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Figure 1: Illustration of our method’s use-case. Flood segmentation combined with information about per-pixel population

density and infrastructure locations (extracted from [75]) can help assess damages and response in future events. Numbers in

this example are for demonstration purposes and do not reflect real events. Best viewed in color.

Abstract

Accurate flood detection in near real time via high res-

olution, high latency satellite imagery is essential to pre-

vent loss of lives by providing quick and actionable infor-

mation. Instruments and sensors useful for flood detection

are only available in low resolution, low latency satellites

with region re-visit periods of up to 16 days, making flood

alerting systems that use such satellites unreliable. This

work presents H2O-Network, a self supervised deep learn-

ing method to segment floods from satellites and aerial im-

agery by bridging domain gap between low and high la-

tency satellite and coarse-to-fine label refinement. H2O-Net

learns to synthesize signals highly correlative with water

presence as a domain adaptation step for semantic segmen-

tation in high resolution satellite imagery. Our work also

proposes a self-supervision mechanism, which does not re-

quire any hand annotation, used during training to generate

high quality ground truth data. We demonstrate that H2O-

Net outperforms the state-of-the-art semantic segmentation

methods on satellite imagery by 10% and 12% pixel accu-

racy and mIoU respectively for the task of flood segmen-

tation. We emphasize the generalizability of our model by

transferring model weights trained on satellite imagery to

drone imagery, a highly different sensor and domain.

1. Introduction

Natural disasters cause over 300 billion dollars a year

in economic loss, with majority damages done by floods

[33, 30], affecting over 2.3 billion people [80]. Recent work

in poverty dynamics [19, 9] show that natural disasters dis-

proportionately impact poor communities, and push 26 mil-

lion people into poverty every year [33], with recovery time

of up to a decade [20]. Difficulties in flood prediction and

low response capabilities also make floods the natural dis-

aster with the highest impact rate [42, 64], accounting for

57% of all natural disaster victims [31]. The use of satel-

lite for active flood risk assessment and real-time flood re-

sponse have shown to greatly mitigate flood damages and

decreased recovery time [6, 61].

Satellite data comes from two main sources: government

and commercial satellites. Government optical satellites

tend to be equipped with a large variety of sensors (Red,

Green, Blue, Coastal aerosol, Red Edge (RE1, RE2), Near

Infra Red (NIR), Narrow NIR, Water vapor, Cirrus, Short

Wave Infra Red (SWIR1, SWIR2)) often used in flood de-

tection, but have lower resolution data and have infrequent

revisit times over given regions, ranging from 6 to 16 day

periods [24]. Commercial satellites typically only provide

RGB + NIR imagery, but offer higher resolution data with

a revisit time of 1 day [59, 7]. This means that useful data
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essential for flood detection has low resolution and is only

available once every 6 days under optimal conditions, mak-

ing it unusable for real-time flood forecasting and evacua-

tion alarming. While commercial satellites have high revisit

times essential for real time flood detection, they lack in-

struments to detect them reliably. Note that neither sources

provides direct indication of water presence or ground truth

data. Our method aims to use the best from both worlds

through a domain adaptation approach, transferring knowl-

edge from government satellite data onto commercial satel-

lites data, providing essential instruments for flood segmen-

tation in high resolution data that is available in near real

time. To achieve near real time flood segmentation, this

work tackles two challenges common in remote sensing

and flood detection systems. The first is the lack of pixel-

wise ground truth data and annotation difficulties stemming

from complex structures and obstructions such as small

streams, clouds, and cloud shadows often occurring in satel-

lite imagery, especially during flood events. Current work

[13, 18] are able to get coarse masks using classic thresh-

olding methods often used in remote sensing [34]; however,

those are often noisy and unreliable for supervision. We

solve that by sampling high confidence ground truth points

to train a lightweight refiner network on-the-fly and predict

the remaining pixels to obtain more reliable source of su-

pervision. The second challenge is detection of floods in

high resolution and high temporal frequency satellite im-

agery. As mentioned before, floods often require near real

time response which is only possible in low latency com-

mercial satellites, and those are not equipped with instru-

ments reliable enough to detect water presence. We address

this issue by learning to synthesize SWIR signals from low

resolution data using an attention driven generative adver-

sarial network, which are concatenated to the input image

and fed to a segmentation network supervised by the re-

fined mask. The primary contributions of this work are as

follows:

• We propose a method named H2O-Network that learns

SWIR signal synthesis in lower resolution data as a

domain adaptation mechanism for accurate flood seg-

mentation in high resolution satellite imagery using

self-supervision and label refinement.

