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Abstract

In this work, we address the problem of estimating the

so-called “Social Distancing” given a single uncalibrated

image in unconstrained scenarios. Our approach proposes

a semi-automatic solution to approximate the homography

matrix between the scene ground and image plane. With

the estimated homography, we then leverage an off-the-shelf

pose detector to detect body poses on the image and to rea-

son upon their inter-personal distances using the length of

their body-parts. Inter-personal distances are further lo-

cally inspected to detect possible violations of the social

distancing rules. We validate our proposed method quan-

titatively and qualitatively against baselines on public do-

main datasets for which we provided groundtruth on inter-

personal distances. Besides, we demonstrate the applica-

tion of our method deployed in a real testing scenario where

statistics on the inter-personal distances are currently used

to improve the safety in a critical environment.

1. Introduction

The recent worldwide pandemic emergency raised atten-

tion on daily-life circumstances which previously were not

a cause of concern. Among them, there are constraints on

the physical distance between people as an effective mea-

sure to reduce the virus spread. However, beyond the en-

forcement of such rules, a critical issue for safety is to ver-

ify and quantify the actual compliance of people with these

restrictions which indeed have a substantial impact on our

social life [12]. To this end, a lot of solutions have been

proposed [27]. However, cameras in video surveillance set-

tings offer arguably a more viable infrastructure to control

the so-called Social Distancing (SD).

Visual Social Distancing (VSD) [17] is a particular case

of the SD estimation problem, in which the inter-personal

Figure 1. An example of the output of our proposed pipeline. The

pedestrians are modeled as skeletal figures and each disc on the

ground plane represents the minimum allowed inter-personal dis-

tance. The violation of social distancing is shown in red.

distance is estimated from a single uncalibrated image or

video. VSD solutions use camera networks that are often

deployed in pre-existing video surveillance settings. This

allows fast integration of VSD to increase the safety of the

population, by detecting recurrent SD violations or by gen-

erating statistic analysis. This information can be used to

identify areas that are subject to crowding in order to rede-

fine and improve safety in public and private places.

The study in [17], although inspiring, does not propose

a methodology for solving VSD, but rather provides an

overview of related issues as well as a few potential guide-

lines to implement solutions. Differently we propose a prac-

tical method that estimates a safe space for each detected

person (i.e. person proxemics) on uncalibrated images, and

detects violations of SD rules by measuring overlapping of

safe spaces across people in the image scene (see Fig. 1).

Estimating VSD requires the computation of metric

inter-personal distances (e.g. ≤ 2m) between detected peo-

ple in the scene. A convenient region to estimate distances

is the ground plane where people stand, strengthened by
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the fact that locally it can be considered as planar. We

can therefore estimate a local planar homography between

the ground plane and the image plane and relate them to a

known metric reference.

Automatic homography estimation or camera calibration

previously appeared as stand-alone problems in the com-

puter vision literature [24, 49]. However, to the best of our

knowledge, there is no prior work that proposes a solution

for inter-personal distance estimation from a single uncali-

brated image. Our method is a practical solution that takes

advantage of the common installation scenario of surveil-

lance cameras to perform both homography estimation and

local metric inference. We exploit the standard surveillance

settings, where people appear up-right, relying on the fact

that surveillance cameras are typically placed at a certain

height with a certain tilt angle from the ground which leads

to approximately a uniform projection of lengths across

cameras. We estimate the homography matrix between the

bird’s eye view ground plane and image plane by intuitively

selecting two auxiliary perspective ratios. Upon estimation

of homography, people are detected and a local reference

is inferred from them to estimate pairwise distances. With

subjective evaluation, we demonstrate that auxiliary ratio

parameters, even selected by human users, offer close prox-

imity with the groundtruth. Moreover, we choose to use and

validate body pose detectors since they offer richer infor-

mation about the 2D body joints, whose length and relative

position can be leveraged to provide a metric reference.1

We have evaluated our method on VSD-adapted pub-

lic datasets against baselines in order to validate the de-

sign choices of the approach. Additionally, as the proposed

framework is currently being deployed in real-world envi-

ronments, we show real statistics given by the system being

deployed 24/7 in one of these scenarios to facilitate faster

and better adaptation of spaces to new SD regulations. The

main contributions of this work are:

• We propose the first2 VSD method to identify the lo-

cal human proxemics for automatic SD rule violation

detection on single uncalibrated images.

