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Abstract

Semantic segmentation of 3D point cloud data is es-

sential for enhanced high-level perception in autonomous

platforms. Furthermore, given the increasing deployment

of LiDAR sensors onboard of cars and drones, a special

emphasis is also placed on non-computationally intensive

algorithms that operate on mobile GPUs. Previous effi-

cient state-of-the-art methods relied on 2D spherical pro-

jection of point clouds as input for 2D fully convolutional

neural networks to balance the accuracy-speed trade-off.

This paper introduces a novel approach for 3D point cloud

semantic segmentation that exploits multiple projections of

the point cloud to mitigate the loss of information inherent

in single projection methods. Our Multi-Projection Fusion

(MPF) framework analyzes spherical and bird’s-eye view

projections using two separate highly-efficient 2D fully con-

volutional models then combines the segmentation results

of both views. The proposed framework is validated on the

SemanticKITTI dataset where it achieved a mIoU of 55.5

which is higher than state-of-the-art projection-based meth-

ods RangeNet++ [23] and PolarNet [44] while being 1.6x

faster than the former and 3.1x faster than the latter.

1. Introduction

Currently, Light Detection and Ranging (LiDAR) sen-

sors are widely used in autonomous navigation systems

where captured 3D point cloud data provides a rich source

of information on the surrounding scene. Analyzing such

data with deep learning models has gained a lot of attention

in the research community especially for extracting seman-

tic information to improve navigation accuracy and safety.

In this case, semantic segmentation algorithms assign a la-

bel for each point in the 3D point cloud representing differ-

ent classes of objects in the scene.

Convolutional Neural Networks (CNNs) have achieved

∗equal contribution

Figure 1: Computed scans per second vs. mIoU score on

the test set of SemanticKITTI dataset using state-of-the-

art projection-based methods. Our framework achieves the

highest mIoU score; in addition, it is 3.1 and 1.6 times faster

than PolarNet and RangeNet53++, respectively.

state-of-the-art results in semantic segmentation tasks with

fully convolutional architectures trained on huge amounts of

labelled RGB data and making clever use of transfer learn-

ing. However, the same success has not yet been achieved

in semantic segmentation of point cloud data due to lack

of large annotated datasets. Furthermore, since point cloud

semantic segmentation models are typically deployed on

devices with limited computational capabilities onboard of

mobile platforms (e.g. cars or drones), there is a need for

high throughput while sustaining high accuracy to ensure

the platform has enough time to make correct decisions.

There are two main approaches in the literature to tackle

the task of semantic segmentation of 3D point clouds. The

first applies 3D CNN models either on the raw cloud data
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points [27] or after transforming the points into 3D volu-

metric grid representations [38]. This incurs high compu-

tational costs [2] and hence not suitable for real-time sys-

tems. The second approach applies 2D CNN models to 2D

projections of the 3D point cloud based on either bird’s-eye

view [29] or spherical view [40]. Currently, state-of-the-art

methods such as RangeNet++ [23] applies a Fully Convo-

lutional Neural Network (FCNN) on a spherical projection

of the point cloud. However, there is an inevitable loss of

information due to the projection operation which can limit

model performance especially for distant points. In this pa-

per, we introduce a novel framework for enhanced online

semantic segmentation of 3D point clouds by incorporat-

ing multi-view projections of the same point cloud which

results in an improved performance compared to single-

projection models while attaining real-time performance.

The contributions of this work can be summarized as fol-

lows. First, a novel MPF framework that utilizes multi-view

projections and fusion of input point cloud to make up for

the loss of information inherent in single projection meth-

ods. Second, the MPF framework processes spherical and

bird’s-eye projections using two independent models that

can be selected to achieve optimum performance for a given

platform (road vehicle, aerial drone, etc.) and/or deployed

on separate GPUs. Third, the framework is scalable and,

despite using only two projections in the current work, it

can be directly extended to exploit multiple projections.

