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S5. FitAP

Based on standard definitions, the FitAP, similar to the
mean average precision in object detection, can be defined
as

FitAP =
1

10

10∑

i=1

AP(!i),

wherein ! = {!i = 0.5 + (i→ 1)0.05 | i = 1, 2, . . . , 10}.
In the absence of a confidence score from the parsed

VLM detection results, we propose to use the product of the
normalized box area of detection and the IoU, Abox ↑ IoU,
for the quality ranking of detection against the ground truth
data.

We establish this approach by first showing the correla-
tions of the area of the ground truth boxes with Abox and
Abox ↑ IoU. Then, we visualize samples of the precision-
recall curves generated by this approach, pointing out how
its features resemble those generated by vision-only mod-
els. From these, we confirm that Abox ↑ IoU is a reli-
able substitute for traditional confidence scores in generat-
ing precision-recall curves and calculating AP.

The critical step is to ensure that the metric used reli-
ably correlates with the probability of detection being true
positive, which is crucial to accurately calculate the AP and
understand the performance of the model.

S5.1. Area correlations

Here, we offer an empirical basis of Abox ↑ IoU for the
quality ranking of the detection boxes by VLM from the
following:
1. The tendency of VLM’s predictions to maintain propor-

tional sizing with the actual object in the image, and
2. influence of the actual object’s size on the detection ac-

curacy.
Thus, we examine the correlation between the area of
ground truths (normalized to image size) and those of de-
tection Abox. Our results (Figure S7) confirm that this cor-
relation is strong (Pearson r = 0.90), indicating that VLM
tends to generate detections with areas similar to the actual
objects, affirming VLM’s sizing accuracy, which is an es-
sential aspect of objectness. The size accuracy implies that
VLM recognizes and localizes the actual object in the im-
age.

We further establish the correlation between the ground
truth box areas and the proposed metric Abox↑IoU. The re-
sults (Figure S7) also confirm that this correlation is strong
(Pearson r = 0.92), suggesting that larger, more well-fitting

boxes are more common when the model correctly detects
objects. In fact, this metric captures both the size and the
quality of fit of the detections.

S5.2. Sample precision-recall curves

The choice of a metric to replace confidence scores should
ideally reflect the confidence in detections being true posi-
tives. By showing samples of the generated precision-recall
curves, we empirically demonstrate that Abox ↑ IoU corre-
lates with actual detection performance and does not intro-
duce bias or misrepresentation in model evaluation.

The first noticeable feature is the general decreasing
trends shown in Figure S8. This trend expresses the ex-
pected trade-off between precision and recall. Attempting
to fit tighter (more precise) boxes increases the tendency to
miss actual objects (less recall). However, aiming for better
recall comes at the expense of looser detections.

Another peculiar feature displayed in Figure S8(h), (i) is
the zigzag pattern of the empirical curve. The zigzag is an
artifact of deriving floating-point ratios, i.e. precision and
recall, from counting. As we aim for better recall, more
detections are necessary at the expense of some of these be-
ing false positives, which explains the abrupt vertical drops.
Gradual recovery is attributed to the acquisition of true pos-
itives and the improvement in recall. Then, another peak is
encountered, at which point the next drop-off starts. How-
ever, succeeding peaks are, nevertheless, getting lower such
that the envelope maintains the downward trajectory of the
curve.

Finally, notice how the AP correspondingly decreases
as the IoU threshold ! increases. This tradeoff is evident
from the curve’s displacement toward the plot’s bottom-left
corner. This displacement effectively reduces the area un-
der the curve, hence reducing FitAP. Higher ! expresses a
stricter criterion to detect true positives, resulting in fewer
correct detections.

The precision-recall curves for other categories display
the same characteristics. Therefore, we have shown how
well Abox↑IoU performs in predicting true positives, mak-
ing it applicable for evaluating the object detection capabil-
ity of VLMs.

S6. Indicators of the RCA-driven improvement

Here we develop a formal mathematical argument discus-
sion that shows how Condition (6) from the paper estab-
lishes a negative relationship between the number of sub-
threshold contributions to the hidden state and the scaler



Figure S7. Correlations of ground-truth box area with Abox and Abox → IoU from the output of VLM queried with p5. The plots include
results from all object categories taken at IoU threshold, ! = 0.50. Diagonals are the univariate histograms of ground-truth area, Abox,
and Abox → IoU. The dashed lines represent linear regression fits with the Pearson correlation coefficient, r, shown only for the upper
triangular plots.

m, which is the mean cross-head maximum of attention
weights. We also prove that this inverse relationship is valid
regardless of whether RCA uses inverse-distance or Gaus-
sian peak reweighting, as defined in Section 2.2. For the
preliminaries, let:
• ωij ↓ [0, 1]: the base attention weights from token i to j