• We propose a semi-automatic approach for homogra-

phy approximation between ground plane and image

plane by intuitively selecting two auxiliary ratios.

• We provide an analysis over human body joints to se-

lect the best body parts to be used as reference for

scene metric inference.

• We validate various stages of our method over three

public datasets that we labeled with pairwise hu-

man distance measures to adapt them for VSD anal-

ysis. Code is available at https://github.com/

1Note that human body detection is not the focus of this work, and we

rely on off-the-shelf methods (e.g. OpenPose [13]).
2To the authors knowledge, at the time of submission there were no

previous peer-reviewed works addressing VSD with available implemen-

tations.

IIT-PAVIS/Social-Distancing.

• We present the advantages and challenges of deploying

our proposed method deployed in real scenarios.

2. Related work

According to [17], estimating VSD, requires the solu-

tion of a set of computer vision tasks, namely, scene geom-

etry understanding and person detection/body pose estima-

tion. Indeed, the geometry of the scene is the first impor-

tant step to define a local metric reference for measuring

inter-personal distances. The second yet equally important

task, is the detection of people in the scene in a possibly

crowded environment. Once the target people are correctly

localised in the scene, their distance can be locally esti-

mated to understand if their mutual distance is lower than

the predefined threshold (e.g. ∼ 2m). In this work, our

focus is on scene geometry understanding from monocular

images, instead of using camera calibration, or other sen-

sory inputs such as stereo images [62] or depth [60]. In

this regard, the most similar work to us is Monoloco [9], in

which authors propose a solution for 3D human localization

from a monocular camera. The model behind Monoloco is

a feed-forward neural network that predicts human 3D lo-

calization. Eventually, the VSD can be calculated from the

3D position of the people in the scene. Despite similarities

between Monoloco and our proposed algorithm in simplic-

ity and objectives, in contrast to Monoloco our proposed

model does not require any camera calibration information

(not even a default value) nor a training procedure, and it

does not intend to solve the VSD problem globally through

3D localization of pedestrians but locally for each pair of

people. In the following, as there is no further previous

work on estimating VSD from a single uncalibrated image,

we will describe the related work to the two main sub-tasks

involved in the solutions for this problem.

Scene Geometry Understanding The task of measuring

social distancing from images requires the definition of a

metric reference. This problem is strongly related to the sin-

gle view metrology topic [16] as we consider the most com-

mon case of a fixed camera. An initial solution for estimat-

ing inter-personal distances requires the identification of the

ground plane where people stand [28, 25, 36, 1, 58]. Such

ground plane serves in many video surveillance systems to

visualise the scene as a bird’s eye view for ease of statis-

tics representation. Most works impose the assumption that

the ground plane is planar. Then, the problem is to estimate

a homography given some reference elements (e.g., known

objects or manual measurements) extracted from the scene

or using the information of detected vanishing points in the

image [16, 45, 40, 59, 5, 4, 63, 34]. Another common ap-

proach is to calibrate fixed cameras by observing the motion

of dynamic objects such as pedestrians [30, 35, 50, 61]. As

a unique approach, AutoRect [14] targets the restoration of

2786



Figure 2. A schematic representation of our proposed pipeline for estimation of safe space and detection of its violation, comprised of three

main computational stages: body-joint detection, body height estimation for metric inference, and ground-plane geometry estimation.

bird’s view homography from the perspective scene image

by restoring the parallelism of lines by computing 2D ho-

mography from only two estimated vanishing points, allow-

ing the algorithm to be used in more general scenarios. Fur-

thermore, approaches based on deep learning also attempt

at estimating directly camera pose and intrinsic parameters

on a single image [26, 33]. In this work, we propose a sim-

ple yet effective approach that does not require exhaustive

training procedures but only two auxiliary perspective ratios

for approximating the homography matrix.

Nonetheless, VSD estimation in addition to camera in-

trinsic/extrinsic parameters estimation or ground plane de-

tection requires a metric reference. Such information can be

coarsely computed in the scene given objects of known di-

mension or by using a standardized height of pedestrians as

a rule of thumb [55, 6, 54]. Similarly, in this work, we rely

on a set of human body joints to infer the metric reference.