• We present a simple run-time refiner that utilizes our

adaptive distance map method for coarse-to-fine mask

generation.

• We outperform SOTA remote sensing and semantic

segmentation methods for flood segmentation.

2. Related Work

Computer Vision and Remote Sensing Computer vision

and remote sensing commonly align in land cover classi-

fication [11, 78], flood detection [72], weather prediction

[45], and precision agriculture [3] using data from gov-

ernment satellites Sentinel-2 and Landsat-8 [1] and com-

mercial satellites PlanetScope and WorldView [2]. Early

and current work use thresholded Normalized Water Index

(NDWI) and Modified Normalized Water Index (MNDWI)

[18, 83] for permanent water segmentation, providing quick

and somewhat reliable ground truth data for random forests

and support vector machines methods used for land cover

classifications [11, 78] and flood detection [72]. Recently

published remote sensing datasets [71, 13, 5] have encour-

aged development of deep learning methods which showed

improved capabilities in identifying clouds and cloud shad-

ows [89, 81], water [39, 38], inundation [13], and crop con-

ditions [4, 3] more accurately than threshold based algo-

rithms when labeled data is available.

Semantic Segmentation Semantic segmentation is the

task of assigning class labels to specific pixels in input im-

ages. This has been a fundamental computer vision task,

with fully connected networks (FCN) [51] serving as a

foundation for semantic segmentation methods in recent

years. The encoder-decoder architecture learns optimal in-

terpolation of dense features to recover original resolution

and capture scene details. U-Net [66] is one notable re-

cent method which uses skip connections for better feature

propagation similar to [36]. PSP-Net, DeepLab, and FPN

[49, 15, 90] use spatial pyramid pooling to obtain multi

scale contextual features useful for segmentation. The im-

portance of contextual features have been further illustrated

in [87, 88], which expand receptive fields using dilated con-

volutions, capturing more contextual information without

increasing the number of parameters. Our approach uses

U-Net for the segmentation network, but can practically in-

tegrate with any other segmentation methods.

Interactive segmentation [29, 67, 32, 35, 10, 47, 84, 57,

41] considers a set of inputs, generally points or scribbles,

provided by a user as guidance for semantic segmentation.

Classical methods [29, 32, 35, 10, 67] set this task as an op-

timization problem, using heuristics and greedy approaches

without considering global and local semantic information,

while deep learning methods [84, 48, 47, 57, 41] utilize

global semantic information with respect to the user in-

put. Early work [84] stacked input images with distance

maps generated from user inputs as network input, essen-

tially generating dense features from sparse input, greatly

improving segmentation performance compared to classi-

cal methods. Subsequent works commonly follow this ap-

proach with added modules such as patch-wise prediction

for refinement [48], multi-mask prediction for every object

[47], and a seed generator for automatic user input [73].

While our work employs elements often seen in interac-

tive segmentation, it removes the interactive part by auto-

matically sampling high confidence points as user input.

While this removes the need for user input, it creates po-
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tential for class-wise imbalance sampling in cases when an

image is fully or almost fully covered with one class. We

address this issue by using our adaptive distance map gen-

eration that considers the class-wise samples density, allow-

ing more stable predictions.

