
SafeRoute: Enhancing Traffic Scene Understanding via a Unified Deep Learning
and Multimodal LLM

Supplementary Material

S1. Additional Results
This document provides supplementary experimental re-
sults and analysis to complement our main paper.

Figure S1. Initial Evaluation of MiniGPT-v2 on BEV LiDAR Im-
age Without Task-Specific Training

S1.1. Initial Evaluation of MiniGPT-v2 on BEV Li-
DAR Image

An initial evaluation of the MiniGPT-v2 model, as illus-
trated in Figure S1, assessed its capability to describe lanes
and road features from a BEV LiDAR image without task-
specific training. The model’s response, “The BEV LiDAR
image suggests a multi-lane road, but the exact number of
lanes and presence of traffic are unclear,” reveals several
limitations. Firstly, it lacks precise lane and road element
descriptions, failing to specify the exact number or type
of lanes, which is crucial for autonomous vehicle naviga-
tion. Secondly, key road features such as intersections, lane
boundaries, and road markings remain undetected, limiting
the model’s spatial and contextual awareness. Lastly, the
response offers generalized observations with minimal task-
specific relevance, providing no insights on lane conditions,
road quality, or potential hazards—critical elements for HD
map updates and autonomous driving decisions. These find-
ings highlight the need for domain-specific fine-tuning to
enhance the model’s ability to interpret and reason about
road environments with greater accuracy.

S1.2. VLM Response on BEV Image with Unanno-
tated Data

In the initial approach to training a Vision-Language Model
(VLM) for road element detection, we employed unanno-
tated Bird’s Eye View (BEV) LiDAR images with struc-
tured metadata, aiming for autonomous identification of
lane markings, lane types, and road attributes. However,
as illustrated in Figure S4, the model exhibited critical limi-
tations in distinguishing lane types and accurately interpret-
ing road elements. When prompted, the model identified

Figure S2. Annotate figure

Figure S3. Unannotate figure

only two lanes, failing to recognize the presence of bicycle
lanes and incorrectly reporting “No bicycle lanes visible,”
despite their existence in the image. This misclassification
suggests a lack of fine-grained lane differentiation, likely



Figure S4. Example of VLM Response on BEV Image when
trained with Unannotated Data

due to the absence of task-specific annotations. Further-
more, while the model correctly identified two motorway
lanes, its response appeared to rely on generalized assump-
tions rather than precise understanding, merging bicycle
and motorway lanes into a simplified interpretation. These
findings highlight the need for enhanced training strategies,
including explicit annotations and pre-processing, to im-
prove the VLM’s ability to accurately detect and categorize
diverse lane types for autonomous driving applications and
HD map updates.

S1.3. Task-Specific Trained MiniGPT-v2 Model

After fine-tuning the VLM model with task-specific poly-
lines coded datasets and incorporating guided captioning,
its ability to understand and describe road elements has sig-
nificantly improved, as illustrated in Figure S5. Initially, the
model provided vague and generalized responses, but post-
training, it now accurately identifies key road components,
including motor vehicle and bicycle lanes, and clearly de-
scribes their structure and arrangement. It correctly quan-
tifies lane counts, distinguishing between two motorway
lanes and two bicycle lanes, demonstrating a refined capac-
ity for lane differentiation. Additionally, the model accu-
rately recognizes the absence of intersections or lane change
zones, assesses the quality of the point cloud data as “very
clear,” and categorizes the road scene as a “normal clear
city road.” These improvements highlight the effectiveness
of specialized training in enhancing the model’s spatial rea-
soning and structured comprehension of road environments,
making it more suitable for autonomous driving applica-
tions and HD mapping.

Figure S5. Task-Specific Trained MiniGPT-v2 Model for Lane
Elements Understanding

S1.4. Rural Road Scene Understanding
Furthermore, the model has demonstrated an improved abil-
ity to generalize and interpret road environments, as illus-
trated in Figure S6. When analyzing an underdeveloped ru-
ral road scene, it provided a clear and detailed description
of both the surroundings and key road features. The model
correctly identified the road type as an “underdeveloped ru-
ral road” and accurately noted the presence of “green veg-
etation and some trees on either side of the road.” This
highlights its capability to move beyond lane detection and
contextualize broader environmental elements. Addition-
ally, the model successfully identified the absence of road
crossovers, intersections, or lane change zones, further en-
hancing its structural understanding of rural road scenes.
These findings underscore the model’s capacity for com-
prehensive road perception, making it more adaptable to di-
verse driving conditions in both urban and rural environ-
ments.