It is important to note that a local solution for VSD is a sim-

pler problem than global solutions which entail estimation

of every metric distance among people at any position in the

image. While the global solutions can be hard to estimate,

for example, when the single ground plane assumption is

violated, local solutions only require distance measure cal-

culation when two or more pedestrians get close enough for

triggering the necessity of a measure.

Person Detection and Pose Estimation Person detec-

tion has reached impressive performance in the last decade

given the interest in the automotive industry and other ap-

plication fields [7]. Real-time approaches can now esti-

mate human pose in complex scenarios [13] and even re-

construct a 3D mesh of the person body [22]. The ma-

jority of the approaches estimate not only people’s loca-

tion as a bounding box but also 2D stick-like figures, thus

conveying a schematic representation of the pose. Re-

cently, several methods augment 2D poses in 3D or in-

fer directly a 3D pose in a normalised reference system

[56, 41, 52, 39, 37, 10, 38, 44, 64].

Specific pedestrian detection techniques have been de-

signed to work in crowded scenes [53, 57, 32, 20], where

skeleton-based representations are often dropped in favor of

saliency-based masks, especially focusing on heads. When

the image resolution becomes too low to spot single people,

regression-based approaches are employed [11, 31, 46, 51],

providing in some cases density measures [48, 43, 47]. This

information, merged with a geometric model of the scene,

can lead to a solution for measuring the average SD in the

field of view. Recently, new efforts tend towards solving

body detection and pose estimation in crowded environ-

ments [21, 29], the very same scenario that SD is trying to

impede. Yet, finding the location of people in such cases is

of relevant importance for buzzing alerts or creating statis-

tics of overcrowded areas. To this end, the people detection

module has to be robust to severe self and other occlusions,

different image scales, and indoor/outdoor scenarios.

It is worth to highlight that, person detection in bounding

box format does not account for body pose variations (e.g.,

sitting, riding) and might negatively impact the estimation

of height and cause wrong SD analysis. In this case, detect-

ing body joints has certain advantages. This is due to the

fact that for obtaining an approximation of the metric ref-

erence, or even calibrating the cameras, usually the person

height is used as a coarse proxy as computed from a bound-

ing box or using more precise techniques [55, 54, 18, 23].

Given a metric reference from scene geometry and detected

people pose in the scene, the VSD can be solved as a dis-

tance on the ground plane among the detected pedestrians.

As previously discussed, this information can be estimated

locally or pairwise in order to reduce the complexity of es-

timating a global reference system for the whole image.

3. Method

The goal of our proposal is to detect SD violations by

identifying the overlapping of the circular safe space around

the pedestrians using images from any uncalibrated cam-

eras. To achieve this goal, our pipeline is comprised of
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Figure 3. Illustration of the world and camera coordinate system

under our assumptions that i) the camera only has a tilt angle θ

with zero roll and pan angle, and ii) the camera has the height h

from the ground and the world origin locates at where the camera

principal axis intersect on the ground plane. The P on the ground

plane can be mapped to the pixel p on the image through the ho-

mography matrix.

three main steps: the ground-plane homography estimation,

person detection and localisation, and joint-based metric in-

ference (see Fig. 2). Given any image captured by an un-

calibrated camera, we first estimate the homography matrix

between the ground plane and image plane (up to a scale)

in a semi-automatic manner. We then detect people in the

image using a human body-joint detector, e.g. OpenPose

[13], to exploit the rich information embedded in the hu-

man pose. Finally, for each detected person, we analyse the

body joints to robustly localise its ground-plane centroid on

the image, and then to infer the safe space and detect the

SD violation. In the following, we detail each of the three

modules of our proposed method.

3.1. Homography Estimation

In this section, we cover the approach to estimate the ho-

mography matrix of any given image plane to the ground

plane. Let us consider a pinhole camera model with the

camera intrinsic matrix K ∈ R
3×3 and extrinsic matrix

[R|t]. The intrinsic matrix K contains the camera parame-

ters that are related to the focal length, skew, and the prin-

cipal point. The extrinsic matrix [R|t] denotes the 3D co-

ordinate transform from the world to the camera reference,

where R ∈ SO(3) is the rotation matrix and t ∈ R
3×1 is

the translation vector. Any 3D point in the world coordinate

P can be projected to the image plane at pixel position p as:

sp = K[R|t]P = K
[

r1 r2 r3 t
]

P, (1)

where s is the scale factor and both P = [X,Y, Z, 1]
T

and

p = [u, v, 1]
T

are in its homogeneous coordinate format.