Incorporating information from multiple projections of

3D data has been used before in other domains to improve

performance. Mortazi et al. [25] used a single 2D encoder-

decoder CNN for CT-scan segmentation to parse all 2D

slices in X, Y and Z directions. Chen et al. [4] used multi-

ple 2D encoder CNN on spherical and bird’s-eye views for

the task of 3D object detection in point cloud data. How-

ever, to the best of our knowledge this setup has not been

used before in semantic segmentation of 3D point clouds.

This is primarily due to the added computational overhead

of having the same complex network architecture for multi-

ple views and back projection of results to the original point

cloud space to compute point-level predictions (unlike [4]

who only outputs 3D bounding boxes). The paper is orga-

nized as follows: Section 2 overviews related work, Section

3 describes the proposed framework and Section 4 presents

obtained experimental results as well as an ablation study

of our framework. Section 5 concludes the paper and points

out future work directions.

2. Related Work

2.1. Semantic Image Segmentation

Semantic image segmentation has attracted a lot of at-

tention in recent years following the success of deep CNN

models, such as AlexNet [16], VGGNet [33], and ResNet

[10] in image classification. The task aims at predicting

pixel-level classification labels in order to have more pre-

cise information on objects in input images. One of the

earliest work in this area is based on using Fully Convo-

lutional Neural Networks (FCNNs) [21] where the model

can assign a label for each pixel in the image in a single for-

ward pass by extracting features using multi-layer encoder

(in this case it was VGG model [33]) and apply up-sampling

on these features combined with 1x1 convolution layer to

classify each pixel. The idea was extended by Noh et al.

[26] and Badrinarayanan et al. [1] by using a multi-layer de-

coder to transform extracted features into image space with

the needed pixel labels. Ronneberger et al. [30] introduced

the UNet architecture where skip connections between en-

coder and decoder layers further improve segmentation re-

sults. In addition to advances in model architecture design,

having large annotated datasets for semantic segmentation

tasks, such as Microsoft’s COCO [20], and utilizing trans-

fer learning from image classification models pre-trained on

large datasets such as ImageNet [7] can significantly im-

prove semantic segmentation accuracy.

2.2. Semantic Segmentation of 3D Point Cloud

Most 3D point cloud semantic segmentation algorithms

employ a Fully Convolutional Neural Network (FCNN) in

a way similar to 2D semantic image segmentation but with

the difference of how the FCNN is applied to 3D structures.

These algorithms can essentially be grouped into two cate-

gories. The first category includes models that use 3D con-

volutions as in SegCloud [38] where a 3D FCNN is applied

to point cloud after voxelization and transformation into ho-

mogeneous 3D grid. However, 3D convolutions are compu-

tationally intensive and 3D volumes of point clouds are typ-

ically sparse. Other models have special convolution layers

for 3d points in order to process a point cloud in its raw

format with examples including PointNet++ [28], Tangent-

Conv [37] and KPConv [39]. Recent work in RandLA [12]

improves run-time while maintaining a high segmentation

accuracy compared to previously mentioned methods.

The second category of algorithms apply 2D FCNN

models after projecting 3D point clouds onto 2D space. In

SqueezeSeg [40] and SqueezeSegV2 [41], spherical projec-

tion is performed on point cloud then 2D encoder-decoder

architecture is applied. RangeNet++ [23] improves segmen-

tation results by using a deeper FCNN model and employ-

ing post-processing using K-Nearest Neighbour (KNN). Al-

gorithms in this category not only improve inference time

but also enhance segmentation accuracy by capitalizing on

the success of CNNs in 2D image segmentation. Different

projections can also be used as in VolMap [29] which uses

Cartesian bird’s-eye projection and PolarNet [44] which

uses polar bird’s-eye projection combined with ring convo-

lutions. The proposed framework advances current state-of-
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Figure 2: Proposed MPF framework overview. The framework takes as input a 3D point cloud that undergoes a series of

operations in the Spherical View Branch and the Bird’e-Eye View branch. Each branch is composed of three main processing

blocks where the first block transforms the 3D point point cloud into its respective 2D projection. The second block, Spherical

or Bird’s-Eye View Model, predicts segmentation of the projected 2D image with a FCNN model where each view has its

own model. The third block, Post Processing, further processes the semantically-segmented projected view and assigns to

each point in the input cloud its corresponding softmax probabilities. Finally, information from the two branches are fused

by the Fusion block to produce the final semantic label of each point in the 3D point cloud.

