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Abstract

Rendering an any-viewpoint image is extremely difficult

for Generative Adversarial Networks. This is because con-

ventional GANs do not understand 3D information under-

lying a given viewpoint image such as an object shape and

relationship between viewpoint and objects in 3D space.

In this paper, we present how to perform a Viewpoint-

Agnostic Image Rendering (VAIR), equipping a conditional

GAN with a mechanism to reconstruct 3D information of the

input view. VAIR realizes any-viewpoint image generation

by manipulating a viewpoint in 3D space where the recon-

structed instance shape is arranged. In addition, we con-

vert the reconstructed 3D shape into a 2D representation

for image-based conditional GAN, while preserving detail

3D information. The representation consists of a depth im-

age and 2D semantic keypoint images, which are obtained

by rendering the shape from a viewpoint. In the experiment,

we evaluate using a CUB-200-2011 dataset, which contains

few-samples biased a viewpoint such that covers only part

of the target appearance. As a result, our VAIR clearly ren-

ders an any-viewpoint image.

1. Introduction

Generative adversarial networks (GANs) [7] synthesize a

realistic image. Recent research efforts on GANs [1, 8, 21]

have improved the image-based generative model. This re-

search trend encourages us to tackle novel problems for re-

alistic image generation. Among them, one of the most

interesting directions is the image generation and manip-

ulation tasks by conditional GANs (cGANs). By condi-

tioning, we are able to generate desired images based on

a class [28, 25, 59], an image [11, 63, 19], and a natural

language [32, 60, 54].

The cGANs are capable of controlling the generated im-

age with object attributes and semantic labels. However,

as a common limitation of these methods, 3D image ma-

nipulation and its conditioning are very difficult. Espe-

cially, generating an arbitrary-viewpoint image from an in-

Figure 1. Overview of viewpoint-agnostic image rendering

(VAIR), which enables us to render a bird’s image with few sam-

ples and fine-grained dataset. We found that the following three

mechanisms are necessary for any-viewpoint image generation.

First, category conditioning is required to keep an object category

in view rotation. Second, the self-attention mechanism mainly

contributes to generating a clear foreground. Third, 3D informa-

tion helps the generative models to synthesize the bird’s parts and

backside of birds. More detailed visual results are shown in Fig-

ures 6 and 7.

put image and a target viewpoint is challenging. This is

because cGANs must generate plausible images with geo-

metric consistency based on viewpoint transformation and

preserve the identity of the instance in viewpoint changes.

Moreover, the training of image-based cGANs [11] requires

large amounts of viewpoint-unbiased images with 3D su-

pervision of a camera pose and a 3D shape. In contrast,

human visual perception can easily imagine a target object

from many viewpoints. Because we human understands

the fact that images are projections from 3D space onto

a 2D plane, we first imagine a target shape and then de-

scribe other-viewpoint image by observing the shape from

an imaginative viewpoint.

We believe that an explicit inference on the instance’s

shape is done by humans when imagining an arbitrary view-

point image. Therefore, inspired by the above-mentioned
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idea, we propose a framework that consists of a 3D re-

construction process that infers the shape from the input

view, and a viewpoint hallucination process that synthe-

sizes an arbitrary viewpoint image using 3D clues which

are predicted. We call our framework Viewpoint-Agnostic

Image Rendering (VAIR). VAIR makes it possible to ren-

der an any-viewpoint image naturally by manipulating the

viewpoint in 3D space where the reconstructed shape is ar-

ranged. In addition, in order to connect these processes be-

tween 2D and 3D smoothly, we convert the reconstructed

3D mesh into a 2D representation while preserving detail

3D information. This representation is termed as Embedded

3D Representation (E3DR). E3DR consists of a depth im-

age and 2D semantic keypoint images, which are obtained

by rendering the 3D shape from the given viewpoint de-

scription with a differentiable renderer [15]. E3DR removes

shape and viewpoint factors from the viewpoint hallucina-

tion network, and allow it to focus on synthesizing the tex-

ture of a target category. Therefore, VAIR synthesizes a

viewpoint-agnostic image from viewpoint-biased few sam-

ples and a fine-grained dataset.

As another advantage on VAIR, we are able to make a

better use of the potential of previous works for VAIR’s

two process. In this work, we utilize category-specific

mesh reconstruction (CMR) [14] as a 3D reconstruction

process because CMR is able to infer 3D shape, cam-

era pose, and semantic keypoints from image collections.

In a viewpoint hallucination process, we design encoder-

decoder self-attention GAN in the setting conditioned on

E3DR and a category label.