In the case of projecting 3D points onto the ground plane,

i.e. Z = 0, to the image plane, Eq. 1 can be simplified as:

sp = K
[

r1 r2 t
]

P′ = HP′, (2)

where H is the homography matrix to project points on the

ground plane with metrics to the image plane and P′ =
[X,Y, 1]

T
. In our problem setting, both K and [R|t] are

not available for the computation of homography matrix H,

we therefore approximate H (up to a scale) with reasonable

assumptions based on the standard scenario observed from

surveillance cameras. One key observation is that people

are appearing (almost) upright in the image plane, which

means we can assume the roll angle to be 0◦. Moreover,

we can set the camera pan angle as 0◦ and the world origin

at the intersection point of the camera principal axis on the

ground plane with the height as h (as shown in Fig. 3). Let

θ be the camera tilt angle, we will have r1 = [1, 0, 0]T and

r2 = [0,− cos(θ),− sin(θ)]T and t = [0,− h
tan(θ) , h]

T .

Under such assumptions, lines that are parallel to the X-

axis in the ground plane remain horizontal in the projected

image plane, and lines parallel to the Y-axis converge to the

vanishing point along Y-axis in the image plane. Therefore,

a rectangular area on the ground plane with a width W and

a height H would be projected into an isosceles trapezoidal

shape with short-based width W
′

and height H
′

(see Fig.

2), where the horizontal ratio ρh = W
′

W
and vertical ratio

ρv = H
′

H
are purely related to the camera tilt angle θ and

the camera height h.

By manually tuning ρh and ρv , one can locate the cor-

responding four corners between the rectangular shape and

the projected isosceles trapezoidal shape, in order to esti-

mate the homography matrix H̃ up to a scale. Note that

H̃ does not reflect the real metric mapping between pixel

and length as K is not known (for details regarding met-

ric inference, please refer to Sec. 3.3). Approximated ho-

mography H̃ however, can be used to project the circular

safe space around each person, to form an approximation of

an ellipse on the image plane in perspective. With subjec-

tive evaluation, we prove that human choice is reliable and

can approach the optimal solution with grid search using the

groundtruth inter-personal distances. Using these two ratios

to facilitate the manual choice of the correspondence points,

we can achieve a reasonable homography estimation when

the camera calibration is not available.

3.2. Image-Plane Person Detection and Localisation

We detect people on the image using a human body de-

tector, e.g. OpenPose [13], that provides the person detec-

tion as the set of detailed body joints. Let {Di}i∈[1,N ] be

the set of person detections, where N denote the total num-

ber of detected people on the image. Each detection Di is

composed of a set of body joints, i.e. Di =
{

jki
}

k∈[1,K]
,

and each joint corresponds to a position on the image plane
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jki = [uk
i , v

k
i ], where K is the number of joints that are

supposed to be detected (K = 25 for OpenPose). Out

of the detected joints Di, we obtain the bounding box

Bi =
[

umin
i , vmin

i , umax
i , vmax

i

]

with
[

umin
i , vmin

i

]

being

the minimum and [umax
i , vmax

i ] being the maximum among

all detected joints.

By localising a detected person, we mean to compute the

pixel position pi = [ui, vi] based on Di that represents the

person on the ground plane. It is necessary to guarantee that

pi locates on the ground plane as the homography matrix

H̃ is estimated w.r.t it. To this end, we only consider person

detections as valid if at least one joint of the feet is detected.

For each valid detection, we decouple the estimation of ui

and vi and make use of the rich information provided by the

detected joints for a more robust localisation.

Regarding ui, we exploit the fact that, for a standing-

up or sitting person, certain part of human body, i.e. head,

neck, or torso are often located on the middle line of the

body. When any of the above mentioned joints are detected,

we represent ui by their averaged horizontal pixel position.

If none of the aforementioned parts are detected, ui is rep-

resented by the horizontal pixel position corresponding to

the centroid of the bounding box Bi, i.e. ui =
umin

i
+umax

i

2 .