the-art of projection based methods in point cloud segmen-

tation by making use of both spherical and Cartesian bird’s-

eye projections to reduce the loss of information stemming

from using a single projection. Finally, it is worth men-

tioning that one of the key challenges in 3D point cloud se-

mantic segmentation is the lack of large labeled point cloud

datasets. The current benchmark dataset is SemanticKITTI

[2] which has around 43K frames collected using 360 Velo-

dyne LiDAR sensor [18]. Other datasets are either gener-

ated synthetically using simulation environments such as

Virtual Kitti [8] or have small number of samples such as

Paris-Lille-3D [31].

2.3. Efficient Deep Learning Architectures

With the impressive results achieved by deep learning

models in detection and classification tasks, there is a grow-

ing need for efficient models to be deployed on embedded

devices and mobile platforms. A number of network ar-

chitectures that achieve high classification accuracy while

having real-time inference have been recently proposed.

For instance, MobileNetV1 [11] uses depth-wise separable

convolutions while ShuffleNet [43] utilizes group convolu-

tions and channel shuffling to reduce computations. Mo-

bileNetV2 [32] achieves improved accuracy while main-

taining fast inference by using inverted residual blocks. Al-

though these models are designed for classification tasks,

they can be used in the context of semantic segmentation

as encoders in FCNN models in order to benefit from their

efficient architecture.

2.4. Segmentation Loss

Segmentation models, regardless of their input, are ini-

tially trained using classification losses such as Cross En-

tropy loss or Focal loss [19] because the end goal is to as-

sign a label for each pixel (or point). However, such losses

lack the global information of predicted and target object

masks. Therefore, research work has been conducted to de-

velop a loss function that penalizes the difference between

predicted and ground-truth masks as a whole. Milletari et

al. [24] developed a soft version of Dice coefficient with

continuous probabilities instead of discrete 0 or 1 values

while Berman et al. [3] introduced Lovasz Softmax loss

which is a function surrogate approximation of the Jaccard

coefficient [14]. Currently, Lovasz Softmax loss is the state-

of-the-art segmentation loss and is usually combined with

classification loss to have a penalty on both local and global

information.

3. Proposed Method

We developed a Multi-Projection Fusion (MPF) frame-

work for semantic segmentation of 3D point clouds that re-

lies on using two 2D projections of the point cloud where

each projection is processed by an independent FCNN

model. As illustrated in Figure 2, the proposed pipeline

starts by feeding the input point cloud to two branches, one

responsible for spherical view projection and the other for
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Input Operator t c n s

5× 64× w conv2d - 32 - 1

32× 64× w bottleneck 1 16 1 2

16× 64× w
2

bottleneck 6 24 2 2

24× 64× w
4

bottleneck 6 32 3 2

32× 64× w
8

bottleneck 6 64 4 2

64× 64× w
16

bottleneck 6 96 3 1

96× 64× w
16

bottleneck 6 160 3 2

160× 64× w
32

bottleneck 6 320 1 1

320× 64× w
4

deconv2d - 96 - 8

96× 64× w deconv2d - 32 - 4

32× 64× w conv2d - 20 - 1

Table 1: Spherical-View Model Architecture. The model is

based on MobileNetV2 [32] with additional 2 deconvolu-

tional layers and one 1x1 convolutional layer as a decoder.

n is the repetition number for a sequence of layers in block,

t is block expansion factor, c is the number of output chan-

nels, s is block stride.

bird’s-eye view projection. Each branch applies semantic

segmentation on the projected point cloud. Subsequently,

predictions from the two branches are fused to produce the

final prediction. It is assumed that the input point cloud

is collected by a LiDAR sensor that returns point coordi-

nates x, y, z values and remission of returned signals rem,

e.g Velodyne HDL-64E [18]. In the following sub-sections,

we present details of each block in the two branches of the

pipeline.

