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Abstract

In this paper, we propose the generative patch prior

(GPP) that defines a generative prior for compressive image

recovery, based on patch-manifold models. Unlike learned,

image-level priors that are restricted to the range space of

a pre-trained generator, GPP can recover a wide variety of

natural images using a pre-trained patch generator. Addi-

tionally, GPP retains the benefits of generative priors like

high reconstruction quality at extremely low sensing rates,

while also being much more generally applicable. We show

that GPP outperforms several unsupervised and supervised

techniques on three different sensing models – linear com-

pressive sensing with known, and unknown calibration set-

tings, and the non-linear phase retrieval problem. Finally,

we propose an alternating optimization strategy using GPP

for joint calibration-and-reconstruction which performs fa-

vorably against several baselines on a real world, un-

calibrated compressive sensing dataset. The code and mod-

els for GPP are available on github. 1.

1. Introduction

Deep generative priors have proven to be an effective al-

ternative to supervised methods in a variety of inverse prob-

lems from compressive sensing [6], inpainting [59], to blind

recovery [20, 3]. These priors are expressed using Gener-

ative Adversarial Networks (GAN) [17] or Variational Au-

toencoders (VAE) [29], which are pre-trained to approxi-

mate the image manifold. The solution to the inverse prob-

lem is then constrained to lie on this manifold via optimiz-

ing in the latent space of the generative model. Due to their

ability to characterize the image manifold better than more

1https://github.com/rushilanirudh/GPP

traditional priors like sparsity [9] or total variation [32],

these learned priors work well in recovering the true sig-

nal, particularly under extreme sensing scenarios with very

few observations. However, they are not applicable when

the image to be recovered lies far away from the modes of

the training distribution. As a result, generative priors to-

day are only applicable for specific domains on which high

quality GANs (and therefore better generative priors) can

be trained, such as digits or faces.

As such, a generic generative prior that is able to aid in

recovering high quality, and high resolution natural images

does not exist today. This is partly owing to the fact that

training an unconditional GAN on a dataset like ImageNet

[50] remains a challenge due to its complexity. Even if such

a generative model were trained, it is still likely to be lim-

ited in the resolution and aspect ratios of images that can

be recovered. Accordingly, we hypothesize that there ex-

ists a trade-off between generalizability of the prior (i.e.,

ability to recover a wide variety of images) versus its effi-

ciency, (i.e. effectiveness in recovering accurate solutions

with few observations). As an example, traditional priors

like sparsity and more recently untrained network priors

[55] generalize better because they make fewer assumptions

on the properties of the image manifold, but they suffer from

poor quality of image reconstruction under few observa-

tions. In contrast, high quality generative priors have been

shown to be highly efficient [6, 51], while being applicable

only to images from the training distribution. Another issue

with most existing priors, including generative priors, is that

they require knowledge of the exact measurement operator,

which is unrealistic in a real world application where there

are bound to be issues like sensor drift or environmental and

hardware artifacts that may not be explained away by noisy

observations. These are typically corrected by sensor cali-

bration, requiring human intervention that is expensive and
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impractical. On the other hand, not accounting for these

calibration artifacts can severely degrade the performance

of existing techniques.

In this paper, we address these issues for the problem of

compressive image recovery [9, 56] using a deep genera-

tive patch model that relaxes the prior from the image level

to the patch level. We call this the Generative Patch Prior

(GPP), and it exploits the relatively simpler parameteriza-

tion of the patch manifold, instead of the image manifold,

using a generative adversarial network. Since GPP is de-

fined at the patch level, it generalizes better than existing

generative image priors, to a variety of natural images as

well as images of arbitrary size and aspect ratio. In terms

of the generalizability vs efficiency trade-off, GPP is signif-

icantly more generalizable (but less efficient) than a gener-

ative image prior, while also being more efficient (but less

generalizable) than existing unsupervised priors, making it

much more practically applicable compared to both. Figure

1 demonstrates the recovery process using GPP on a previ-

ously unseen, high resolution image.