Undoubtedly, viewpoint-agnostic image rendering is ex-

tremely difficult with a cGAN even though some condi-

tions are considered in the image generation. In our earlier

trial, we employ viewpoint-biased and fine-grained CUB-

200-2011 dataset [47] for the evaluation. In the experiment,

we investigate a structure and a condition setting of VAIR.

Note that we refer to 200 categories for birds in the CUB-

200-2011 dataset as category rather than class in this paper.

As a result, we show that VAIR with a self attention mecha-

nism [59] generates an realistic image while controlling the

given viewpoint (see Figure 1) by the E3DR-condition set-

ting. Moreover, we reveal a difficulty in viewpoint change

by cGAN and suggest open problems.

We summarize our contributions as follows:

• Image generation with reconstructed 3D informa-

tion. We incorporate a conditional GAN with recon-

structed 3D properties to acquire a concept of view-

point change. The properties are converted into the

representation for cGAN, which consists of a depth im-

age and a 2D semantic keypoints image. VAIR enables

the rendering of a viewpoint-agnostic image from a

single 2D image taken from any viewpoint, while re-

taining the instance’s shape in the input image and

category-specific information such as color, shade and

locations of bird’s parts.

• View-agnostic image rendering with few samples

and fine-grained dataset. VAIR was trained on

the CUB-200-2011 dataset. The training from a

viewpoint-biased image with few samples (e.g. back

side of bird) output an ill-conditioned image. VAIR

synthesizes such a self-occluded region using pre-

dicted 3D clues.

2. Related work

2.1. Generative Adversarial Networks

Since Goodfellow et al. first published their study on

GANs [7], research on generative models has been very ac-

tive. One more important development, the cGAN, has been

implemented by using conditions in the Discriminator net-

work [23, 32], adding tasks with generated image classifica-

tion [28], and embedding conditions [25]. The cGANs have

been applied to various problems, such as domain adap-

tation [11], normal-to-image translation [49], and text-to-

image translation [32, 60, 54]. Especially in multi-class

image generation, spectral normalization GAN [25], self-

attention GAN [59], and BigGAN [2] succeeded in gener-

ating diverse objects included in the ImageNet dataset [3].

Recently, several researchers have studied GAN

equipped with geometric knowledge [17, 26, 9, 27].

Especially, HoloGAN [26] and PLATONICGAN [9]

have achieved to disentangle the identity and a view-

point by randomly rigid transformation in feature space.

Noguchi et al. [27] have proposed a camera-conditioned

GAN, which is trained from a consistency loss based on

the optical flow between images generated from different

camera poses. While these sophisticated works are able to

generate any-viewpoint images from a latent code and a tar-

get viewpoint, they cannot rotate a given input image.

Here, 3D knowledge must be considered as a geomet-

ric property to understand and generate a realistic object.

We believe that the 3D knowledge enables us to success-

fully execute more precise and viewpoint-agnostic image

generation. Unlike the conventional generative approaches

without any geometric property, our proposed method em-

ploys a depth image and a 2D semantic keypoints image as

geometric properties. The geometric properties are recon-

structed from a given input image and are used as cues to

synthesize any-viewpoint images.

2.2. 3D Reconstruction

Thanks to 3D conceptualization, we understand geomet-

ric information such as “what shape does the object have?”

and “where do we see from?” The traditional yet impor-

tant problem in computer vision has already been explored
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Figure 2. Flowchart of VAIR process and network architecture.: The convolution layer is denoted as Conv {filter size} {stride} (e.g.

Conv 3 1). We set a channel size at each convolution layer with VGG-like structure. GAP means global average pooling layer. We a

assign conditional batch normalization (cBN) to embed a category into feature maps excluding related to input and output. The feature

maps are upsampled using nearest neighbor interpolation (UP). In a discriminator, we incorporate projection [25] into PatchGAN’s dis-

criminator [11] to embed a category. Spectral normalization [24] is applied at all convolutional and fully-connected layers in both generator

and discriminator. We initialize parameters of cGAN with kaiming uniform.

in various directions, such as image editing [57], data aug-

mentation with synthetic images [31, 39], and domain adap-

tation by computer graphics [35]. We have explored how to

extract 3D information. Over the past couple of years, 3D

reconstruction with DNN has been progressing with voxel

usage [56], multi-view masking [34, 45, 44], weakly super-

vised matching [13], and 3D GAN [53]. Using a neural 3D

mesh renderer [15], Kato et al. explored the potential for

calculating training loss between an image reprojected from

a 3D shape and a genuine 2D silhouette. Thus, the 3D mesh

renderer has become a key technology for bridging the gap

between 2D and 3D rendering.