• A
(h) ↓ Rn→n: attention map from head h, for h =

1, . . . , H

• A
max
ij := maxh A

(h)
ij

• m := 1
n

∑n
j=1 maxi Amax

ij : mean column-maximum of
A

max



(a) ! = 0.50, AP = 0.78 (b) ! = 0.55, AP = 0.74 (c) ! = 0.60, AP = 0.73

(d) ! = 0.65, AP = 0.69 (e) ! = 0.70, AP = 0.64 (f) ! = 0.75, AP = 0.57

(g) ! = 0.80, AP = 0.48 (h) ! = 0.85, AP = 0.37 (i) ! = 0.90, AP = 0.22

(j) ! = 0.95, AP = 0.07

Figure S8. Precision-recall curves for the category giraffe at different IoU thresholds ! and the corresponding average precision, AP
(area under the curve). Solid (blue) curves from actual data; dashed lines-points (red) represent envelopes from which FitAP is calculated
as the average of AP for ! ↑ [0.50 : 0.05 : 0.95].

The value of m quantifies the global sharpness in attention
across all heads.

We want to show that:

m ↔ =↗
∑

j↑J→

ω̃ij ↘ =↗ z̃i(d) ↔

implying fewer subthreshold components, and thus, condi-
tion (6) implies a negative relationship between the num-
ber of subthreshold components and m.

From the paper:

z̃i(d) ≃ ε+
(
v
↓ → ε

) ∑

j↑J→

ω̃ij ,

where:
• ε: threshold value (floor)
• v

↓
< ε: minimal value component of subthreshold to-

kens
• ω̃ij : RCA-transformed attention weights (depends on m)
Thus, minimizing

∑
j↑J→

tightens the bound so that z̃i(d)



(a) Pre-RCA hidden state zi

=↗ Ã =↗

(b) Post-RCA hidden state z̃i

Figure S9. Flooring the subthreshold contributions of a hidden state zi implicitly implies Ã leading to z̃i. The red dashed horizontal line
in (a) corresponds to ω = ↓1.5. In this example, the embedding size is d = 3584

is closer to or above ε. For the key strategy, we show:
1. m ↔ =↗ ω̃ij assigns less weight to j ↓ J↔.
2. This assertion holds for both RCA schemes:

• Inverse-distance from m

• Gausian peaking around m

Therefore, the penalty term in condition (6) shrinks with
increasing m, which increases z̃i(d), decreasing the sub-
threshold count.

In the first case of inverse-distance reweighting:

ω
↗
ij =

1

1 + ϑ|ωij →m| ,

which peaks at ωij = m and decreases as ωij deviates
from m. Suppose m increases. Then for fixed ωij , the
distance |ωij → m| increases unless ωij tracks m. Thus,
for subthreshold contributors j ↓ J↔, which typically have
ωij < m and vj(d) < ε, we get:

ω
↗
ij(m) ↘ =↗ ω̃ij ↘ =↗

∑

j↑J→

ω̃ij ↘ =↗ z̃i(d) ↔,

implying that the subthreshold count decreases.
In the second case of Gaussian peak reweighting:

ω
↗
ij = exp

[
→ϑ (ωij →m)2

]
,

which symmetrically peaks at ωij = m and rapidly decays
as ωij moves away from m. Suppose m increases. For fixed
ωij , again |ωij →m| increases and so ω

↗
ij decreases and pe-

nalizes values further away from m. Thus, subthreshold to-
kens j ↓ J↔ with mid- or low ωij , get decreasing attention
as m increases. So again,

∑

j↑J→

ω̃ij ↘ =↗ z̃i(d) ↔ =↗ subthreshold count ↘ .

From these arguments, we have shown that under both
RCA reweighting strategies (inverse-distance and Gaussian
peaking), as m ↔, subthreshold tokens j ↓ J↔ receive less
attention mass so

∑
j↑J ↔ ω̃ij ↘, which increases the lower

bound of Condition (6). Thus, decreasing the number of
components z̃i that fall below ε, as visualized in Fig. S9

d|S|(z̃i)
dm

< 0 as implied by Condition (6)

where |S| is the number of subthreshold contributors. This
conclusion establishes that condition (6) supports a negative
relationship between the subthreshold count and the atten-
tion sharpness measure m, regardless of RCA variant used.

S7. Online Repository

The codes and data sets used by this study are accessible
from https://github.com/earl-juanico/rca

https://github.com/earl-juanico/rca

	Introduction
	Related Work

	Methodology
	Computer Vision Task
	Reverse Contrast Attention
	Inference
	VLM Selection
	Evaluation

	Results and Discussion
	Soft Guarantee to RCA Flooring
	Empirical Test of RCA Effect
	Impact of Vision-Language Fusion Timing

	Conclusion
	FitAP
	Area correlations
	Sample precision-recall curves

	Indicators of the RCA-driven improvement
	Online Repository