Within compressive imaging, the idea of using patch-

manifolds can be further motivated by practical hardware

acquisition conditions since measurement matrices for very

high-resolution images can become impractically large. As

a result, many practical compressive imagers are actually

implemented as patch-level or block-compressive imagers

(c.f. [27]). This means compressive measurements are in-

deed taken at the patch level, thus recovering the patches

and then composing them into a picture requires a proper

patch-manifold prior with a compositional prior. Further,

practical CS imagers need an additional layer of calibration

due to slight misalignment between the photo-sensor and

the compressive optical elements. Usually, this calibration

is done as a pre-processing step and fixed, but is prone to er-

ror and drift over time. To overcome this drawback, we ad-

ditionally propose a self-calibrating (SC) mechanism using

generative priors, i.e., a recovery process that is able to ad-

just automatically to the required calibration setting. We as-

sume a scale and shift calibration model, which accounts for

common calibration issues like sensor gain or other physical

changes in the measurement process. We demonstrate em-

pirically that GPP outperforms several unsupervised priors,

including recent untrained network-based priors [55, 26].

Main contributions:

1. We propose the generative patch prior (GPP )– which

enhances the applicability of generative priors to the

entire set of natural images, as opposed to only being

restricted to the training distribution.

2. We show that the patch manifold can be approximated

well by standard datasets (like CIFAR), for high qual-

ity CS image recovery, compared to existing unsuper-

vised priors.

3. We extend the idea of self-calibration for generative

priors, which minimizes the need to intervene for man-

ual sensor-level calibration in compressive imaging

systems.

4. Finally, we demonstrate that the proposed prior and

calibration model achieves significantly better recon-

struction quality on un-calibrated measurements ob-

tained from a real block compressive imager validat-

ing our approach under real unknown sensor noise and

calibration.

2. Background

2.1. Preliminaries

Consider a vectorized square block of an image x ∈
X ⊂ R

n which we want to sense, and denote by y ∈
R

m the compressive measurements obtained by the sensor.

Given a measurement matrix Φ ∈ R
m×n, with m < n

and Φi,j ∼ N (0, 1), the compressive recovery problem is

to estimate x accurately from y. We consider three differ-

ent sensing scenarios in this paper to benchmark the per-

formance of the proposed patch-based prior–(a) Compres-

sive sensing with known calibration (i.e. the ideal setting):

y = Φx; (b) Compressive sensing with unknown calibra-

tion: y = (aΦ + b1)x, where a, b ∈ R
1 are unknown cali-

bration parameters and have to be estimated, and 1 ∈ R
m×n

is a matrix of the same size as Φ with 1s; and finally (c)

Compressive phase retrieval, which has non-linear forward

process defined by y = |Φx|.
As m < n, reconstructing x from y in any of the above

models is an ill-posed inverse problem and therefore has in-

finite number of feasible solutions. We define the Measure-

ment Rate (MR) to be the ratio m
n

. However, if we have ad-

ditional knowledge about the structure of the solution space

X (in this paper, implicitly via the set of natural patches),

it is possible to recover x nearly perfectly given m is suffi-

ciently high and with graceful degradation as m is reduced.

2.2. Related Work

Priors for Inverse Problems: Some of the most ef-

fective early work on designing priors for inverse prob-

lems came in the form of sparsity/compressibility in the

wavelet and gradient domains [9, 8, 42, 7, 57] and hand-

crafted prior models that were constructed based on such

observations. Subsequently, more complex models were

proposed such as wavelet trees and block sparsity [4, 25],

non-local low-rank regularization [13] and denoiser-based

regularization [39]. These models are ineffective at low

measurement rates (< 0.1) and extremely slow in terms

of computational complexity. For a given Φ, supervised

deep learning based methods have addressed these issues,

like denoising autoencoders [41], or convolutional neural
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Figure 1: CS Recovery with GPP: The generative patch prior is able to capture the diversity of the natural image manifold with a single

pre-trained GAN irrespective of the size or aspect ratio, unlike existing generative priors that do not generalize outside of their training

distribution. Here, we illustrate the recovery process (without any post processing) at a measurement rate of 10%. The original image is of

size 1536× 1024, and is recovered by a GAN trained on CIFAR-C [23] of size 32× 32.