3.1. Spherical View Projection

This section explains the process of transforming a 360◦

point cloud into a 2D spherical image that is fed into

subsequent Spherical View Model block, as proposed by

[40]. At the start, the 3D point cloud is mapped from Eu-

clidean space (x, y, z) to Spherical space (θ, φ, r) by apply-

ing Equation 1.
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Subsequently, the points are embedded into a 2D spheri-

cal image with dimensions (H,W ) by discretizing points’

θ and φ angles using Equation 2:




u

v



 =





1

2
[1− φπ−1]w

[1− (θ + fup)f
−1]h



 , (2)

where u and v represent point indices in the spherical image

and f = fup + fdown is the sensor’s vertical field-of-view.

Input Operator c s

4× 256× 256 ConvBlock 64 1

64× 256× 256 DownBlock 128 2

128× 128× 128 DownBlock 256 2

256× 64× 64 UpBlock 128 2

128× 128× 128 UpBlock 64 2

64× 256× 256 conv2d 20 1

Table 2: Bird’s-Eye View Model Architecture. c is the num-

ber of output channels and s is layer stride.

The mapping and discretization steps may result in some

3D points sharing the same u and v values. To mitigate

this condition, 3D points that are closer to LiDAR are given

priority to be represented in the 2D image by ordering the

points descendingly based on their range value. The ordered

list of points will be embedded into the 2D spherical image

using its corresponding u and v coordinates. By the end of

this process, the resulting 2D spherical image will have five

channels corresponding to distinct point features: x, y, z, r

and remission rem which is analogous to RGB images that

have three channels, one for each color.

3.2. SphericalView Model

The Spherical-View Model is a deep learning segmenta-

tion model based on FCNN architecture with encoder and

decoder parts. The network encoder utilises MobileNetV2

[32] as lightweight backbone that provides real-time perfor-

mance on mobile devices. The backbone is composed of a

sequence of basic building blocks called inverted residual

blocks that form bottlenecks with residuals. The first and

last bottleneck layer expands and compresses input and out-

put tensors, respectively. The intermediate layers are high-

capacity layers responsible for extracting high-level infor-

mation from the expanded tensors.

For network decoder, we apply two learnable upsam-

pling layers known as transposed convolution layers. The

first layer upsamples the input tensor 8 times and the sec-

ond layer 4 times. At the end, we add convolution layer

and softmax logits to output semantically segmented im-

age. Furthermore, dropout layers are added as regulariza-

tion. Table 1 provides details of the Spherical-View Model

layers.

3.3. Bird’sEye View Projection

The second projection in our framework is the 2D bird’s-

eye view projection. It uses the x and y coordinates of each

point and collapses the 3D cloud along the z dimension.

The 3D point cloud is thus projected on the x − y plane

that is discretized using a rectangular grid with a defined

width and height. For each cell in the grid, we keep at most
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one projected point corresponding to the point that has the

maximum z value among all points projected onto that cell.

Points that get projected outside the boundaries of the grid

are discarded. Finally, the grid is converted into a 4-channel

image where each pixel in the image represents a cell in the

grid. Four cell attributes are extracted to form the 4 channels

of the image, namely x, y, z, and remission rem.