S1.5. Lane Lines in Rural Environment
As illustrated in Figure S7, the model effectively identifies
lane lines and weather conditions in a rural road setting,
demonstrating its multimodal reasoning capabilities. When



Figure S6. Rural Road Scene Understanding

Figure S7. Lane Lines Visible in a Rural Environment with Clear
Weather

prompted, it correctly confirmed the visibility of lane lines
and accurately described the weather as “clear and sunny.”
This result highlights the model’s ability to interpret road
elements not only in urban environments but also in rural
settings, where varying conditions can impact driving deci-
sions. The ability to integrate environmental context, such
as weather conditions, into its reasoning is particularly cru-
cial for autonomous navigation, as adverse weather can sig-
nificantly influence lane visibility and overall driving safety.
The model’s success in this scenario underscores its poten-
tial for enhancing perception systems in diverse real-world
driving conditions.

S1.6. Suboptimal Result: Incorrect Lane Count
Lastly, as illustrated in Figure S8, a suboptimal case high-
lights a minor limitation in the Vision-Language Model
(VLM)’s ability to accurately identify the total number of
lanes. The model incorrectly detected four lanes instead
of five, likely due to worn-off lane markings and unclear
LiDAR data points, which impaired its ability to distin-
guish all lanes correctly. This case underscores the model’s
challenges in processing visually degraded inputs and the
need for further refinements to enhance its robustness un-
der imperfect conditions. However, despite this minor er-
ror, the model demonstrated strong performance in road
symbol recognition, correctly identifying and interpreting
directional arrows for one-way traffic and lane change in-
dications. Additionally, it provided a comprehensive scene

Figure S8. Suboptimal Result: VLM Model Inaccurately Esti-
mates Lane Count

description, accurately noting the presence of vehicles, a
crosswalk, trees, and a traffic light at the intersection. These
results highlight the model’s strong generalization capabil-
ities in understanding complex road environments, even as
occasional inaccuracies in lane detection indicate areas for
future optimization.

S1.7. Suboptimal Result: Incorrect Lane Detection

Figure S9. Suboptimal Case: Incorrect Lane Line Detection due
to Misinterpretation of Sunlight Reflection

As illustrated in Figure S9, the model encounters chal-
lenges in accurately identifying lane lines under complex
lighting conditions. When prompted, it responded, “No lane
lines are visible due to reflection from sunlight,” despite the
fact that lane lines are partially visible in the image. This
misinterpretation highlights a limitation in the model’s abil-
ity to differentiate between environmental factors affecting
lane visibility, such as reflections from sunlight on wet sur-
faces and the residual effects of rainfall. While the model
attempts to reason about the cause of reduced visibility, its
explanation is incomplete, failing to account for the inter-
play of multiple overlapping factors. This scenario under-



scores the need for further training and refinement, particu-
larly in improving the model’s robustness against challeng-
ing visual conditions and enhancing its capacity to provide
more precise lane detection explanations in adverse envi-
ronments.

S1.8. Specific Task Prompts
During training, we created several task-specific prompts to
guide the model in understanding specific features of the
map data. These task prompts helped focus the model on
key elements and enhanced its interpretive abilities.

The road elements understanding task-specific prompts
are listed below:
1. Describe the lanes and road in detail in this image: The

model is prompted to provide a short description sum-
marizing the scene and key road elements.
Example: ”The image shows a normal city road with
clearly visible lanes and an intersection. There are both
bicycle and motorway lanes present.”

2. What is the object marked? This prompt guides the
model to identify a highlighted object or feature, such
as a lane or intersection.
Example: ”The marked object is a motorway lane.”

3. What does this arrow mean? For situations where direc-
tional cues, such as arrows, are marked in the image.
Example: ”The arrow indicates a lane change direction
for merging into the motorway.”

4. How many bicycle lanes are there? The model is
prompted to count the number of bicycle lanes in the
scene.
Example: ”There is one bicycle lane in this image.”

5. How many motorway lanes are there? Similar to the
above, this prompt focuses on identifying motorway
lanes.
Example: ”There are two motorway lanes present.”

6. Is there any cross-section or intersection? The model
is asked to identify and describe intersections or lane-
change zones.
Example: ”Yes, there is a lane-change zone at the inter-
section.”
The adaptive lane detection and reasoning task-specific

prompts are:
1. Describe the lane lines.