networks (CNNs) [31, 5, 43, 49]. These ideas have also

been extended to the phase retrieval setting in applications

such as Fourier Ptychography [5]. While these trained mod-

els do not work with new Φs straight away, there has been

work to make them more adaptable [37]. Another class of

algorithms is obtained by unrolling/unfolding iterative algo-

rithms which combines the advantages of the model-based

and data-driven approaches, where a neural network serves

as a sparsifying transform [18, 54, 61], a learned denoiser

[38, 40], or a projector onto the image manifold [48]. These

methods overcome the drawbacks of earlier methods. How-

ever, they still rely on paired data for training. Some of

these requirements are addressed by [58], where the im-

age reconstruction algorithm is trained entirely using only

the measurements for a given measurement operator. The

limitation of paired training data can be overcome by us-

ing deep trained/untrained priors, which have the represen-

tational power of deep neural networks, while not requiring

paired training like classical approaches. Trained priors like

generative models [6, 51, 21, 53], and untrained network

priors like deep image prior [55, 22, 26] have been empiri-

cally shown to be useful compared to traditional priors for

solving ill-posed problems in imaging. However, existing

generative priors don’t generalize out of distribution, and

untrained network priors are extremely slow and fail under

low sensing regimes; both of which are addressed by our

proposed method, GPP.

Self Calibration: In compressive sensing, the idea of

self-calibration has been extensively studied as the prob-

lem of basis mismatch [10, 33], although it is studied in

the context of more traditional image priors such as sparsity

in some spectral basis, whereas our focus is on more re-

cent generative priors. More generally, the self-calibration

problem has been studied in different contexts like medi-

cal imaging [19], camera self-calibration [46] and in other

bi-linear inverse problems [34]. The SC problem is also in-

directly related to several recent efforts in solving problems

‘blindly’, with unknown corruptions [2], filters [58, 3], or

demodulation [20].

Patch-based models: Since smaller patches are sta-

tistically simpler and easier to model than entire image,

priors designed from on image patches have been used

in computer vision and image processing for a long time

[15, 45, 44, 11]. GPP is also related to patch-based dictio-

nary learning approaches used for denoising problems like

KSVD [14] where we expect the patch generator to act as

a more powerful, non-linear basis than the one learned us-

ing KSVD. More recently, deep learning based on patches

from a single image have emerged as powerful regularizers

like in untrained network priors [60], and generative models

[52], and inverse imaging [16]. These approaches do not fo-

cus on approximating the space of the entire patch manifold

that can serve as a generic image prior, instead focusing on

space of patches related to a single image.

3. A patch-manifold based generative prior for

natural images

While generative image priors have been reasonably suc-

cessful in solving under-constrained inverse problems for

low-resolution images (128 × 128), they do not generalize

to new domains that are not represented by the training dis-

tribution and are difficult to scale up to higher resolution

natural images partly because the measurement operators

for such images can become impractically large. Further, it

remains extremely challenging to train a generative model

to approximate the entire natural image manifold of com-

plex, high resolution images. Instead, we propose a patch-

based generative model which addresses these problems.

As patches are assumed to be ‘small’ and with much simpler

spatial statistics than full images, the so-called “patch man-

ifold” [45] is therefore easier to parameterize when com-

pared to the true image manifold. This has been the driving

factor behind using patch-based models in computer vision

for the last two decades [15, 45, 11].

In this paper, we are interested in using a generative

adversarial network (GAN) [17] to approximate the patch

manifold. As a result, we are able to leverage the represen-

tational power of GANs, and provide a differentiable way

to project onto the true image manifold. To the best of our
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knowledge, there does not exist such a patch-based genera-

tive prior for inverse problems. Given an image x ∈ X , the

generative prior for images is implemented by constraining

the solution to the inverse problem, x to the range space of

a pre-trained generative model, {G(z)} ∀ z, where the G is

the generator, and z ∈ R
d is sampled from a known proba-

bility distribution like the uniform distribution U(0, 1). By

definition, this generative image prior can only recover im-

ages that are expressed by the G. Accordingly, the so-

lution to the inverse problem is given by x∗ = G(z∗),
where for a loss function L like the mean squared error,

z∗ = argmin
z∈[0,1]d L(y,Φ G(z)).