Domain Adaptation Domain adaptation seeks to transfer

knowledge from the labeled source domain to an unlabeled

target domain. Traditional domain adaption work has fo-

cused on classification and detection tasks [69, 77, 28, 52,

53, 76], with more recent work showing advances in seman-

tic segmentation [16, 62, 63, 79]. Generally, domain adap-

tation for semantic segmentation is more complex than for

classification and detection since its output often involves

highly structured and complex semantic information. Most

domain adaptation models are comprised of two networks:

one for feature adaptation learning, and another for task

learning. ADVENT [79] improves semantic segmentation

through entropy map adaptation to push decision bound-

aries toward low density regions in target domain. Wu et

al. [82] learns to reduce domain shift at both pixel and fea-

ture levels using channel-wise feature alignment in image

generator and segmentation networks. A similar approach is

used in [37], with alignments occurring in both image space

and latent space, which are learnt through cycle consistency

loss [92]. Here, our method learns to generate SWIR sig-

nals from our source domain, low resolution satellite data,

and transfer that knowledge to our target domain, high reso-

lution satellite data, to improve semantic segmentation. Ac-

cording to our knowledge, we are the first to achieve this

task using only RGB inputs, and first to utilize this method

as a domain adaptation step.

Generative Models Generative models in the context of

domain adaptation has gained traction in recent years. Ini-

tial approaches use StyleGAN and Pix2Pix [40, 43] meth-

ods as a data augmentation step, learning domain-invariant

features by modifying textures and appearances [37, 82].

More recent works use image-to-image translation tech-

niques to transfer features available in one domain to an-

other, providing additional data applicable to target domain

data [82, 14, 86, 62]. StandardGAN [74] builds on Style-

GAN to standardize inputs by enforcing similar styles in

satellite data to reduce domain gap. DUNIT [12] combines

style and content from source and target images by first gen-

erating style features from the style image, and concatenates

them to features from content domain as input to a third

generator. The closest method to our work is S2A [68],

which synthesizes SWIR signals using Wasserstein GAN

[8] with enlarged receptive fields using high dilation and

spatial attention modules. A major difference between our

work and S2A is that S2A uses NIR signals during synthesis

training and inference. NIR signals greatly correlate with

SWIR2 signals (r2(NIR, SWIR2) ≈ 0.82) [25], practi-

cally diminishing the role of visual queues in the data. On

the contrary, our approach only uses RGB input for SWIR

synthesis, making the task more complex due to a large do-

main gap, but also more generalizable to other domains that

use aerial or satellite imagery and don’t contain NIR data.

Additionally, [68] aims to solely synthesize SWIR2 signals

without inferring on the data, mainly framed as an image-

to-image translation algorithm. The paper provides sugges-

tions to applications such as wetland delineation, but incor-

rectly evaluates its performance for the task. Their results

compare ground truth and predicted wetlands obtained by

thresholding ground truth and predicted MNDWI, which is

composed of synthesized SWIR and green bands. Since the

green band is constant in both ground truth and prediction,

this metric is redundant and reduces to simply the differ-

ence between ground truth and predicted SWIR. Since gen-

erating ground truth via thresholding is often noisy, pixel-

wise labels become susceptible to common false positives,

making it unreliable data to evaluate against. In this work,

we define the task of synthesizing SWIR signals as a do-

main adaption step for flood segmentation in high resolu-

tion satellite imagery. We manually annotate a test dataset

guided by SWIR signals to empirically evaluate our results.

To our knowledge, this work is a first attempt at learning

SWIR signals from visual cues and transferring it to high

resolution domain for semantic segmentation.

3. H2O Network

3.1. Remote Sensing Overview

Inundation in medium resolution sensors such as Land-

sat and Sentinel-2 typically rely on water absorption in the

SWIR and NIR bands. A commonly used water index,

MNDWI (the Modified Normalized Water Index, equation

1) calculates the normalized difference between the green

and SWIR bands to emphasize surface water and reduce

noise from soil and built up areas [83]. The MNDWI is

a significant improvement over NDWI, which relies on the

normalized difference between green and NIR bands [58].

