contrastive Learning: In this objective,
we use a the <cls> token and its specific representation is
denoted as Rt ↑ RB→1→d.

The OCR-Q processes Rq and Rm using two indepen-
dent self-attention layers. This results in mask-words rep-
resentations that are independent from the from the queries
tokens representation. Subsequently, the queries represen-
tations are updated using the noisy OCR content using a
cross-attention layer. Two finals feed-forward layers are ap-
plied on top of Rq and Rm. Formally, we compute:
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The R(out)
t representation is then extracted from R(out)

m in
order to compute the pairwise similarity between R(out)

q

and R(out)
t , yielding Pqt ↑ RB→B→K , and subsequently,

the maximum similarity is selected across the last dimen-
sion, resulting in Sqt ↑ RB→B . Finally, we apply the con-
trastive learning loss [14], with a temperature scalar ω on
the Sqt matrix:

LContrastive(S) = → 1
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OCR-Mask Matching: In this objective, we compute
R(out)

q , R(out)
m , and Sqt similarly to OCR-Mask Matching.

We employ a hard negative mining strategy [32] to select
challenging negative examples based on the similarity val-
ues in the Sqt matrix. This approach yields pairs of repre-
sentations Ri(out)

q and Rj(out)
m where i ↓= j, indicating they

come from different documents. Additionally, we consider
pairs where i = j, which represent positive examples orig-
inating from the same document. The query representation
R(out)

q is projected to Rq ↑ RB→1→1 using a feed-forward
layer followed by average pooling across the query dimen-
sion. This provides a single similarity value for each pair
of noised OCR-masked words. Finally, we apply a binary
cross-entropy loss to encourage the model to correctly de-
tect matching pairs, where yi = 1 if the pair matches and 0
otherwise.
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B. Additional results
Multipage qualitative results In Figs. 8 and 9, we display
how our method integrates into LLaVA-1.6 to leverage the
information available inside a multiple page document in
order to answer a given question. For instance, the base

model struggles to identify the ”number of the heater build-
ing” located in the fourth page (over six), whereas TAP-VL
effectively uses layout information to understand it.



Q: What is the building number of the heater building?

LLaVA:  ‘NA’

TAP-VL       : ’12’

Q: What is the difference between the number of people who answered ‘Yes, entirely’ and ‘Yes, mostly’ in the chart on the first page of the 
document?

Q: What title holds the person who signed the letter on the page 2 of the document?

LLaVA

LLaVA:  ‘1000000000’

TAP-VL       : ’2’
LLaVA

LLaVA:  ‘chairman’

TAP-VL       : ’counsel to the president’
LLaVA

Figure 8. Qualitative Improvements Demonstrated by TAP-VL. Illustrative examples showcasing the improvements achieved by our
method on multipage document VQA benchmarks using LLaVA. TAP-VL enhances the base model’s ability to grasp OCR and layout
information, yielding significant improvements across both benchmark types.



Q: What is the number of unique color used in the graph on the fifth page of the document?

LLaVA:  ‘5’

TAP-VL       : ’4’

Q: When did this document published?

Q: What is the rated power of the product in Watts?

LLaVA

LLaVA:  ‘december 16, 1973’

TAP-VL       : ’december 15, 1969’
LLaVA

LLaVA:  ‘’

TAP-VL       : ’1800’
LLaVA

Figure 9. Qualitative Improvements Demonstrated by TAP-VL. Illustrative examples showcasing the improvements achieved by our
method on multipage document VQA benchmarks using LLaVA. TAP-VL enhances the base model’s ability to grasp OCR and layout
information, yielding significant improvements across both benchmark types.
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