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Abstract

Deep learning models such as Resnets have resulted in

state-of-the-art accuracy in many computer vision prob-

lems. Neural ordinary differential equations (NODE) pro-

vides a continuous depth generalization of Resnets and

overcome drawbacks of Resnet such as model selection and

parameter complexity. Though NODE is more robust than

Resnet, we find that NODE based architectures are still far

away from providing robustness and uncertainty handling

required for many computer vision problems. We propose

novel NODE models which address these drawbacks. In

particular, we propose Gaussian processes (GPs) to model

the fully connected neural networks in NODE (NODE-GP)

to improve robustness and uncertainty handling capabili-

ties of NODE. The proposed model is flexible to accommo-

date different NODE architectures, and further improves the

model selection capabilities in NODEs. We also find that

numerical techniques play an important role in modelling

NODE robustness, and propose to use different numerical

techniques to improve NODE robustness. We demonstrate

the superior robustness and uncertainty handling capabili-

ties of proposed models on adversarial attacks and out-of-

distribution experiments for the image classification tasks.

1. Introduction

The ability of deep learning models to capture rich rep-

resentations of high dimensional data has lead to successful

application in computer vision problems like image classi-

fication [15, 13], image captioning [25]. The backbone of

many of the recent computer vision tasks are deep learning

mode1s such as Resnets [13]. They allowed deep learning

models to solve complex computer vision tasks by training

deep neural networks with more than 100 layers without

suffering from vanishing gradient problem. Resnets achieve

this using residual connections where input at any layer is

added to the output of that layer.

Recently, generalization of Resnet based models was

introduced, inspired by ordinary differential equations

(ODE) [4, 10]. An ODE parameterized by a neural net-

work can be seen to generalize the Resnets to arbitrarily or

infinitely many layers. Such neural ODE (NODE) models

have been shown to achieve performance close to Resnet but

with a smaller number of parameters. In addition, model

selection is also easy with these models as the numerical

solver for ODE can automatically determine the number of

layers. Like in Resnets, the representations learnt through

NODE block are finally mapped to the output through a

fully connected neural network (FCNN). NODEs are also

shown to be more robust than convolutional neural networks

(CNN) [12].

To achieve a generalization performance similar to

Resnet architecture, variants of NODE were proposed [10,

5]. They improve generalization performance by concate-

nating ODE blocks or by adding extra dimensions. When

these models are used in high risk domains such as medi-

cal [1, 2] and autonomous driving [7], the model should be

robust and be able to handle uncertainty well. However, we

find that the neural ODE model fails to achieve robustness

and uncertainty modelling capabilities required for these

real world applications. They perform poorly on adversarial

attacks which injects adversarial noise to the data [11, 21].

They may classify an out-of-sample data to a wrong class

with high probability. We propose to address these draw-

backs in Neural ODE through the use of Bayesian non-

parametric approaches like Gaussian processes and through

more stable numerical solvers for NODEs.

Bayesian models exhibit good robustness and excellent

uncertainty modelling capabilities [9, 8]. In particular,

Gaussian processes (GPs) [26] are useful for modelling un-

certainty due to their fully Bayesian non-parametric nature.

GPs can accurately model predictive uncertainty and pro-

vide a more meaningful predictive probabilities. Further, it

reduces model selection efforts to a great extent and facili-

tates hyper-parameter estimation through the marginal like-

lihood. These properties have lead to their use in various
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real world problems [22], active learning [17] and global

optimization such as Bayesian optimization [23].

We propose a flexible and scalable approach to incor-

porate uncertainty modeling capabilities in NODE by re-

placing the final fully connected neural networks with GPs

(NODE-GPs). Alternatively, this can be seen as a GP whose

kernel takes feature representation provided by NODE as

input. Such an approach is shown to have very good ro-

bustness and uncertainty modeling capabilities without af-

fecting generalization performance of deep learning mod-

els [27, 28]. Moreover, this will also contribute towards

reducing model selection efforts by avoiding the require-

ment to select the FCNN architecture. Thus, the proposed

approach further elevates the advantages of NODE for deep

learning through better uncertainty modelling and reduced

model selection effort. Further, the proposed model offers

flexibility to incorporate different kinds of NODE architec-

tures such as ANODE [10] and numerical techniques easily.