3.4. Bird’sEye View Model

Although MobileNetV2 [32] is highly efficient, using

it twice for both views will decrease the overall through-

put. Since the MPF framework allows using independent

network in each processing branch, we decided to use a

network with fewer parameters compared to MobileNetV2

[32]. Specifically, a light weight modified version of the

UNet [30] encoder-decoder architecture is used for seg-

mentation of bird’s-eye view images. As shown in table

2, the encoder consists of 2 downsampling convolutional

blocks and the decoder consists of 2 upsampling convolu-

tional blocks with skip connections between correspond-

ing encoder and decoder blocks. In our experiments it is

shown that it is sufficient to use only two blocks in both

encoder and decoder which significantly improves network

inference efficiency. Each block consists of two 2D convo-

lution layers with kernel size 3 followed by max pooling for

encoder and preceded by bi-linear upsampling for decoder.

We use 2D batch normalization [13] followed by ELU [5]

non-linearity between successive convolutional layers.

3.5. PostProcessing

The goal of the Post-Processing step is to get semantic

labels for all points in the input 3D point cloud based on

the semantically-segmented images produced by the Spher-

ical and Bird’s-Eye View Models. The segmentation results

for each pixel are softmax probability scores for each of the

20 possible classes. The segmented 3D point cloud is com-

puted as follows: each 3D point is projected onto the 2D

segmented image and a 2D square window centered around

the projection location is calculated. Then, a weighted vote

over all classes is performed by computing a weighted sum

of the softmax probabilities of all pixels inside the window,

where the weights are inversely proportional to the distance

between the 3D point under consideration and the 3D points

represented by pixels in the window. In particular, we use a

Gaussian function with zero mean and fixed standard devia-

tion to compute the weight corresponding to each distance.

The output of this step is a vector of scores for each point

in the 3D point cloud. Finally, the score vector is normal-

ized by dividing by the number of points that contributed

in the voting. This step is necessary because both views

have sparse pixels and the number of pixels inside a win-

dow can vary considerably from one view to another. The

details of the algorithm are shown in Algorithm 1. During

Algorithm 1: Post-Processing Algorithm

Post-Processing

Parameters

Number of classes: C
Number of points: N
Size of the projection image: HxW
Size of the sliding window : KxK
Standard deviation for the gaussian function: σ

Data

Point cloud coordinates Pxyz . Size = Nx3
Projection image Ixyz . Size = HxWx3
Output of the segmentation network Isoftmax. Size = HxWxC

Output

Scores. Class scores for each point in the original cloud. Size =

NxC

Algorithm

foreach i ∈ [1 : N ] do
// Get the pixel to which this point is projected

u, v = get projection indices(Pxyz [i])
// Initialize all class scores for the i’th points to zeros

Scores[i] = zeros(C)
// Initialize number of non-sparse pixels to zero

M = 0
// Loop over pixels currently inside the sliding window

foreach u′ ∈ [u− ⌊k/2⌋ : u+ ⌊k/2⌋] do

foreach v′ ∈ [v − ⌊k/2⌋ : v + ⌊k/2⌋] do

if Ixyz [u′, v′] is not sparse then

d = get distance(Pxyz [i], Ixyz [u′, v′])
weight = exp(−d2/2σ2)
Scores[i]+ = weight ∗ Isoftmax[u

′, v′]
M+ = 1

end

end

end

Scores[i] = Scores[i]/M
end

return Scores

implementation, we eliminated the use of all loops and used

fully-vectorized code which run on GPU for fast process-

ing. Our proposed post-processing is similar to KNN post-

processing in [23] however it uses soft voting with softmax

probabilities instead of hard voting and takes the vote of

non-sparse pixels only.

3.6. Fusion

After post-processing the outputs of the spherical and

bird’s-eye networks, we get two vectors of scores for each

point, one vector for each view. These vector are simply

added to get the final score vector for each 3D point. The

class that has highest score is selected as the predicted label.