Generative Patch Prior: Formally, a patch is defined

as xp = F(x, c, τ), where c is the center of the patch with

width τ , on an image x defined on uniform grid [0, 1]2, and

F is the patch transform [11] which decomposes an im-

age into Np equally sized non-overlapping patches. First,

we train a GAN on a dataset of patches until convergence.

This dataset can be obtained either by using the patch trans-

form on a dataset with larger images like ImageNet [50],

or directly using a dataset with smaller images like CI-

FAR [30]. While traditional patch-based methods assume

much smaller patches (of size 4× 4 or 8× 8) to be texture-

features with mostly low frequency spatial information, we

find that datasets like CIFAR with relatively larger patches

can form effective learned priors. Once we have the pre-

trained GAN, the solution to the inverse problem with the

generative image prior is reformulated in terms of a patch-

based generator as follows:

z∗i = argmin
zi∈[0,1]d

L(yi,Φ G(zi)), ∀i = {1, . . . , Np}

and x∗ = F−1(G(z∗1), . . . ,G(z
∗

Np
)), (1)

where yi corresponds to the measurements obtained un-

der the measurement operator Φ for each individual patch,

and F−1 : P × P · · · × P 7→ X is the inverse patch trans-

form, which we also refer to as a compositional prior, and

takes a set of patches to produce the final image. Since we

treat the patches independently, under very few measure-

ments this can lead to blocking artifacts. This can be al-

leviated using a filtering mechanism like BM3D [12]. For

fairness, we compare all baselines with the same filtering

on the recovered image. Figure 1 shows the optimization

process for a high resolution image of size 1536 × 1024,

of non-standard aspect ratio recovered with a measurement

rate of 10%.

Relationship to generative image priors: GPP relaxes

the generative image prior to the level of a patch, and as

a result is far more applicable. The GPP can effectively

recover any natural image with nearly zero representation

error unlike GAN priors. The two become equivalent when

the size of the patch is equal to the size of the image, i.e.,

Np = 1. A generic unconditional GAN that approximates

the natural image manifold does not exist today, however,

in cases where GANs can be trained well like faces, ani-

mals, cars etc. it is expected that for an image from that

specific distribution, the GAN prior will outperform GPP at

low measurement rates. We explore these properties further

in the experiments section.

4. Self Calibration with GPP

Calibration model: We propose a form of self-

calibration (SC) that relaxes the need to know the exact Φ.

We assume a simple calibration model using two parame-

ters: Φ̃ = ã(Φ + b̃1), where ã ∈ R accounts for changes

in sensor gain (mapping maximum intensity color white to

1.0), b̃ ∈ R models unknown parameters in the measure-

ment operator with a simple bias term and 1 ∈ R
m×n

denotes a matrix of ones. For notational convenience, we

rewrite the calibration model as Φ̃ = aΦ+b1. The compres-

sive sensing problem is re-formulated as y = (aΦ + b1)x,

with three unknowns: a, b,x. For known a, b, i.e. a man-

ually calibrated measurement, x can be readily estimated

using (1) using the proposed GPP prior, or any other image-

prior. Note that the loss function for patch i now becomes:

L = ‖yi − (aΦ+ b1)xi)‖
2

(2)

where xi = G(zi) for some zi.

Solving for a and b: We use alternating minimization to

solve for the unknowns a, b,x∗. First, given an x from the

GPP model we estimate a, b assuming the current estimate

of x is the true solution. As our calibration model is linear

in a, b these can be solved exactly to minimize the cost in

Eqn. (2):

a∗ =
c1λ− cΦθ1

λ2 − θΦθ1
and b∗ =

c1 − a∗λ

θ1
, (3)

where we define scalar quantities for notational conve-

nience: cΦ = yTΦx, c1 = yT1x, θΦ = (Φx)T (Φx), θ1 =
(1x)T (1x), λ = (Φx)T (1x). It is easy to check that, in the

ideal case when y = Φx (i.e. no calibration is necessary),

c1 = λ; cΦ = θΦ and as a result we obtain a∗ = 1, b∗ = 0
as expected. The details of complete derivation and empiri-

cal convergence properties are available in the supplement.

The algorithm for self-calibration with GPP is shown in Al-

gorithm 1.