To the best of our knowledge, the role of numerical meth-

ods on robustness capabilities of NODE have not been stud-

ied in the literature before. We investigate different nu-

merical techniques and show that the robustness properties

of the NODE are affected by the numerical method used.

We demonstrate that NODE using higher order numerical

methods are more robust. To trade-off robustness and com-

putational cost, we propose a mixed order numerical tech-

nique for NODE with different NODE blocks using differ-

ent order numerical methods. The proposed mixed order

numerical technique for NODE which when combined with

GPs showed a superior robustness and uncertainty model-

ing capabilities on adversarial attack and out-of-distribution

(OOD) experiments on image classification problems.

Our contributions can be summarized as follows:

• Propose a novel model which combines NODE based

architecture and GP (NODE-GP) to improve uncer-

tainty handling in NODE.

• Demonstrating that numerical method affects NODE

robustness and proposing a mixed order numerical

method for NODE to improve its robustness.

• Using mixed order numerical technique in NODE-GPs

and demonstrating the superior robustness and uncer-

tainty modelling capabilities through adversarial at-

tacks and OOD experiments.

In the following section, we introduce the necessary back-

ground required, followed by proposed methodology and

experimental setup. In the experiments section, we demon-

strate the robustness and uncertainty handling capabilities

of the proposed model on image classification.

2. Related Work

NODE [4] is a generalization of Resnet [13] as con-

tinuous approximation of intermediate feature vectors of a

Residual block. In [4] a memory efficient adjoint method

was proposed for computing the gradients of parameters.

This approach lead to a series of works [10, 5, 6] by address-

ing the issues in [4]. Stochastic variants of NODE [16, 20]

were also proposed but the evaluation of their proposed

methods are restricted to simple architectures. To achieve

similar generalization performance compared with Resnet

architecture, [10] proposed a modified adjoint approach

which address the issue of computing incorrect gradients

in [4]. The approach [10] allow concatenation of NODE

blocks to achieve a similar accuracy compared to an equiv-

alent Resnet architecture, but is restricted to the usage of

discrete numerical methods with fixed step-sizes. It was

shown in [12] that NODE [4] is robust to adversarial at-

tacks compared to similar size DNN architecture, but again

restricted to simple architecture. Although [10] achieves a

good generalization performance, we show in our experi-

ments [10] can be easily fooled with adversarial attacks

and lack uncertainty modeling capabilities.

3. Background

Let D = {X,y} = {(xi, yi)}
N
i=1 be set of training data

points with xi ∈ RD and yi ∈ {1, . . . , C}. We denote

the test data point as (x∗, y∗). The aim is to learn a func-

tion which maps input from the data x to a class label y so

that it will have good generalization performance. Let g be

the function learnt using a neural network model, while the

function learnt using Gaussian processes to be denoted by

f . For a deep learning model such as Resnet composed of

multiple blocks, we denote a block i as gi(x, θθθi). The hid-

den layers in a neural network are denoted as hi. In this

section, we will provide background information required

to understand the proposed model.

3.1. Ordinary Differential Equation(ODE)

Ordinary differential equations (ODE) occur in many

real world problems like predicting the motion of objects,

and change in rate of GDP. For instance, an ODE is written

as
dst

dt
= g(t, st) (1)

where st ∈ R
d, g : Rd+1 → R

d. We will focus on initial

value problems (IVP), i.e. given initial state s0 we want to

compute state value sT at time T .

sT = s0 +

∫ T

0

g(t, st)dt (2)

Unfortunately, solutions for most of the ODE cannot be ob-

tained in a closed form. Numerical methods such as the
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Figure 1. Comparing the solutions computed using Euler and RK4

Euler method and Runge-Kutta4 (RK4) come for the rescue

to approximate the solution.