4. Experimental Evaluation

4.1. Datasets

We trained both Spherical View and Bird’s-Eye View

networks on the SemanticKITTI dataset [2] which provided
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PointNet [27]

50000pts - - -

14.6 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7

PointNet++ [28] 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9

SPGraph [17] 20.0 68.3 0.9 4.5 0.9 0.8 1.0 6.0 0.0 49.5 1.7 24.2 0.3 68.2 22.5 59.2 27.2 17.0 18.3 10.5

SPLATNet [35] 22.8 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.8 41.5 0.0 68.7 27.8 72.3 35.9 35.8 13.8 0.0

TangentConv [37] 35.9 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.2 44.2 75.5 42.5 55.5 30.2 22.2

RandLA [12] 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 66.8 49.2 47.7 38.1

KPConv [39] 58.8 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4

SqueezeSeg [40]
64 × 2048 px

84.7 - - 29.5 68.8 16.0 4.1 3.3 3.6 12.9 13.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5

SqueezeSegV2 [41] 55.8 928.5 K 13.6 G 39.7 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3

RangeNet21 [23] 64 × 2048 px 21.7 - - 47.4 85.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0

RangeNet53++ 64 × 512 px 38.5 41.9 87.4 9.9 12.4 19.6 7.9 18.1 29.5 2.5 90.0 50.7 70.0 2.0 80.2 48.9 77.1 45.7 64.1 37.1 42.0

RangeNet53++ 64 × 1024 px 23.3 - - 48.0 90.3 20.6 27.1 25.2 17.6 29.6 34.2 7.1 90.4 52.3 72.7 22.8 83.9 53.3 77.7 52.5 63.7 43.8 47.2

RangeNet53 64 × 2048 px 13.3 50.4 M 377.1 G 49.9 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2

RangeNet53++ 64 × 2048 px 12.8 - - 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9

PolarNet [44] 480 × 360 × 32 6.7 13.6 M 135.0 G 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5

MPF (ours) 64 × 512 px 33.7 - - 48.9 91.1 22.0 19.7 18.8 16.5 30.0 36.2 4.2 91.1 61.9 74.1 29.4 86.7 56.2 82.3 51.6 68.9 38.6 49.8

MPF (ours) 64 × 1024 px 28.5 - - 53.6 92.7 28.2 30.5 26.9 25.2 42.5 44.5 9.5 90.5 64.7 74.3 32.0 88.3 59.0 83.4 56.6 69.8 46.0 54.9

MPF (ours) 64 × 2048 px 20.6 3.18 M 27.0 G 55.5 93.4 30.2 38.3 26.1 28.5 48.1 46.1 18.1 90.6 62.3 74.5 30.6 88.5 59.7 83.5 59.7 69.2 49.7 58.1

Table 3: mIoU scores on SemanticKITTI test set 1. Our proposed MPF utilizes smaller number of parameters compared to

projection-based methods Rangenet53++ [23] and PolarNet [44] while maintaining higher segmentation results.

point-wise semantic label annotations for all scans in the

KITTI odometry dataset [9]. The dataset consists of over

43,000 360◦ LiDAR scans, divided into 11 training se-

quences for which ground-truth annotations are provided

and 11 test sequences. We used sequence 08 as our valida-

tion set and trained our networks on the other 10 sequences.

4.2. Training Configuration

4.2.1 Spherical View Model

The Spherical View Model was trained from scratch using

a combined objective function of Focal [19] and Lovász-

Softmax [3] losses:

Lspherical view model = Lfocal + Llovasz

Lfocal = −
∑

n

∑

i

(1− pn,i)
γ log(pn,i)

where pn,i is the probability of the ground-truth class at im-

age n and pixel i and γ is the focusing factor. For opti-

mization, SGD with 0.9 momentum, 0.0001 weight decay

and mini-batch of 8 was used. We also used Cosine An-

nealing scheduler with warm restart [22] for 5 cycles with

learning rate that starts at 0.05 and decreases till 0, and

cycle length of 30 epochs. Following similar works, the

model was trained with image sizes of 64x512, 64x 1024

and 64x2048.