For vi, as the valid detection inevitably contains joints cor-

responding to feet, we can represent it as the vertical pixel

position averaged over all the detected joints of feet.

3.3. Metric Inference

The specified safe space around the detected person Di

in the scene, is a circular area centered at the person with

radius r, which is set according to the SD rules. Theoreti-

cally, the mapping from the length unit to the pixel unit on

the ground plane can be obtained by calibrating the camera.

However, when the calibration is not available, metric infer-

ence from pixel becomes a challenging problem to tackle.

We, therefore, propose a practical metric inference solution

that can be applicable to many surveillance scenarios, using

the structural priors of the human body.

Studies on the average human body height over the years

demonstrated that human body height has only marginal

differences (a few centimeters) among different races [3].

In addition to body height, the length of body parts also

maintain relatively stable attributes [42]. Thus, the human

body potentially can be used to infer approximate length

metrics for the image pixels. In this regard, given that we

have estimated the homography between the ground plane

and image plane, it would be a natural choice to use a set of

human joints parallel to the ground plane, such as shoulders

or hips for inferring the length metric. However, these joints

are only reliable if the person appears perpendicular to the

camera principal axis and any rotation of the body from this

angle leads to a large variation onto the image plane.

Other joints such as legs, arms, or torso, are more robust

in maintaining a proper metric reference, but they lie mostly

on the vertical plane that is orthogonal to the ground plane.

This means that such metric references cannot be directly

applied to measure distances on the ground plane. How-

ever, under most surveillance settings, where the camera is

installed at a height and a tilt angle of a certain range, we

can use the body parts on the vertical plane to practically

approximate the metric on the ground plane. More specifi-

cally, onto the image plane, we consider that the safe space

of a detected person is within a circle centered at pi with a

radius r that can be set based on the pixel length of those

vertical body parts. As validated in the experimental sec-

tion, torso proves to be the most robust option for metric

reference estimation among different body parts. The circle

is then projected with the homography matrix into an ap-

proximated ellipse shape. The violation of SD is detected if

the ellipse of a detected person overlaps with any ellipse of

other detected people, leading to an SD ≤ 2m.

4. Experiments

4.1. Evaluation Datasets

For quantitative evaluation, we use real recordings of

people in both indoor and outdoor scenes from publicly

available datasets. In these datasets, the 3D location of peo-

ple on the ground plane can be estimated using either the ho-

mography matrix or the given camera intrinsic and extrinsic.

In particular, we prepared three VSD-related datasets, Epfl-

Mpv-VSD, Epfl-Wildtrack-VSD, and OxTown-VSD, out of

the publicly available Epfl-Mpv [19], Epfl-Wildtrack [15],

and OxTown [8], respectively. In all these datasets, for each

frame we compute the groundtruth as the pairwise inter-

person distance across people using their 3D location in the

scene as provided by the benchmark.

We make use of the Epfl-MPV dataset as a dataset that

covers an indoor environment. Our Epfl-Mpv-VSD uses

only the lab sequences of Epfl-MPV where there are 4 se-

quences recorded by 4 cameras that cover a lab area with

up to 6 people moving freely inside. Each sequence has

2955 frames. Epfl-Wildtrack-VSD is composed of seven

synchronised sequences from the Epfl Wildtrack HD dataset

served for multi-camera multi-people tracking. All se-

quences have a large overlapping field of view covering an

open outdoor area, and each of them is composed of 401

frames. OxTown-VSD makes use of the OxTown sequence

of 7498 frames, that covers a daily street in Oxford from a

single static camera. Although the two datasets are featur-

ing outdoor environments, the camera settings are similar

to indoor surveillance cameras, therefore applicable to our

method evaluation.