5. Experiments

In this section, we benchmark the performance of the

proposed GPP and other commonly used unsupervised

priors for compressive image recovery. We show that
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Algorithm 1 Self-calibration with the GPP

Input: Patch-wise observations yi, i = 1 . . . Np, Measurement

operator Φ, Pre-trained patch generator G.

Output: Recovered full Image x∗

∈ R
nNp , calibration parame-

ters a∗, b∗.

Input: Initialize: z
(0)
i ∼ U(0, I) for patches i = 1 . . . Np

1: while not converged do

2: x
(t)
i = G(zi) ∀ i = 1, . . . , Np

3: Given x
(t)
i , compute a

(t+1)
i , b

(t+1)
i from (3) ∀i

4: a(t+1)
← 1

Np

∑Np

i a
(t+1)
i ; and b(t+1)

←

1
Np

∑Np

i b
(t+1)
i

5: Compute cost L from (2)

6: Latent space optimization: z
(t+1)
i ← z

(t)
i − γg ∇zL ∀i

7: end while

8: x∗ = F−1(G(z∗1), . . . ,G(z
∗

Np
))

GPP serves as a highly effective prior under very low sens-

ing scenarios (1−10% measurement). We also demonstrate

the robustness of the proposed self-calibration by introduc-

ing artificial calibration errors in the form of gain (a) and

shift (b). Finally, we demonstrate that the combined model

GPP with self-calibration can recover very high quality im-

ages directly from un-calibrated measurements obtained us-

ing a real compressive imaging camera [31].

Deep generative patch model training In our experi-

ments we use non-overlapping patches of size of 32 × 32,

and train a DCGAN [47] for 100K iterations in TensorFlow.

We experiment with several different datasets to approx-

imate the patch manifold—tinyimagenet 2, Imagenette3,

CIFAR[30], CIFAR-C [23], and MIT Places [62]. In all

the following experiments we report results from the GAN

trained on CIFAR-C as the default.

5.1. Compressive Image recovery with GPP

We first study the problem of compressive sensing,

where we are provided with n measurements of an un-

known image obtained as a linear projection of a measure-

ment operator Φ, which is typically a Gaussian random ma-

trix. Our test image set consists of 7 standard images used

commonly to benchmark compressive sensing reconstruc-

tion algorithms. These images are grayscale, and of size

256× 256, therefore using non-overlapping patches of size

32×32, every image is represented as a batch of 2562

322 = 64
patches. The measurements are taken by vectorizing each

patch so our n = 322 = 1024, and Φ ∈ Rm×1024. We per-

form reconstruction using the two methods proposed here:

(i) GPP and (ii) GPP + SC, which also includes the self-

calibration step in addition to projected gradient descent

2https://tiny-imagenet.herokuapp.com/
3https://github.com/fastai/imagenette
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Figure 2: Approximating the patch-manifold with commonly

used image datasets. Here we train a patch-generator with each

dataset shown and use it as the backend for GPP. We evaluate it’s

effectiveness in the compressive image recovery problem at 10%
measurement rate and report average PSNR values.

(PGD) over the range of the patch-generator. We study the

performance in two settings – 1% measurement rate, where

m = 10, and 10% measurement rate with m = 102. We

use the Adam optimizer [28] in all our experiments. For

GPP , we use a learning rate (LR) of 5e − 3, and run PGD

for 1500 steps; for GPP +SC we use LR = 5e − 2 for the

first 200 iterations, and LR = 5e− 3 for the next 1800.

Baselines: In addition to popular unsupervised benchmarks

such as TVAL3[32], NLR-CS[13], and D-AMP[39], we im-

plement a patch version of deep image prior (DIP) [55] or

untrained network priors [26]. Here, we train a randomly

initialized network to predict a batch of image patches, in-

stead of a single image. We do this because it becomes

impractical to implement a dense measurement operator for

the full image of size 256 × 256, and we also observe that

the patch-wise version converges much quicker. We use the

same patch wise for comparison as in GPP with a LR =

5e− 4 and run it for 10000 iterations for each image.