The improvement mainly stems from SWIR2 unperturbed

atmospheric window often occurring in longer wavelength

signals as they tend to penetrate the atmosphere more eas-

ily. However, the SWIR2 band is notably absent from most

commercial sensors. Thresholding, normalized differenc-

ing, or more complex combinations of SWIR are used for

both Landsat and Sentinel 2 algorithms. In Landsat, SWIR

(1560- 1660 nm, Landsat-8 Band 6) and NIR (630-690 nm,

Landsat-8 Band 4) are used with with other bands to de-

tect water [85, 27, 17, 22, 21]. Algorithms to map surface

water for Sentinel-2 similarly rely on water’s absorption in

SWIR (1539-1681 nm, Band 11) and NIR (768-796 nm,

Band 8) [25]. However, both Landsat and Sentinel-2 still

suffer from misclassifications of water and cloud shadows,

which both have low reflectance values in SWIR and NIR.
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Figure 2: H2O-Net training and inference pipelines. H2O-Net uses Sentinel-2 (low resolution) satellite data to learn synthetic

SWIR2 signals and flood segmentation self-supervised by refined ground truth. It is then evaluated on PlanetScope (high

resolution) data. The training pipeline feeds RGB through SWIR-Synth, an adversarial adaptation network, which is then

input to the segmentation network, which is self-supervised by refined masks.

The MNDWI is calculated using

MNDWI =
GR− SWIR2

GR+ SWIR2
, (1)

where GR represents the green channel.

3.2. Problem Formulation and Overview

This work aims to learn a mapping between the vi-

sual domain XLR ∈ R
H×W×3 of low resolution im-

agery, and Short Wave Infra Red (SWIR2) signals S ∈
R

H×W×1 to improve semantic segmentation prediction,

ỸHR ∈ R
H×W×C , of flood events in high resolution satel-

lite data, XHR ∈ R
H×W×3, in an unsupervised approach.

Since the task of direct segmentation in high resolution im-

agery, XHR ⇒ ỸHR, without ground truth is challenging,

we bridge the gap by learning signals highly correlative

with water presence as a domain adaptation step. During

segmentation training, we add a self-supervision method

using on-the-fly mask refinement of coarse labels, YC , ob-

tained via classical remote sensing methods, and refined us-

ing our lightweight refiner network. During training, the

network learns XLR ⇒ S̃LR ⇒ ỸLR, which is applied on

high resolution data, XHR ⇒ S̃HR ⇒ ỸHR.

3.3. SWIRSynth Network

SWIR-Synth is constructed as an image-to-image trans-

lation generative adversarial network where we aim to

translate images from the visual domain to the longer wave-

lengths domain. Let x ∈ R
H×W×3 be an image from

the source domain with an associated SWIR map s ∈
R

H×W×1. The network GSWIR−Synth seeks to synthe-

size SWIR2 signals s̃ = GSWIR−Synth(x) by minimizing

the overall loss function

LGAN (S, S̃) =λ0LG(S, S̃) + λ1LD(S, S̃)

+ λ2LF(S, S̃),
(2)

where LG, LD, LF are the generator, discriminator and

feature matching losses, and λ∗ represents the weights of

losses. As in typical Generative Adversarial Networks

(GAN) methods, the generator aims to minimize the objec-

tive against an adversarial discriminator that tries to maxi-

mize it.

Generator Loss Generator G learns output s̃ by minimiz-

ing two objective functions: pixel-wise squared error be-

tween s ∈ S and s̃ ∈ S̃, and patch-wise squared error of

discriminator output of the generated data. The first objec-

tive penalizes inaccurate RGB to SWIR2 mapping, with the

second objective penalize for patches deemed “fake” by the

discriminator. More formally,

LG(S, S̃) = E(||s− s̃||2) +E(||1−D(s̃)||2) (3)

Adversarial Loss This loss aims to align the features dis-

tributions of the two domains by predicting the target la-

bels of the synthesized data. SWIR-Synth is rewarded when

it “fools” the discriminator, resulting in better synthesized

output. Here, we utilize a Markovian discriminator (Patch-

GAN) thoroughly explored in [46], where the discriminator
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Figure 3: Overview of self-supervision architecture. High

confidence points are first sampled from MNDWI and are

used to obtain adaptive distance map and as ground truth to

the refiner network. Adaptive distance map is concatenated

to MNDWI as a 2 channel input to the refiner network. Blue

and red dots represent points sampled from water and non-

water pixels respectively. Blue and white predicted pixels

represent water and non-water pixels. Best viewed in color.