4.2.2 Bird’s-Eye View Model

To train the Bird’s-Eye View Model, we used SGD with

one-cycle [34] learning and momentum annealing strategy.

1We included only peer-reviewed works in the study however there are

other interesting approaches that can be easily incorporated in our frame-

work such as SalsaNext [6] and SqueezeSegV3 [42].

Learning rate was cycled between 0.001 and 0.1, while mo-

mentum was cycled inversely to learning rate between 0.85
and 0.95. The model was trained for 30 epochs using cross

entropy loss and Lovász-Softmax loss:

Lbird′s−eye view model = Lcross entropy + Llovasz

Lcross entropy = −
∑

n

∑

i

log(pn,i)

where pn,i is the probability of the ground-truth class at im-

age n and pixel i. The model was trained only using images

of size 256x256.

4.2.3 Post-Processing

For post-processing, we used square kernels of size 3 for

both views to extract local windows centered at projected

pixels. Network predictions for sparse pixels (pixels that

have no corresponding 3D points) are ignored. Then to

compute the weight for each pixel, a Gaussian function is

used as described in Section 3.5 with σ = 1 to compute the

weights corresponding to different distances.

4.3. Data Augmentation

Data augmentation is considered an effective tool to im-

prove model generalization to unseen data. We therefore ap-

ply Spherical-View augmentation and Bird’s-Eye View aug-

mentation. In the former, the 3D point cloud is processed

by pipeline of four randomly executed (with 0.5 probabil-

ity) Affine transformations: translation parallel to y-axis,

rotation about z-axis, scaling around the origin and flipping

around y-axis. Augmentation is also applied after project-

ing the 3D point cloud onto 2D space. A CoarseDropout

function by [15] is used to drop pixels randomly by 0.005

probability and the image is cropped to half on the horizon-

tal axis starting from a randomly sampled coordinate.
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(a) RangeNet53++ (b) MPF (ours) (c) Ground Turth

Figure 3: Qualitative segmentation results on SemanticKITTI validation sequence 8 that compare our MPF framework against

RangeNet53++. Top: Our framework correctly segmented the ’person’ labeled in red. Middle: Our framework segmented the

’bicyclist’ object, a class rarely representated in the dataset, much better than RangeNet53++. Bottom: the MPF framework

correctly segmented the ’other-vehicle’ object (in upper middle location), which was completely missed by RangeNet53++.

In Bird’s-Eye View augmentation and prior to projecting

the point cloud on the x− y plane, the cloud is transformed

by applying random rotation around the z axis, scaling by

a uniformly sampled factor, translating in the x and y di-

rections and finally a random noise sampled from a normal

distribution with 0 mean and 0.2 standard deviation is ap-

plied to the z channel. Each of these operations is applied

with probability of 0.5.

4.4. Results

This section describes the performance of the pro-

posed Multi-Projection Fusion (MPF) framework. Table 3

presents the quantitative results obtained by the proposed

approach versus state-of-the-art point cloud semantic seg-

mentation methods on the SemanticKITTI test set over

19 classes. SemanticKITTI uses Intersection-over-Union

(IoU) metric to report per-class score:

IoU =
|P ∩G|
|P ∪G| (3)

where P and G are class points predictions and ground

truth, respectively. The mean IoU (mIoU) over all classes

is also reported. The scans per second rate are reported by

measuring combined projection and inference time (unlike

PolarNet [44] which reports inference time only) on a sin-

gle NVIDIA GeForce GTX 1080 Ti GPU card. The results

demonstrate that the proposed MPF framework achieves

the highest mIoU score across all baseline projection-based

methods while also having higher scans per second rate and

less parameters compared to RangeNet++ [23] and Polar-

Net [44]. Although 3D-methods achieves the highest mIOU

scores, it lags significantly in running time as shown in [36]

and [12].