Results: We report the results for 1% and 10% measure-

ment scenarios in table 1. In all the methods, we report

PSNR after post-processing with BM3D [12]. For DIP,

GPP , and GPP +SC we use σ = 0.25 for the 10% measure-

ment and σ = 0.5 for the 1% scenario, for the other base-

lines we report numbers on 33×33 sized patches from [31].

We see that the two proposed methods, GPP and GPP +SC

perform very similarly. As expected, using self-calibration

in addition to PGD optimization suffers a little when oper-

ating in ideal conditions. Yet, GPP +SC performs on par

with many unsupervised baseline methods. Next, we ob-

serve that in both the cases GPP outperforms all the com-

peting unsupervised methods. It is particularly notewor-

thy that for the 10% measurement case, the performance

of GPP is higher than patch-based supervised methods like

ReconNet [31] and SDA [41] (not shown in table) which

have an average PSNR of 24.09dB and 23.49dB, respec-

tively. In the 1% measurement case in table 1, we observe
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Method Barbara Parrot Lena Foreman Cameraman House Monarch Avg.

Measurement Rate 10%

TVAL3 [32] 22.21 23.16 24.16 28.74 21.92 26.32 21.16 23.95

NLR-CS [13] 14.67 14.16 15.33 13.56 14.22 14.80 14.67 14.49

D-AMP [39] 21.23 21.64 22.47 25.58 20.35 24.71 19.00 22.14

DIP [55, 26] 21.20 22.88 23.02 26.92 21.74 24.47 20.68 22.98

GPP +SC (ours) 22.18 23.27 21.95 28.11 21.18 26.41 19.46 23.22

GPP (ours) 22.19 23.78 24.21 29.05 21.61 26.99 21.72 24.22

Measurement Rate 1%

TVAL3 11.96 11.46 11.89 11.01 12.00 11.90 11.11 11.61

NLR-CS 5.86 5.44 6.27 4.25 6.31 5.29 6.71 5.73

D-AMP 5.48 5.09 5.96 3.83 5.64 5.02 6.20 5.31

DIP 14.07 12.83 14.68 13.53 12.42 14.89 13.64 13.72

GPP +SC (ours) 17.16 17.09 16.81 18.30 15.62 16.65 14.57 16.59

GPP (ours) 17.45 17.46 17.31 20.40 16.63 18.89 14.58 17.53

Table 1: PSNR (dB) for compressive image recovery under ideal operating conditions, i.e. the exact measurement operator Φ is known.

We observe that GPP performs favourably compared to several commonly used unsupervised priors, particularly with extremely few (1%)

measurements. Best performing method is shown in bold, and the second best is underlined.

that GPP and GPP +SC significantly outperform the state-

of-the-art unsupervised baselines considered by nearly 4dB
indicating the effectiveness of patch-based priors in extreme

sensing scenarios. An ablation on the choice of dataset to

construct GPP is shown in figure 2. We observe that CI-

FAR/ImageNet datasets form better priors when compared

to MIT Places, perhaps because MIT Places mostly con-

tains low frequency, smooth patches of natural locations,

whereas CIFAR contains a lot more high frequency spatial

information within each patch.

5.2. Properties of GPP

We examine the components of GPP in order to better

understand GPP’s behaviour. (a) Patch sizes: First, we

study the effect of the size of the patches – in a patch sensing

setup, as the size of patches become smaller, the number of

measurements available in each patch become correspond-

ingly fewer. On the other hand, a larger patch implies fewer

patches to compose an image, thereby limiting the details

that can be resolved. In the extreme, when the size of the

patch is equal to the size of the image, the GPP becomes

equivalent to generative priors that have been used recently

in inverse problems. In Figure 3(A), we show the average

PSNR with varying patch size, as expected we see that a

patch size of 32 seems to be optimal, with performance

degradation with increasing or decreasing sizes. (b) Ef-

fect of training DCGAN: Next, we study the importance of

training the DCGAN in figure 3(B), where we see that even

a partially trained patch-generator can give an improvement

over standard baselines. (c) Latent dimension of the patch

generator: Finally, in figure 3(C) we show how the per-

formance varies with varying dimensionality of the patch-

DCGAN. As expected, we observe quality increases with

an increased capacity of the generator, indicating that better

patch-generators can further improve image recovery, how-

ever this comes at a cost of more complexity in training the

generator. In all our experiments we use a patch size of 32,

and a latent dimensionality of d = 100.