aims to classify N × N sub-patches of the generated im-

age, with each patch classified as “real” or “fake.” The final

optimization objective of the discriminator is

LD(S, S̃) = E(||D(s̃)||2) +E(||1−D(s)||2). (4)

Feature Matching Loss Difficult to learn latent patterns

often occurring in satellite imagery cause unstable training

of the model, which we solve using feature matching loss

introduced in [70]. We extract features from discrimina-

tor’s penultimate layer for both real and synthesized sam-

ples, and minimize the squared distance between them. The

objective function is

LF (S, S̃) = E(||D[n−1](s)−D[n−1](s̃)||2), (5)

where n represents the number of layers in discriminator D,

and D[n−1](·) represents the output of the discriminator’s

n− 1 layer.

3.4. Refiner/SelfSupervision

This work introduces a run time refiner able to gen-

eralize over a batch input for the purpose of improving

coarse masks obtained via MNDWI thresholding. Let sam-

ple (x ∈ R
H×W×3,m ∈ R

H×W×1) be an image-MNDWI

pair. We define high confidence water and non-water pixels

using high and low thresholds, φH and φL, on m to obtain

a set of locations, (pwx, pwy) ∈ Pw and (pw̄x, pw̄y) ∈ Pw̄,

corresponding to water (positive) and non-water (negative)

points. Note that |Pw| + |Pw̄| ≤ |m|, where | · | is the car-

dinality of that set. A distance map function is then used to

transform Pw and Pw̄ to distance maps Dw ∈ R
H×W×1,

and Dw̄ ∈ R
H×W×1, respectively. Distance maps are

calculated by taking the minimum Euclidean distance be-

tween a positive point and a set of negative points. For

example, to obtain distance map Dw, we calculate pixel

value Di,j
w at location (i, j) with the set of points Pw using

D(x, y|Pw) = min∀pwx,pwy

√

(x− pwx)2 + (y − pwy)2,

where (x, y) is any point in the image. This is repeated

until distance values are obtained for all pixels in both Dw

and Dw̄.

Traditionally, Dw and Dw̄ would be concatenated to the

input image, but this proves to degrade results when the

number of sampled points is large. Instead, we dynami-

cally select one distance map that represents the class with

highest points density. Class-wise points density of ob-

jects is typically comparable in common datasets such as

COCO, ADE20K and PASCAL [91, 50, 26], where ob-

jects have similar size and scale. In flood events datasets,

classes rarely occur in similar magnitudes, often resulting in

sparsely sampled points for one class, and densely sampled

points for another class. We define the adaptive distance

map, Da, as the distance map of the densely sampled points,

normalized such that higher values represent the positive

class (water), and lower values represent the negative class

(no-water). We then construct the network input, I , by con-

catenating MNDWI, m, and the adaptive distance map, Da,

and use it to train our refiner network, a lightweight convo-

lution refining network, supervised by Pw and Pw̄, with the

rest of the pixels ignored. The network minimizes

LR(Pw, Pw̄, ỹ) = −
∑

pw

log(ỹ)−
∑

pw̄

(1− log(ỹ)). (6)

Note that the loss function ignores pixels not in the set

Pw ∪ Pw̄. After the network is trained for k iterations, it

predicts on the same image to obtain mask values for the

rest, previously ignored pixels, to produce a pseudo-mask

ground truth ỸR fed to the segmentation network. The intu-

ition behind this method is to predict the labels of the entire

image given a small set of high confidence labeled pixels.