We applied OpenPose [13] to all frames within the

above-mentioned datasets to detect people in the format of

25 skeletal joints. A detection is considered to be valid only
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Figure 4. Image samples from the three datasets for the method evaluation with VSD results using the best parameters overlaid. Samples

from left-to-right are from Epfl-Mpv-VSD, Epfl-Wildtrack-VSD, and OxTown-VSD.

if at least one joint from the feet is detected and at least a

total of 13 joints of the person are detected. For each frame,

the groundtruth pairwise inter-person distance is computed

among valid detections using the homography matrix. For

both Epfl-Wildtrack-VSD and OxTown-VSD, we make use

of the camera intrinsic and extrinsic to compute the homog-

raphy matrix as in Eq. 2. For Epfl-Mpv-VSD, the homogra-

phy matrix is provided by the original dataset up to a scale,

where the scale is inferred using a generic dimension of the

objects in the scene, such as door width, and rug size. All

distances measured are given in meters.

4.2. Evaluation Protocol

In order to benchmark the proposed VSD method, we

only consider the detected people by the pose detector in

the groundtruth, disregarding the missed detections by the

detector from the entire analysis and thus disentangling the

VSD performance from the performance of the detector3

We measure the performance of the algorithm by eval-

uating its ability to successfully report violations of the

SD, namely, considering VSD as a binary classification

problem. We report the results of all experiments within

the standard metrics used in binary classification evalua-

tion as Precision = TP
TP+FP

, Recall = TP
TP+FN

, and

F1 − score = 2 ∗ Precision∗Recall
Precision+Recall

. In this experimen-

tal evaluation, we considered a violation, if the distance be-

tween two people in the groundtruth has a value of less than

2m. In the case, where our VSD algorithm reports that the

safe space of a person collides with the safe space of another

person in the image, then they are considered as TP cases.

Note that FN here means the missed violation of safe dis-

tance by the VSD algorithm, rather than by the detector4.

Subjective evaluation on homography estimation: We

have mentioned earlier that our proposed solution is most

useful when camera calibration is not available. However,

the question might be “how humans would perform for tun-

ing ρv and ρh, relying purely on their intuitive geometrical

3For the sake of future comparisons, we will release body pose detec-

tion results on our dataset as part of the groundtruth.
4In the main paper we only report the F1-score results, and show the

corresponding Precision and Recall values in the Supplementary Material.

understanding of the scene?”. To answer this question, we

formulated a subjective experiment in which we asked 10

human subjects to tune ρv and ρh parameters till the visual

feedback, in the form of projected circles centered at each

detected pedestrian onto the image, is reasonable for them.

Each subject was asked to tune these parameters once for

every single sequence available in each dataset. For the pair

of ρv and ρh selected by each subject for each sequence, we

computed the F1−score measure for that sequence and re-

port it in the form of average± std among all the subjects,

in the Table 1, ‘Human estimated’ column.

Homography parameters tuning with grid search: This

experiment aims to answer “what is the best achievable per-

formance using our proposed algorithm?”. To this end, we

tune the optimal ρv and ρh values by grid searching sepa-

rately over each sequence. We discretise the search space

of ρv and ρh ∈ [0, 1] with a step 0.1. For each sequence,

the combination of ρv and ρh that produces the best per-

formance is then selected as the optimal parameters. In

Table 1, ‘Grid search’ column, we report the quantitative

results per each sequence using the optimal parameters.

Comparison with automatic homography estimation:

Last, we benchmark the proposed VSD pipeline against two

methods. AutoRect [14] provides a model for single im-

age automatic homography estimation. Monoloco [9] is a

method for monocular 3D human localization from a sin-

gle image. To compare our proposed model with AutoRect,

the circular safe space around each detected subject on the

scene is projected onto the ground plane through an estimate

of H, computed by evaluating vanishing points and project-

ing them to infinity, while the H is estimated real time for

each frame of the sequence. The results of this experiment

are listed in Table 1, column ‘AutoRect H’. In the last col-

umn of Table 1, the results of applying Monoloco on each

sequence of the datasets are reported. We show results us-

ing the ‘default’ camera intrinsic matrix K provided by the

Monoloco algorithm, and the groundtruth K when available

(Epfl-Wildtrack-VSD and OxTown-VSD). Note that all the

experiments in Table 1, except Monoloco, the metric refer-

ence is set to the ‘Torso’ for coherence.

Ablation study on metric reference: As discussed in
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Table 1. Investigating the estimation of the Homography matrix H

Proposed VSD
AutoRect H [14]

Monoloco [9]

Human estimated Grid search ( + camera intrinsics)

Dataset Seq. F1-score ρh ρv F1-score F1-score F1-score

EPFL-MPV

C0 77.43 ± 1.12 0.7 0.5 77.90 73.47 73.46 (N.A.)