To the best of our knowledge, CMR [14] is the work

closest to ours. The purpose of CMR learns to reconstruct

a category-specific 3D mesh along with a texture from a

2D image input. CMR is able to render the reconstructed

3D mesh into a 2D image without a background. While

Kanazawa et al. aim at 3D reconstruction from a single

image, we mainly focus on generating viewpoint-agnostic

images with a background using 3D information obtained

from the 2D image input.

2.3. Novel View Synthesis

Novel view synthesis is a task that generates a new an-

other view image including the same object or scene as

in the observed input view. It is the computational equiv-

alent of mental rotation [37]. Given single or multiple

images with camera poses, in order to synthesize novel

views, several works have proposed sophisticated meth-

ods such as disentangled representations [18], warping pix-

els [62], complementing invisible regions [30], integrating

multiple views [42, 29], implicit view-invariant 3D repre-

sentations [43, 6, 41, 55], and explicit reconstructed 3D

shapes [64]. In addition to view synthesis on a static im-

age, challenging tasks, such as novel view action synthesis

retaining action in an input view [46, 36] and aerial-to-street

view synthesis [33, 20], have been tackled. In addition, if

abundant multiple views are available, we can synthesize

realistic novel view from learned 3D representations by ge-

ometric rendering [40, 22, 38, 52, 58].

Our work is to synthesize any-viewpoint images by pro-

viding the concept of viewpoint rotation to GANs without

3D supervision and multiple views. To achieve this, we in-

corporate cGANs with the 3D reconstruction framework,

which is able to train from only 2D image collections. Our

VAIR explicitly infers the 3D shape from the input instance

and utilize it for image generation, and aims at the CUB

dataset with a background.

3. Proposed method

Figure 2 shows the flowchart of our VAIR. Our goal is to

render an image with an arbitrary viewpoint from the single
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Figure 3. Variation of projected depth and semantic keypoints depending on camera viewpoint.

image. To achieve this goal, the framework must address

the following problems:

• Problem 1) We must redesign conventional genera-

tive models effectively to represent 3D information for

view-independent image generation.

• Problem 2) The rendered images must simultaneously

preserve categories and shape in the input view.

To overcome problem 1), we introduce a 3D representation

in which 3D information is embedded in a 2D image to ar-

range the structure and orientation of the object. To address

problem 2), we condition our renderer on the reprojected

silhouette in order to preserve categories and shape.

3.1. 3D Reconstruction Process

The purpose of the 3D reconstruction process is to ob-

tain 3D information for viewpoint-agnostic image genera-

tion. From the result of a preliminary study, we found that

a 3D mesh, camera pose, and 3D semantic keypoints are

required to describe object’s orientation and parts. We ap-

ply CMR [14] to obtain the descriptions as 3D information

from a single input RGB image I ∈ R
H×W×3, where W is

the width and H is the height.

3.2. Embedded 3D Representation

To bridge a gap of representation between the 3D re-

construction process and the following viewpoint halluci-

nation process, we convert the 3D properties into a repro-

jected image with Embedded 3D Representation (E3DR).

It consists of a depth image and a 2D semantic keypoints

image. These images are obtained by rendering the 3D

shape from the given viewpoint description with Neural

Mesh Renderer (NMR) [15]. Therefore, E3DR is a viewer-

oriented representation. We project estimated 3D seman-

tic keypoints into a black background image (see Figure 3).

These images with embedded 3D properties are concate-

nated along the channel axis and fed into the cGAN, which

hallucinates an any-viewpoint image in the following pro-

cess from its E3DR and the category label. E3DR with em-

bedded 3D information is defined as S′ ∈ R
H×W×c, where

W is the width, H is the height, and c is the total num-

ber of the depth and semantic keypoint channels (c is set as

four). We input the representation into our GANs proposed

in Section 3.3. Throughout the camera pose manipulation

and re-rendering, the cGAN acquires the concept of view-

point changes.

3.3. Viewpoint Hallucination Process

The goal of the viewpoint hallucination process is to syn-

thesize an arbitrary viewpoint image from a category label

and E3DR. In other words, the objective of this process is to

learn a function G to map from the object categories y and

our 3D representation (E3DR) S to an RGB image I
′ taken

from a manipulated viewpoint. This mapping G is defined

as follows:

I
′ = G (S, y) . (1)

We represent its problem as conditional GANs setting,

and design a viewpoint-controllable generative model by

E3DR to acquire the concept of viewpoint by extending

class-conditioned GANs.