3.5. Segmentation Network

An encoder-decoder architecture takes a concatenation

of RGB image X and synthesized SWIR S̃ as a 4 channel

input, and aims to predict pixel-wise labels Ỹ that minimize

the cross entropy loss between Ỹ and YR. We define the
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Method Additional Train Time (sec/iter) Pixel Accuracy (%) mIoU (%) FW-IoU (%)

MNDWI Thresholding (≤ 0.35) 0 84.86 76.23 79.91

Refiner (Ours, without Adaptive Distance Maps) 0.21 85.34 81.41 80.12

Refiner (Ours, with Adaptive Distance Maps) 0.36 89.46 84.41 83.04

Table 1: Mean Intersection over Union (%), pixel accuracy (%), and frequency weighted intersection over union (%) metrics

(higher is better) for refiner network evaluation on manually annotated PlanetScope.

Image MNDWI Ground Truth MNDWI Threshold Distance Map Refined Mask

Figure 4: Qualitative results of our refiner on PlanetScope [2]. Our refiner provides better ground truth for the segmentation

network without hand-labeled data. Our refiner samples high confidence points from MNDWI used to generate adaptive

distance maps, which are then concatenated to MNDWI to make 2 channel input to the refiner. Blue and white predicted

pixels represent water and non-water pixels. Best viewed in color and zoomed.

segmentation loss by

LS(YR, Ỹ ) = −
∑

log(Ỹ )−
∑

(1− log(Ỹ )). (7)

In practice, this network has two roles: it fine-tunes

SWIR-Synth by penalizing low synthesized SWIR values

(water presence) when water labels are not present, and it

learns to correlate RGB and SWIR pairs input to water pix-

els.

4. Experiments

4.1. Training and Evaluation Setup

We train all networks from scratch using Adam opti-

mizer [44] with starting learning rates of 2e-4 for generator,

6e-4 for discriminator, 1e-3 for segmentor, and 1e-2 for re-

finer. We set β’s for the Adam optimizer to 0.4 and 0.99 and

cosine annealing scheduler [54] for all networks. Training

data used is split 90/5/5 with normalization transformation

with zero mean and unit variance applied before input. The

generator is first trained for 5 epochs before adding the dis-

criminator, which are trained together for an additional 30

epochs. The segmentation network is then added to the net-

work to train jointly for another 60 epochs. For performance

evaluation we report Mean Intersection over Union (mIoU),

Pixel Accuracy (PA), and Frequency Weighted Intersection

over Union (FW-IoU). The metrics are calculated as follows

PA =

∑

i nii
∑

i ti
,

mIoU =
1

nc

∑

i

nii

ti +
∑

j nji − nii

,

FW-IoU = (
∑

k

tk)
−1

∑

i

tinii

ti +
∑

j nji − nii

,

(8)

where nij is the number of pixels of class i predicted as

class j, ti is total number of pixels for class i, and nc is the

number of classes.

4.2. Datasets

We train our method and baselines on Sentinel 2 satellite

data which is an optical satellite providing RGB, NIR, Nar-

row NIR, Water vapor, Cirrus, SWIR1, and SWIR2 signals

at 10 to 60 meters per pixel. The training dataset is com-

prised of 3676 images of size 512×512 containing RGB

and SWIR2 data resampled to 10 meters per pixel. For

evaluation we use PlanetScope [2] and Drone Deploy [23]

datasets. PlanetScope is a high resolution optical satellite

providing RGB and NIR signals at 3 meter per pixel. In

order to evaluate both our refiner network, and H2O-Net on

the same data, we obtain overlapping crops in both Sentinel-

2 and PlanetScope to obtain SWIR2 signals measured by

Sentinel-2, resampled and stacked with PlanetScope data.

Note that this overlap is not a common occurrence and only

provided with 246 evaluation images, which were then man-
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Input Image Ground Truth
U-Net w/

Refiner
SWIR-Synth

SWIR-Synth

Thresh.

H2O-Net

(RGB)

SWIR-Synth

(RGB+NIR)

H2O-Net

(RGB+NIR)

Figure 5: Qualitative comparison with SOTA methods on PlanetScope [2]. H2O-Net results shows that synthesizing SWIR

data allows robust segmentation performance in high resolution imagery. It can be seen that adding NIR signals to training

and inference improves results in both for segmentation and synthesized SWIR. Blue and white predictions correspond to

water and non-water pixels. Best viewed in color and zoomed.

ually annotated. Drone Deploy [23] is a high altitude fully

annotated aerial imagery dataset with 55 orthomosaic im-

ages with 10 centimeters per pixel resolution. Drone De-

ploy was selected since it cptures down-facing water in-

clusive scenes (similar to satellites), and is fully annotated.