GPP and generative image priors As noted earlier, GPP is

related to the GAN prior when the number of patches used

Np = 1. Here, we study how this affects the performance in

compressive image recovery. Since GAN priors, by design,

are restricted in their use on specific datasets on which they

are trained, we perform this experiment on the commonly

used CelebA Faces dataset [35]. Here we train a standard

DCGAN on a training set and perform CS recovery on 100

images from the test set using different number of measure-

ments. We also use the same GPP as before, trained on

CIFAR-C images as a comparison on the same CelebA test

images. These results are reported in table 2 and we remark

on a few observations. First, since these images are faces

we report both PSNR and SSIM evaluation metrics. Next,

as expected, we find that under very few observations the

Image-level generative prior works better simply because it

can find a similar face, whereas GPP cannot. On the oth-

erhand, once more observations are available, GPP outper-

forms the GAN prior on both metrics considered here be-

cause it is able to find the exact face better than the GAN

prior. A few recovered examples are shown in Figure 4.

Self-Calibrated image recovery from a physical com-

pressive camera Here we study a real world use case of

the self-calibrating mechanism in recovering high quality

images from patch-based measurements that obtained using

a real world compressive imaging system [27]. We use the

measurements collected under a measurement rate of 10%,
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A B C

Figure 3: (A) Ablation on Patch Size in GPP. PSNR (dB) is shown across two GAN variants DCGAN and Wasserstein GAN (WGAN). (B)

Comparing quality of reconstruction vs GAN training iterations. We see that even with a partially trained GAN backbone, GPP provides a

benefit over the next best performing methods. (C) Ablating the affect of latent dimension of the patch DCGAN.

True

GPP

CelebA

GAN

23.65

20.47

27.15

23.78

28.64

25.33

26.98

24.02

24.36

22.33

26.67

23.07

26.40

23.19

24.51

23.41

24.84

19.43

25.53

21.92

24.99

21.54

26.36

23.87

24.38

22.42

23.77

18.90

24.00

19.55

Figure 4: Comparing GPP’s performance on CelebA faces with a DCGAN trained on CelebA Faces for compressive image recovery with

50% measurement rate. See table 2 for quantitative comparisons. Here we use the same GPP model as before, trained using CIFAR-C

images with patches of size 16× 16 to recover CelebA faces.

Meas GAN Prior PSNR (dB) SSIM

5%
Image-level [6, 51] 19.170 0.4752

Patch-level (ours) 16.770 0.2597

15%
Image-level 21.367 0.5826

Patch-level 20.663 0.5294

50%
Image-level 22.913 0.6478

Patch-level 26.813 0.8261

Table 2: CS reconstruction on the 100 test images from the

CelebA Faces dataset [35]. Here, under very few observations the

image prior is better since it finds a ‘similar’ face. Yet with more

observations GPP outperforms even the GAN prior because it is

able to find the exact face.

provided by the authors of [31], [36], accessible online [1].

Following [31], the patches are 33 × 33, and so we resize

the output of the generator from 32×32 to match this patch

size. As expected, this setup requires manual calibration

in order to use existing algorithms out of the box, without

which they produce poor reconstructions. We show results

over 7 different un-calibrated measurements and their cor-

responding reconstructions in table 3. In order to compute

PSNR, we use the recovered image from every algorithm

and resize it to 256 × 256 so it is comparable to the origi-

nal, and scale it to have a maximum intensity of 1.0, which

itself acts as a simple calibration for the baselines. This nor-

malized image is compared to the ground truth to evaluate

fidelity. Finally, we process the reconstructions from all the

methods using BM3D [12], using σ = 0.25. In addition

to the baselines described previously, we also report results

from ISTA-Net[61] which is a supervised, state-of-the-art

CS reconstruction technique that also uses 33× 33 patches.

We also add a ”manual calibration” (MC) setting with GPP ,

where we use these estimates for a and b obtained using the

GPP +SC, and use only GPP (without SC) as if these cali-

bration parameters were known. Finally, for this setting we

train DIP for 50000 steps before observing convergence, for

both the un-calibrated and manually calibrated settings.