Inserting categories and 3D representation. Due to the

condition setting, we have to insert 3D information as E3DR

S and the object categories y into cGAN. Therefore, we

extend its generator and discriminator, respectively, based

on the category-conditioned self-attention GAN (Zhang et

al. [59]) and image-conditioned pix2pix (Isola et al. [11]).

We changed our generator from a self-attention GAN to

the encoder-decoder structure similar to pix2pix because it

can receive our E3DR S that is reprojected to a 2D image

as an input. In addition, the object categories are repre-

sented by a one-hot tensor and then embedded in our gener-

ator using conditional batch normalization [5]. Conditional

batch normalization enables us to control the categories of

the generated image by adjusting the distribution of feature

maps with learnable category-independent affine parame-

ters. With these mechanisms, we can generate an arbitrary
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Figure 4. Examples of artifacts. L1 loss between the real image

and the reconstructed image creates artifacts when rendering the

manipulated viewpoint. This result means that the model does not

acquire generalization with respect to the viewpoint.

viewpoint image from the object categories and 3D infor-

mation obtained from the edited viewpoint.

As shown in Figure 2, we employed a projection

discriminator [25] that is modified so as to receive pairs

of viewpoint images and E3DR as the input, based on

PatchGAN’s discriminator [11].

Condition setting. Technically speaking, for our condi-

tion setting, our VAIR outputs image I
′ for every possible

viewpoint while conditioning 3D information as E3DR S

and categories y. The cGANs also consist of generator G

and discriminator D. The objective of our VAIR is to train

cGANs through a dataset {(Ii,Si, yi)}
N

i=1
with N samples

comprising image, 3D information, and categories. The

generator G, which is parameterized by θg , reconstructs an

image I
′ ∈ R

H×W×3. The reconstructed image I
′ is real-

istic because the distribution in generator pg (I | S, y; θg) is

fitted onto conditional probability pdata (I | S, y). The dis-

criminator D is trained to distinguish between a real image

I from a dataset and a generated fake image I
′. We for-

mulate the objective function in the conditional adversarial

learning as follows:

LD (G,D) = −EI,S,y [min (0,−1 +D (I,S, y))]

− ES,y [min (0,−1−D (I′,S, y))] ,
(2)

LG (G,D) = −ES,y [D (I′,S, y)] . (3)

The goal of our cGAN is for the generator and dis-

criminator to minimize the above adversarial losses LG

and LD, respectively. The conditions cause the image to

be generated from several viewpoints to obtain a more

sophisticated representation. The shape and orientation

is created from 3D information. Moreover, conditioned

categories allow the generated image to retain its object

category when the viewpoint rotates.

Improvement of image rendering. Through experiments,

we confirmed that loss LL1 [11] between the real images

I and reconstructed images I
′ creates artifacts when ren-

dering the manipulated viewpoint, as shown in Figure 4.

Therefore, to mitigate these artifacts, we employed feature

matching loss [48] and perceptual loss [12, 4], which calcu-

late the error of the feature space instead of the image space.

The reconstruction loss Lrecon that combines these losses is

defined as follows:

Lrecon (G,D) = EI,S,y

[

TD
∑

i=1

1

Mi

∥

∥Di (I)−Di (I′)
∥

∥

1

]

+ EI,S,y

[

TF
∑

i=1

1

Ni

∥

∥F i (I)− F i (I′)
∥

∥

1

]

,

(4)

where the first term on the right-hand side of equation (4)

is feature matching loss, Di(·) is feature maps on the i-th

layer of the discriminator, TD is the number of applied lay-

ers, and Mi is the number of elements in each layer. The

second term on the right-hand side of equation (4) is per-

ceptual loss, F i(·) is feature maps on the i-th layer of the

pretrained VGG network, TF is the number of applied lay-

ers, and Ni is the number of elements in each layer.

To achieve the goal, our generator and discriminator

minimized the following full objectives LoptimizeG and

LoptimizeD , respectively:

LoptimizeG = λGANLG + λreconLrecon,

LoptimizeD = λGANLD, (5)

where λGAN and λrecon adjust the balance between the ad-

versarial loss and the reconstruction loss.

4. Evaluation

We perform experiments from two perspectives: (i) We

qualitatively and quantitatively evaluate images which are

generated by our proposed methods using metrics based

on similarity between images of the same viewpoint, (ii)

we qualitatively compare our proposed model with conven-

tional ones in terms of image quality.