While other drone imagery datasets such as [60, 65, 56, 55]

are commonly used as baselines, they do not match the

criteria for our domain transferability study. We generate

775, 512×512 crops that contain at least 10% water pixels,

which are split to 50/20/30 for fine-tuning, validation and

testing sets.

4.3. Baselines

This work explores methods relevant to remote sensing

and semantic segmentation. Since there is no other work

that segments water from satellite imagery without supervi-

sion, we compare the closest possible methods. From the

remote sensing domain, we use [18] as a baseline since

they use the same evaluation dataset, PlanetScope. It uti-

lizes NDWI thresholding, using NIR signals available in

PlanetScope, which are not used in the deep learning base-

lines. Although the additional information gives NDWI and

MNDWI thresholding methods an advantage, we are inter-

ested in what can be achieved without this information. For

NDWI threshold value selection, we followed procedure

shown in [18] by finding a natural gap between water and

non-water pixel distribution. For MNDWI threshold value

selection, we evaluated a range between 0.15-0.75 and se-

lected the best performing value. The relative low MNDWI

threshold lies in the expected range (explained in [25]) con-

sidering flood water is often mixed with mud, plants, and

sediments, making it less reflective than permanent water

such as lakes, seas, and oceans. Of the semantic segmen-

tation methods, we show U-Net [66] and DeepLabv3 [15].

Training those methods follow similar approach to H2O-

Net, where we train the networks on low resolution im-

agery, and predict on high resolution imagery. We include

performances of those methods supervised by thresholded

MNDWI (coarse labels) and refined labels. All methods

were trained from scratch to ensure fair comparison. For

methods reporting on DroneDeploy dataset (more details in

section 5.1), we fine-tune the models using the given ground

truth data before evaluation. Note that all methods were

trained from scratch to ensure fair comparison.

5. Results

Figure 5 shows the qualitative results for the task of se-

mantic segmentation. Our method, H2O-Net, shows the

most consistent results out of the compared baselines. Table

2 shows the quantitative performance of our method com-

pared to SOTA methods in semantic segmentation and re-

mote sensing. Figure 5 shows that H2O-Net is able to finely

segment small streams and muddy flood waters compared

to isolatedly trained segmentation network. It can be seen
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Dataset PlanetScope [2]

Method Bands Used Pixel Accuracy (%) mIoU (%) FW-IoU (%)

NDWI Thresholding (≥ −0.1) [18, 58] RGB+NIR 72.35 63.26 61.53

SWIR-Synth Thresholding (≥ 0.35) RGB+NIR 85.47 71.93 74.49

H2O-Net (Ours) RGB+NIR 87.23 74.52 76.88

DeepLab v3 [15] RGB 57.03 31.46 29.61

DeepLab v3 (w/ refiner) RGB 59.22 33.74 39.89

U-Net [66] RGB 64.01 42.63 49.49

U-Net (w/ refiner) RGB 66.81 48.18 50.98

SWIR-Synth Thresholding (≥ 0.35) RGB 69.23 53.31 53.97

H2O-Net (Ours) RGB 76.19 60.92 62.42

Table 2: Pixel accuracy (%), Mean Intersection over Union (%), and Frequency-Weighted Intersection over Union (%)

accuracy (higher is better) on high resolution satellite imagery PlanetScope dataset. Reported performance is with respect

to water segmentation. It is evident from the table that when we train our method with both RGB and NIR signals, we

significantly outperform classical methods that also use NIR signals.