Example: ”The lane lines are clearly visible and well-
marked along the road.”

2. Are the lane lines visible?
Example: ”Yes, the lane lines are visible and distinct in
the image.”

3. If not, what is the reason for their invisibility?
Example: ”The lane lines are not visible due to heavy
rainfall.”

4. Why are the lane lines not visible (e.g., due to heavy rain,
degradation, or darkness)?

Example: ”The lane lines are partially visible due to
degradation.

S1.9. Evaluation Metrics
To comprehensively evaluate the performance of our multi-
modal Vision-Language Model (VLM) on the MAPLM-QA
benchmark, we define four key evaluation categories also
known as Fine-grained QA:
• SCN (Scene Understanding): Determines the type of

road scene present in the image.
• QLT (Point Cloud Quality Analysis): Assesses the

quality of the point cloud data in the given frame.
• LAN (Lane Counting): Evaluates the correctness of the

predicted number of lanes in the current road scene.
• INT (Intersection Recognition): Identifies whether a

road cross, intersection, or lane-change zone exists.
For holistic performance assessment, we introduce two

aggregated metrics: Frame-Overall Accuracy (FRM) and
Question-Overall Accuracy (QNS).

S1.9.1. Frame-Overall Accuracy (FRM)
FRM measures whether all lane and road element-related
responses are correctly answered within a single frame. It
is defined as:

FRM =
1

N

N∑
k=1

(SCNk ·QLTk · LANk · INTk) (5)

where SCNk, QLTk, LANk, INTk ∈ {0, 1} are bi-
nary indicators representing the correctness of each re-
sponse type for frame k, and N denotes the total number
of frames in the test set. A frame is considered fully correct
(FRM = 1) if all four components are correctly identified.

S1.9.2. Question-Overall Accuracy (QNS)
QNS measures the overall correctness ratio across all cat-
egories, providing a frame-wise mean accuracy across the
four evaluation types. It is computed as:

QNS =
1

N

N∑
k=1

SCNk +QLTk + LANk + INTk
4

(6)

where the numerator represents the number of correctly
answered sub-tasks per frame, and the denominator ensures
equal weight across all evaluation categories.

These evaluation metrics enable a rigorous comparison
of different VQA models on the MAPLM-QA benchmark,
providing insights into both fine-grained road scene under-
standing and frame-level holistic accuracy. By leveraging
FRM and QNS, we effectively quantify the interpretabil-
ity, consistency, and reliability of the model’s responses,
making them critical benchmarks for assessing multimodal
VLMs in autonomous driving perception.



Table S1. Comparison of our MLLM with State-of-the-Art MLLMs on MAPLM-QA Dataset.

Method Backbone Additional Learning Modalities Metrics (↑)

Img PC LAN INT QLT SCN QNS FRM

LLaVA Vicuna-7B P+IT+LoRA ✓ ✓ 75.4 77.53 82.4 95.53 82.72 52.27
MAPLM Vicuna-7B P+IT ✓ ✓ 72.93 78.4 82.27 94.93 82.13 50.53

MAPLM Vicuna-7B P+IT+LoRA ✓ ✓ 78.53 83.2 84.33 96.00 85.52 57.99
Ours LLAMA-2-7B IT+LoRA × ✓ 75.80 77.53 82.33 95.67 82.83 53.87

Metrics: LAN (Lane Counting), INT (Intersection Recognition), QLT (Point Cloud Quality), SCN (Scene Understanding), FRM (Frame-Overall Accuracy: 1 if all LAN, INT,
QLT, and SCN are correct; else 0), QNS (Question-Overall Accuracy). Training paradigms: P (Pretraining), IT (Instruction Tuning), LoRA (Low-Rank Adaptation), PC (Point

Cloud).

S1.10. Our MLLM’s Competitive Performance
The results in the Table 6 demonstrate that our LLAMA-2-
7B-based MLLM, despite being more light weight and com-
putationally efficient, achieves competitive performance
compared to Vicuna-7B-based models, making it a strong
contender in multimodal road scene understanding.

Our model achieves 82.83% QNS and 53.87% FRM,
ranking second-best among all models, closely trailing be-
hind MAPLM (P+IT+LoRA, Vicuna-7B), which achieves
the highest 85.52% QNS and 57.99% FRM. Notably, our
model outperforms MAPLM (P+IT, Vicuna-7B), which
only reaches 82.13% QNS and 50.53% FRM, demonstrat-
ing that our instruction-tuned model with LoRA achieves
better generalization than standard pretraining-based ap-
proaches. Furthermore, our model surpasses LLaVA
(P+IT+LoRA, Vicuna-7B) in QNS (82.83% vs. 82.72%)
and FRM (53.87% vs. 52.27%), proving its strong rea-
soning capabilities while requiring fewer computational re-
sources.