Figure 1 show qualitative examples from the Se-

manticKITTI validation sequence where our proposed ap-

proach outperforms RangeNet53++ [23] in segmenting ob-

jects located far from LiDAR position. This is attributed to

using two independent complementary projections and in-

telligently fusing segmentation results of each projection.

It is worth mentioning that data augmentation described in

Section 4.3 improved validation mIoU by 2.7% for spher-

ical view model, 7.7% for bird’s-eye view model and an

overall improvement by 7.2% as shown in Table 4.

4.5. Ablation Study

4.5.1 Post-Processing

We studied the effect of different standard deviation values

on the performance of the Gaussian function used presented

in Algorithm 1. A grid search was used to jointly compute

the best values for the standard deviation used in both spher-

ical view and bird’s-eye view post-processing. As shown

in Figure 4, the results show that setting all standard devia-
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Figure 4: Post-processing σ values of spherical and bird’s-

eye views against validation mIoU. Top: Euclidean dis-

tance. Bottom: Manhattan distance.

Model
Without

Augmentation

With

Augmentation

Spherical view 39.9 42.6

Bird’s-eye view 33.6 41.3

MPF 44.5 51.7

Table 4: Ablation study on the effect of using augmentation

on validation mIoU score. The image size used for spherical

view model is 64x512.

tion values to 1 when using Manhattan distance consistently

yields the best results. We also tried larger sliding window

sizes but it did not improve the score and reduced the over-

all FPS of our framework. The best configurations from this

study were used for test submission.

4.5.2 Multi-Projection Fusion

We conducted several ablation studies to demonstrate the

efficacy of employing multiple projections as opposed to

single projection. In the first experiment, we investigate the

mIoU score of two established spherical projection models,

SqueezeSeg [40, 41] and RangeNet [26], with and without

the incorporation of the bird’s-eye projection in table 5. The

results demonstrate that fusion of information from more

than one projection significantly enhances the obtained seg-

mentation results despite using simple network model and

projected low-resolution images for the bird’s-eye view. It

can thus be concluded that using multiple projections of the

same point cloud does improve overall segmentation results

by providing additional information for model adaptation.

The second experiment shows that fusion helps to im-

prove mIoU score for both near and far points as seen in

Figure 5a. Since the majority of LiDAR points are typically

at distances < 20 meters, as shown in Figure 5b, a slight

improvement of framework performance for near distance

points can have a significant impact on the overall IoU re-

sults. It also observed that the performance of point cloud

(a) (b)

Figure 5: (a) The mIoU score vs. distance for near and

far points. Spherical view image of size 512 used in this

experiment. (b) Number of points in the validation set vs.

distance.

Network Size W/o fusion W fusion

SqueezeSeg[40] 2048 30.5 44.3

SqueezeSegV2[41] 2048 40.4 48.6

RangeNet53++[23] 512 37.5 44.4

RangeNet53++ 1024 36.5 42.2

RangeNet53++ 2048 50.3 55.4

MPF (ours) 512 42.6 51.7

MPF (ours) 1024 48.5 55.7

MPF (ours) 2048 50.7 57.0

Table 5: Results of adding the bird’s-eye projection to single

spherical projection models on SemanticKITTI validation

set.

segmentation using spherical view projections degrades for

points farther away from the LiDAR position. Unlike spher-

ical view images, the bird’s-eye view images use Cartesian

coordinates which means the pixels of the image correspond

to uniform 3D elements whose spatial resolution does not

change as we go farther from the LiDAR position which

makes segmentation results independent of point distances.

5. Conclusions and Future Work

This paper presented a novel multi-projection fusion

framework for point cloud semantic segmentation by us-

ing spherical and bird’s-eye view projections and fusion of

results using soft voting mechanism. The proposed frame-

work achieves improved segmentation results over single

projection methods while having higher throughput. Future

work directions include combining both projections into

a single multi-view unified model and investigating using

more than two projections within the framework.
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