that narrowing the domain gap through synthesized SWIR2

can significantly increase performance. For the refiner, fig-

ure 3 and table 1 show superior performance both qual-

itatively and quantitatively for obtaining self-supervised

ground truth data. It is evident from the results that train-

ing on coarse labels alone is not enough to provide reli-

able segmentation prediction in high resolution imagery,

and adding the refined masks for supervision improves per-

formance overall. While thresholding methods used in re-

mote sensing performed relatively well compared to deep

learning methods, it is important to emphasize that explicit

NIR and SWIR2 reflectance data of the scene was available

during evaluation, which is not available for deep learning

methods. For that, we also include metrics of our method

trained and evaluated with NIR signals. It can be seen that

such signals provides significant boost in performance both

qualitatively and quantitatively. Since DroneDeploy [23]

does not provide such data, those methods are also not re-

ported for that dataset. Additional qualitative results and

implementation details for H2O-Net, SWIR-Synth, refiner,

and baseline networks are available in the supplementary.

5.1. Domain Transferability Study

We explore the effect of SWIR-Synth and H2O-Net on

aerial imagery. The domain gap between low resolution

satellite imagery and high resolution aerial imagery (10 me-

ters/pixel compared to 10 centimeters/pixel) is even larger

than the domain gap between low and high resolution satel-

lite imagery (10 meters/pixel compared to 3 meters/pixel),

making it a more challenging task. Additionally, this dataset

does not have flood related imagery, as it was collected over

parks and residential areas featuring pools, fountains, and

lakes, which inherently have different structures than flood

events imagery. Another challenge is in data representation

domain gap, as satellite data measures reflectance values for

RGB and SWIR2 signals, while Drone Deploy provides dig-

ital values (0-255). Figure 2 in supplementary material and

Dataset Drone Deploy [23]

Method \ Metric PA (%) mIoU (%) FW-IoU (%)

DeepLab v3 [15] 88.14 56.62 77.92

U-Net [66] 91.11 68.99 83.64

SWIR-Synth Thresholding (≥ 0.35) 59.31 39.24 48.37

H2O-Net (Ours) 92.71 75.25 86.65

Table 3: Domain Transferability Study. Pixel accuracy

(%), Mean Intersection over Union (%), and Frequency-

Weighted Intersection over Union (%) accuracy (higher is

better) on DroneDeploy . Reported performance is with re-

spect to water segmentation.

table 3 of the main paper show the qualitative and quanti-

tative results on DroneDeploy [23] dataset after fine-tuning

the segmentation network. The results show that despite

such domain gap, our method still improves accuracy for

water segmentation. Supplementary material includes qual-

itative results with corresponding synthesized SWIR2 pre-

diction, and ground truth.

5.2. Conclusion

This work presents a novel approach to address diffi-

culties in flood response time and support, allowing detec-

tion of floods in high resolution, high temporal frequency

satellites without explicit annotation efforts. We propose

the H2O-Network which employs SWIR2 synthesis as a

domain adaptation step for semantic segmentation using a

self-supervised approach. We hope that this work will pro-

vide additional route to save lives and property in commu-

nities susceptible to such natural disasters. Our approach

also shows that detecting and segmenting objects that have

reflectance properties may benefit from such domain adap-

tation step seeking to gain additional features in the target

domain. Important to note that ideally, such application

in practice would make use of NIR signals which is often

available in commercial satellites, but we choose to omit

such data to demonstrate our approach on datasets with a

larger domain gap.
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and Sébastien Clerc. Standardgan: Multi-source domain

adaptation for semantic segmentation of very high resolution

satellite images by data standardization. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 192–193, 2020.

[75] Tobias G Tiecke, Xianming Liu, Amy Zhang, Andreas Gros,

Nan Li, Gregory Yetman, Talip Kilic, Siobhan Murray,

Brian Blankespoor, Espen B Prydz, et al. Mapping the

world population one building at a time. arXiv preprint

arXiv:1712.05839, 2017.

[76] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 7167–7176, 2017.

[77] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and

Trevor Darrell. Deep domain confusion: Maximizing for

domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[78] Kristof Van Tricht, Anne Gobin, Sven Gilliams, and Isabelle

Piccard. Synergistic Use of Radar Sentinel-1 and Optical

Sentinel-2 Imagery for Crop Mapping: A Case Study for

Belgium. Remote Sensing, 10(10):1642, Oct. 2018.

[79] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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