4.1. Experimental Settings

Caltech-UCSD Birds 200 (CUB-200-2011) dataset [47].

The dataset contains 200 bird species with fine-grained

categories. The total number of image is 11,788. Based

on the CMR setting [14], we divide the original CUB-200-

2011 dataset into training 5,964, validation 2,874 and test

2,874. We can access a bounding box and 14 semantic

keypoints per image. The dataset has few-training samples

per category and the bias on viewpoint for each category.

Concretely, our model is forced to learn a concept of

viewpoint change from only 30 viewpoint-biased training

images per category. In the dataset, therefore, we have
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Table 1. Exploration study with SSIM/MS-SSIM and LPIPS. (SSIM/MS-SSIM: higher is better, LPIPS: lower is better. SA: self-attention,

Recon: reconstruction loss with feature matching loss and perceptual loss, L1: L1 loss, Depth: w/ depth image, Category: w/ conditioned

category, KP: w/ semantic keypoints, Mask: w/ binary mask image.)

Configuration SSIM MS-SSIM LPIPS

Recon SA .067 .447 .304

Mask Category Recon SA .073 .486 .295

Depth Recon SA .068 .451 .305

Depth Category Recon SA .073 .489 .281

Depth Category KP L1 SA .068 .471 .315

Depth Category KP Recon L1 SA .070 .474 .308

Depth Category KP Recon .077 .491 .287

Depth Category KP Recon SA .075 .493 .278

Input

10° 150° 250°

w/o category

w/ category

(a) Category conditioning

Input

30° 170° 250°

w/o self attention

w/ self attention

(b) Self-attention mechanism [59]

Input

90° 130° 340°

w/o Embedded 3D Representation

w/ Embedded 3D Representation

(c) 3D information

Figure 5. Build-up image rendering with several parameters. In

the exploration study, we reveal that (a) w/ category, (b) w/ self

attention and (c) w/ 3D information (depth image and semantic

keypoints by adjusting camera pose) are important configuration

for viewpoint-agnostic image rendering.

to acquire a concept of viewpoint change from only 30

training images per category.

Implementation details. In the 3D-based representation,

we refer to the CMR [14] for category-specific 3D mesh,

camera pose and 3D semantic keypoints. We render 128 ×
128 images to connect with a cGAN. Therefore, we mod-

ify the number of embedding dimensions which is fed into

the fully-connected layers from a 4096-D vector to 1024-D

vector. We train the modified CMR in the fully supervised

manner. The trained parameters are fixed during training of

VAIR.

We optimize the full objectives (Equation (5)) with

Adam [16], where β1 = 0.0 and β2 = 0.999. We

apply two-timescale update rule (TTUR) [10], as with

self-attention GAN [59] to stabilize the training. Learning

rates in the generator and discriminator are 0.0001 and

0.0004 respectively. We update a discriminator 5 times

at each generator’s update. We stop the training of VAIR

after 150 epochs. We set λGAN = 1.0 and λrecon = 10.0.

The batch size is set as 32. Training with a generative

model roughly takes 2 days using a NVIDIA Quadro P6000.

Performance measurement with cGANs. We quantita-

tively evaluate the effectiveness of our build-up genera-

tive models in terms of image quality. To verify view-

agnostic images in object category and shape, we employ

Structured Similarity (SSIM) [50], Multiscale SSIM (MS-

SSIM) [51], and Learned Perceptual Image Patch Similar-

ity (LPIPS) [61] for evaluation methods. SSIM/MS-SSIM

evaluate a similarity-driven image quality between two dif-

ferent images. These metrics mainly focus on quality for a

pixel value, contrast, and structure. On one hand, LPIPS is

claimed as a metric which represents a human-like percep-

tion [61]. The evaluation method takes a lower value when

a view-agnostic image preserves the same object category

and shape as the input image. We calculate these similar-

ity between the input image and the generated image taken
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Input 20° 180°100°

Figure 6. Visual results. The figure indicates rotated images from 0 to 180 [degree] at each 20 degree.

from predicted camera poses using these metrics because

we do not have any ground truth images.