C1 71.24 ± 4.92 0.5 0.6 75.39 61.17 70.19 (N.A.)

C2 75.69 ± 3.87 0.6 0.6 78.67 78.14 77.20 (N.A.)

C3 73.34 ± 3.51 0.5 0.6 75.86 58.36 72.60 (N.A.)

Avg. 74.42 ± 3.35 - - 76.94 67.75 73.36 (N.A.)

EPFL-wildtrack

C1 84.78 ± 1.11 0.8 0.7 86.31 61.80 70.07 (70.50)

C2 83.84 ± 1.19 0.8 0.6 85.57 57.27 68.31 (68.11)

C3 85.52 ± 2.08 0.8 0.7 87.96 45.21 66.73 (67.10)

C4 81.10 ± 4.03 0.6 0.8 85.54 35.06 64.29 (65.13)

C5 67.63 ± 3.63 0.8 0.8 69.91 50.99 54.80 (54.69)

C6 62.87 ± 2.23 0.8 0.8 65.27 39.54 49.64 (49.58)

C7 84.46 ± 3.51 0.5 0.7 86.96 55.63 68.44 (68.74)

Avg. 78.60 ± 2.54 - - 81.07 49.77 63.18 (63.40)

OxTown - 76.94 ± 4.52 0.5 0.8 81.04 51.78 54.57 (54.54)

Table 2. Investigating metric reference choice, using the fixed homography-related parameters (the best choice among subjects).

Body parts
BBX height

Ratios
Leg length Arm length Torso length

(0.85 m) (0.70 m) (0.60 m) (1.7 m)

Dataset Seq. ρh ρv F1-score F1-score F1-score F1-score

PFL-MPV

C0 0.6 0.5 77.14 74.68 77.64 76.71

C1 0.5 0.6 74.80 71.19 75.38 73.90

C2 0.8 0.5 78.43 70.02 77.12 78.63

C3 0.8 0.5 73.41 66.38 71.19 74.69

Avg. - - 75.94 70.56 75.98 75.96

EPFL-wildtrack

C1 0.5 0.8 83.93 81.46 84.10 79.18

C2 0.7 0.5 81.07 80.47 82.64 81.18

C3 0.5 0.8 83.57 81.00 85.37 79.13

C4 0.6 0.8 85.95 73.30 86.68 81.52

C5 0.8 0.8 68.40 72.58 69.82 64.65

C6 0.8 0.7 62.98 63.53 63.72 59.73

C7 0.6 0.8 87.20 76.95 84.03 86.62

Avg. - - 79.01 75.61 79.48 76.00

OxTown - 0.5 0.8 82.59 73.03 81.04 72.38

Sec. 3.3, pose detectors facilitate a better estimation of met-

ric reference with regards to human body detection as a

bounding box. In Table 2, ‘BBX height’ column we report

the results of our proposed algorithm using the height of the

bounding box (obtained using OpenPose joints as detailed

in Sec. 3.2). As inferring the length of any of the body parts

from a single bounding box is implausible, we consider the

height of the detected bounding box as the average height

of a person (1.70m) and from there we estimate the radius

r of the safe space. Moreover, we also validate metric refer-

ences using various body parts, namely, ‘Leg’, ‘Arm’, and

‘Torso’. More details on the actual OpenPose joints used to

infer such pixel lengths can be found in the Supplementary

Material. The obtained results from this experiment can be

found in Table 2 in the respective columns. Each body part

is associated with a metric reference according to popula-

tion statistics [42, 2], as detailed in the table. For the sake

of fair comparisons, ρv and ρh are kept the same for this

ablation study according to the best subjective estimation.

4.3. Experimental Results Discussion

As it can be extrapolated from Table 1, the best aver-

age obtained results for all datasets is achieved by grid-

searching the best parameters. Our original proposal to rely

on human geometrical understanding to estimate ρv and ρh
(Table 1,‘Human estimated’ column) performs only slightly

lower than the best choice of parameters (Table 1, ‘Grid

search’ column). Moreover, the relatively low std of the

results in most of the sequences is an indication of the inter-

raters agreement on the correctness measures. Besides, the
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(a) (b)

Figure 5. The heatmap in the images represents the areas on which

SD violations mostly occur. (a) the maximum number of observed

violations is depicted in red and overlaid in the image frame in (b).