Results Table 3 shows performance in terms of PSNR. In

these experiments, we estimate the calibration parameters

to be a = 0.075 − 0.085; b = 0.0. The sensor gain a

varies for each image, which is expected since every im-

age may require slightly different calibration settings. In

the manual calibration setting, we use an average value

of a = 0.08, b = 0.0. We find that GPP +SC is able

to successfully recover a high quality image from the un-

calibrated measurements, unlike all baseline approaches, re-

sulting in a gain of 4dB over the next best unsupervised

method. We also observe that GPP +SC provides better re-

constructions when compared to ISTA-Net [61], which is

a supervised technique. For reference, we show the man-

ual calibration settings for both GPP , and DIP, and observe

that they are only marginally better than GPP +SC. A few

qualitative comparisons are shown in figure 5.
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Method Barbara Parrot Lena Foreman Cameraman House Boats Avg.

TVAL3 [32] 17.65 12.55 18.05 13.16 15.36 14.29 14.82 15.13

DIP [55, 26] 6.75 7.87 9.13 4.52 8.22 6.15 6.06 6.96

ISTA-Net[61] 18.95 16.23 19.19 15.94 17.11 18.01 16.14 17.37

GPP (ours) 12.78 12.66 13.50 10.73 13.32 12.77 11.83 12.54

DIP+SC 17.97 18.46 15.86 20.51 19.58 17.64 18.66 18.39

GPP +SC (ours) 18.21 20.01 20.32 20.68 16.33 20.47 18.29 19.20

DIP+Manual calib. 18.88 19.67 19.97 19.59 19.64 19.74 17.57 19.29

GPP +Manual calib. 19.06 20.23 20.43 19.97 19.52 20.22 17.87 19.61

Table 3: Real CS dataset: PSNR (dB) is shown for 7 test images obtained using real, un-calibrated measurements [36] from a patch-

based compressive camera at MR = 10%. The proposed self-calibration improves the quality of recovered images significantly compared

with baselines that require manual calibration.

True TVAL3 ISTANet DIP+SCGPP GPP+SC DIP+MC GPP+MC

18.21112.78317.654 18.949 18.21117.97017.654 18.949 18.882 19.056

20.09912.66412.554 16.233 18.461

20.510 20.685
10.72913.160 15.940 19.97019.590

19.670 20.234

Calibrated methods

Figure 5: Sample reconstructions on un-calibrated measurements from a real compressive imaging system. PSNR (dB) is

shown at the bottom right of each image. MC refers to manual calibration, using parameters obtained using GPP +SC. For

the real data, we estimate the unknown calibration parameters to be around a = 0.08, b = 0.0. We don’t show DIP results

here because it performs very poorly compared to other baselines.

Method Avg. PSNR (dB)

DIP [55, 26] 18.439

GPP (ours) 22.616

Table 4: Phase Retrieval at a measurement rate of 10%.

Compressive Phase Retrieval Finally, we evaluate

GPP on the non-linear inverse problem of phase recovery

in compressive sensing. We use the same experimental set-

tings as in the linear compressive sensing case. We imple-

ment the alternating phase projected gradient descent de-

scribed (APPGD) in [24], which is shown to have better

performance compared to other gradient descent based op-

timization methods. We compare against the deep image

prior (DIP) method, recently used in [26] for phase retrieval

and show favourable performance for the 10% measurement

case shown in table 4.

6. Discussion

We presented a new kind of deep prior called the gen-
erative patch prior (GPP) which uses a GAN trained on

patches instead of full sized images as a learned prior for
inverse problems. Using GPP, we address the problem of
compressive image recovery and show that GPP has many
favourable properties compared to existing generative pri-
ors – it is more broadly applicable to a wide variety of im-
ages not seen during training, or images or arbitrary sizes
and aspect ratios. We also see that GPP outperforms several
commonly used learned and model priors in compressive
sensing and compressive phase retrieval tasks. We also pro-
pose a self-calibration mechanism that enables the model
to estimate and adjust to calibration artifacts automatically.
Finally, we validate this mechanism and the GPP on a real,
un-calibrated compressive sensing dataset and demonstrate
that the proposed performs well without requiring manual
calibration unlike existing methods.
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