4.2. Experimental Results

Results. Table 1 shows exploration study with SSIM/MS-

SSIM and LPIPS as evaluation metrics. According to

the table, the configuration with {self attention, feature

matching loss, perceptual loss, depth, category, key points}
is the best score (lower is better) in LPIPS. The similar

way without self-attention mechanism is the best in terms

of SSIM which achieved .077 in the experiment. Basically,

we have increased the evaluation scores in LPIPS scores,

we confirmed that our model conditioned on 3D infor-

mation and the category achieved .278 which is the best

score at all models. Therefore, our modification effects

an improvement from a conventional image-conditioned

GAN. Moreover, Figures 5 visually shows our build-up

results with (w/) or without (w/o) conditioned category,

self-attention mechanism and 3D information based on our

E3DR (depth image and semantic keypoints). The details

are described as follows.

Category conditioning. We compared the unconditioned

model and category-conditioned one. These results are

shown in Figure 5(a) which teaches us to utilize a con-

ditioned category into a cGAN. Without a conditioned

category, a generated result cannot be maintained the

category in an input image. In contrast, the category-

conditioned generative model (w/ category) keeps the

category from the input image.

Self attention. We confirmed the improvement of image

sharpness by the self attention mechanism in Figure 5(b).

As Figure 5(b) indicates, the generative model without self

attention focuses the whole image including background,

therefore the birds contain blurred edges inside of fore-

ground areas. In contrast, because the generative model

with self attention mainly generates the birds in foreground

areas, the generated image has a sharpness. As the result of

self-attention mechanism, the LPIPS score was improved

from .287 to .278 (lower is better in LPIPS).

Embedded 3D representation. We compared a binary

mask (w/o 3D information) and with our 3D representation

(w/ 3D information) to verify our contribution based on

E3DR. The experiment results are shown in Figure 5(c)

and Table 1. Figure 5(c) tells that our 3D representation

with depth image and semantic keypoints enables a model

to generate a viewpoint-agnostic image. As we can see in

Figure 5(c), our rendering successfully reconstructs an any-
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Figure 7. Comparison of Our VAIR vs. CMR [14]. Compared to CMR with CG-like artifacts, our VAIR generates more realistic images

with a background.

viewpoint image including the back side of bird. The model

without a 3D representation is narrowed down to render a

blurred image. We can understand that E3DR is required

in order to get a concept of an object’s rotation and locate

object’s parts. Moreover, our E3DR also contributed to

improve the image quality in addition to the any-viewpoint

rendering. The results clearly show that 3D information is

necessary to achieve the goal of viewpoint-agnostic image

rendering.

Feature matching loss [48] and perceptual loss [12, 4]

without L1 loss. We confirmed that the score with L1

loss clearly decreased from the score without the loss.

As shown in Figure 4, an effective loss function is one

of the solutions for a sharp image generation. The scores

in Table 1 suggest that L1 loss drops a performance of

realistic image generation. The main cause of the results is

degradation on viewpoint variation by the pixel-level loss

calculation. These evidences with bad results understand us

that L1/L2 distance is not suitable for viewpoint-agnostic

image generation.

Visual results with VAIR (ours). The rendering images

with our VAIR are shown in Figure 6. The figure reports

rotated images from 0 to 180 [degree] at each ten degree.

Our VAIR successfully enables to generate images which

are trained with 30 training instances per category in the

dataset. The proposed method can render any-viewpoint

images including front, side and backside views.

Comparison with CMR. We visually compare our VAIR

and conventional CMR in Figure 7. Once look at the visual-

ization, the rendered images with CMR seem to have a so-

called CG-like boundary around edges. Unlike the CMR,

our VAIR along with background enables to generate a clear

foreground. Although the merit of CMR is color mapping

with a texture of input image, however, the characteristic

means that an occluded object is directly projected into a

rendered image. The both methods cannot effectively gen-

erate a background area. Our VAIR slightly acquires how

to render a background, but a more realistic scene rendering

will be achieved in the future. Hereafter we are ready for

building up a generative model to render view-independent

images.

5. Conclusion

We proposed Viewpoint-Agnostic Image Rendering

(VAIR) that contributes a successful view-independent im-

age generation from a single 2D image. We have achieved

a clear and view-rotated image rendering through an em-

bedded 3D representation (E3DR) with a depth image and

semantic keypoints, even though the acquiring a concept of

viewpoint change is undoubtedly difficult in image gener-

ation. On the hard issue, we started with collapsed im-

age generation with a representative conditional GAN (e.g.

pix2pix), we have greatly improved the rendering results

by assigning E3DR and some techniques like self-attention

mechanism. In the experimental section, we have con-

ducted exploration study how to improve the rendering in

viewpoint changes. The visualization results described that

our VAIR enables to generate a clearer rendering image.
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