Although MAPLM (P+IT+LoRA, Vicuna-7B) achieves
the highest accuracy in LAN (78.53%), INT (83.2%), and
QLT (84.33%), our model remains highly competitive, at-
taining 75.80% LAN, 77.53% INT, and 82.33% QLT, mak-
ing it a viable alternative for scenarios where computational
efficiency is a priority. Unlike LLaVA and MAPLM mod-
els, which require both image and point cloud inputs, our
model relies solely on point clouds, yet still delivers compa-
rable or superior results. This highlights the effectiveness of
our instruction tuning and LoRA-based adaptation strategy,
proving that our model is highly efficient while maintaining
state-of-the-art multimodal reasoning performance.

S1.11. Dataset Composition
We used a total of 10,000 annotated Bird’s-Eye View
(BEV) images for training and 2,000 raw images for testing,
sourced from the MAPLM dataset. Each image was anno-
tated with polylines representing lanes and cross-sections,
as detailed in Algorithm 3.3 of the main paper. The train-
ing dataset included a variety of road environments, rang-

ing from urban streets to highways and rural roads, en-
suring that the model could generalize well across differ-
ent conditions. The annotations were consistently applied
to all images to maintain accuracy and ensure the Vision-
Language Model (VLM) could reliably learn these patterns
during training.

This preprocessing technique proved critical in enhanc-
ing the model’s ability to understand and reason about road
elements, leading to improved lane detection accuracy and
overall scene understanding. The process laid the founda-
tion for training a robust multimodal model capable of ac-
curately detecting and reasoning about road features in a va-
riety of complex environments. The combination of struc-
tured geometric data with visually encoded annotations us-
ing polylines is a key innovation in this work, enabling the
VLM to effectively interpret road structures.

S1.12. Specific Instruction Prompting for Road El-
ements Understanding

To implement task-guided instruction prompting, we trans-
formed raw map data from the MAPLM dataset into a
format readable by the LLaMA-2 language model, as de-
scribed in the main paper. This step was essential for ensur-
ing that the model could handle the specific task prompts
effectively, guiding it to focus on relevant road features like
lanes, intersections, and other map elements. The raw map
data from the MAPLM dataset typically includes geomet-
ric coordinates and attributes for lanes, cross-sections, and
other road features in a general JSON-like format. This for-
mat is not easily interpretable by an LLM designed to work
with natural language inputs.

We converted this data into a natural language descrip-
tion following the COCO Caption Description Format,
which LLaMA-2 can process, as shown in Figures 3.9 and
3.10 of the main paper. For instance, a raw MAPLM dataset
entry (see Figure 3.8 in the main paper was transformed
into a structured caption such as: ”The scene features a
normal city road with very clear data quality. It includes
four lanes: a bicycle lane from [379.14, 1024.0] to [353.74,
351.14], a motorway from [438.73, 1024.0] to [517.88,



Figure S10. Raw MAPLM dataset entry about lanes. This example
shows geometric data for lanes (bicycle lane, motorway) and a
cross-section (lane-change zone) with coordinates.

Figure S11. Raw data conversion into a format that an LLM can
process. The MAPLM dataset entry is transformed into a COCO-
style caption, enabling LLaMA-2 to interpret road features.

1024.0] and a motorway from [520.6, 554.55], along with a
lane-change zone at the intersection with vertices [336.43,
103.981], [594.75, 102.741], [595.76, 553.71] and [403.63,
554.05].” This structured annotation methodology enhances
the dataset’s utility for evaluating lane detection and road
scene understanding across both standard and challenging
environmental conditions.

S2. Supplementary Notes: Source Code Avail-
ability

All source code and datasets will be made publicly available
on GitHub. Due to the large size of the dataset, it cannot
be uploaded here or shared via online cloud platforms, in
adherence to the blind review policy. The code and related
resources will be released on GitHub or an official website,
which will be announced soon.



Figure S12. Algorithm for drawing color-coded polylines on raw images. The process extracts lane geometries, assigns colors based on
lane types (e.g., Yellow for motorways, Orange for bicycle lanes, Blue for cross-sections), and annotates the image accordingly.