The heatmap is produced using observations collected in 1-hour

from a monitored retail shop. The area with the most observed

violations is due to an exhibit placed in the main entrance of the

shop that causes increasing SD violations.

proposed VSD algorithm, either requiring manual tuning of

parameters or validating them, on average per dataset, per-

forms better than applying automatic estimation of H using

AutoRect. Monoloco provides instead the 3D localization

starting from pose detections and the matrix for the intrin-

sic camera parameters K. If K Monoloco has a default

value. It can be seen that using such a default K or the

groundtruth one does not lead to relevant differences, indi-

cating that Monoloco is not very sensitive to it in the eval-

uated datasets. Instead, the Monoloco network is probably

very biased towards its training data since our proposed al-

gorithm outperforms it in all the sequences (although it out-

performs AutoRect).

Concerning Table 2, it can be seen that on average using

bounding boxes as the metric reference is not a reliable op-

tion. This observation emphasizes the importance of hav-

ing information regarding human body joints instead of a

mere bounding box, as already discussed. The last observa-

tion regards the choice of different body parts, namely ’Leg

length’, ‘Arm length’, or ’Torso length’ for inferring dis-

tances in the image. We observe that torso provides a more

robust reference, in general performing better than arm and

leg. This is reasonable since, in normal conditions in which

people are walking in the scene, legs and arms can undergo

various deformations due to the multiple numbers of joints

in them, while the torso is merely one straight line which

connects the neck to the heaps. For OxTown only, the leg

reference performs slightly better than the torso one. Arm

is not a good reference body part as it often undergoes oc-

clusions with torso, preventing from a correct measurement

of the metric reference. Additional qualitative results in the

form of videos are provided in the supplementary material.

4.4. Real-world Scenario Challenges and Next Steps

Our proposed setup is currently able to monitor up to

18 cameras with 640x480 resolution, running on a sin-

gle Alienware Aurora R8 PC equipped with an NVidia

RTX2080 GPU at 1 fps. The system has been successfully

applied for monitoring social distancing 24/7 in challeng-

ing scenarios such as corporate offices, airports, and shop-

ping malls, where more than 100,000 observations per hour

are being evaluated. The collected statistics are used for

both generating real time alarms finalised to break apart big

groups of persons and for generating statistics in order to

achieve effective space redesigns (see Fig. 5).

The collection of this huge stream of data on real appli-

cation scenarios allows us to highlight the most important

open issues that future developments should focus on:

• System alarms for the violations of safe spaces should

not be based only on single frame analysis, but rather

encompass temporal information and people tracking.

• Currently many of the SD laws allow family members

to stay close to each other. A robust system ideally

should be able to recognise family member formations

and discard their violations from the computed ones.

• Our approach is frame-based and it can be applied to

any kind of camera under certain setting constraints.

In the case of fixed cameras, a statistical approach can

be used for inferring metric references. This statistical

approach would allow the system to be more robust to

outliers (such as kids on the scene).

5. Conclusion

We provided the first2 VSD method for estimating SD

from single uncalibrated images together with a augmented

VSD annotations for three public datasets for further VSD

evaluation purposes. The proposed method performs favor-

ably against competing baselines, showing the importance

of using a pose estimator instead of a bounding box de-

tector. This allows exploiting human body parts as robust

metric references; in particular, we find the length of the

torso as the most reliable. In addition, we demonstrated

the competence of the proposed semi-automatic homogra-

phy estimation against automatic estimation using state-of-

the-art. Our proposed method might fail when the under-

lying pose detector fails to properly detect the body joints

due to its strong dependence on the joint positional informa-

tion. The promising performance of the proposed method

is also guaranteed under certain camera positioning which

limits its applicability to surveillance settings in particular.

In the same line of reasoning, our semi-automatic method

is only capable of estimating one homography per scene

which leads to deteriorations in its performance when multi-

ple homographies are present in the scene. Future work will

provide a more in-depth analysis of the causes of SD viola-

tions (e.g. presence of families, use of personal protective

equipment) and the development of forecasting methods to

avoid the formation of gatherings.
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