The Euler method is a simple one step method. The pa-

rameter required is the step-size dt. The final value sT is

obtained by iteratively updating the values as

st+1 = st + dt g(t, st) (3)

RK4 method is a four step method and approximates the

solution closer to the actual compared to Euler method.

k1 = g(t, st) ; k2 = g(t+ dt
2 , st + dtk1

2 )

k3 = g(t+ dt
2 st + dtk2

2 );k4 = g(t+ dt, st + dtk3)

st+dt = st + dt 16 (k1 + 2k2 + 2k3 + k4) (4)

Here, k1 is the slope at point (t, st), k2 is an estimate of

the slope at the midpoint (t+ dt
2 , st + dtk1

2 ) obtained using

slope k1 to step half-way through the time step. Similarly,

k3 and k4 are obtained and the next value st+dt is obtained

by taking a step towards the weighted average of slopes. To

illustrate the differences between RK4 and Euler numerical

methods, let us consider a simple ODE ds
dt

= st with given

initial value at t = 0 as s0. True solution of the given ODE

is st = exp(t)s0. Figure 1 illustrates the solutions com-

puted using RK4 and Euler method, we can observe RK4

method is overlapping with the true solution whereas solu-

tion using Euler method is moving further away from true

solution over time.

3.2. Neural Ordinary Differential Equations

Deep learning models such as Resnets learn a sequence

of transformation by mapping input xi to output yi. In a

Resnet block, computation of a hidden layer representation

can be expressed using the following transformation.

ht+1 = ht + gt(ht, θθθt) (5)

where ht is a feature vector with t ∈ {0...T} and g is a

neural network parameterized by parameters θθθt. If we use

the same transformation at every step, Equation 5 can be

written as

ht+1 = ht + g(ht, θθθ), (6)

and this is equivalent to computing the trajectory of the fol-

lowing ODE using Euler method with step size one.

dht

dt
= g(ht, θθθ) (7)

NODE [4] has taken a step further by modeling continu-

ous transformation of feature vectors in the limiting case of

step size tending to zero. Given initial feature vector h0, the

final feature vector hT can be computed by solving the ODE

h′
t = g(ht, θθθ) parameterized by θθθ. On the obtained fea-

ture vector hT necessary transformations are applied using

a fully connected neural network (FCNN), involving mul-

tiple linear mapping and activations to predict class prob-

abilities. Using cross-entropy loss function and stochastic

mini-batch gradients the parameters of the model are up-

dated using memory efficient adjoint based approach.

Variants of NODE [10, 5] are proposed which can

achieve a generalization capability same as Resnets [13].

It consists of multiple NODE blocks, each NODE block Bi

given initial feature vector hi
0, using an assigned numeri-

cal method computes intermediate feature vectors hi
t, t ∈

{0, 1, ..T} using the function gi(h
i
t, θθθi) parameterized by

θθθi. The feature vector hi
T obtained from current block Bi

then undergo necessary transformation to match the dimen-

sion required for processing in block Bi+1. The final fea-

ture vector from the final Block is transformed through a

FCNN to predict class probabilities. Still, NODE and its

variants lack the uncertainty modelling and robustness ca-

pabilities as observed in our experiments.

3.3. Gaussian process

Gaussian processes (GPs) provide a Bayesian non-

parametric approach to learning functions. A GP prior de-

fined over the function can determine various properties of

the functions like their smoothness, and stationarity. This

can be specified using the mean function m(x) and covari-

ance function or kernel k(x,x′) associated with a GP. A

commonly used kernel is the radial basis function (RBF)

kernel k(x,x′) = exp(− 1
2ℓ2 ||x − x′||2), where ℓ2 (length)

represents the wiggliness of the function and is learnt from

the data. Assuming f(x) is a function sampled from a zero

mean GP, we can write f = f(X) to follow a Gaussian

distribution. f ∼ N (0, k(X,X))
In regression, the output y lies around a latent function

f(x) sampled from a GP as y|f(x) ∼ N (y; f(x), σ2
I ).

The posterior distribution over the latent function is ob-

tained by combining the prior over f and the likelihood

through Bayes theorem.

p(f |y) =

∏N

n=1 p (yn|f(xn)) p(f)

p(y)
(8)

The learning in GPs involves estimating hyper-

parameters like ℓ2 from the marginal likelihood, p(y) ∼
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N (0, k(X,X) + σ2I). This involves a complexity of

O(N3) due to matrix inversion (KX,X + σ2I)−1 over

N × N matrix, where N is the number of training sam-

ples. To avoid the cubic complexity sparse approximations

of full GP were proposed which reduces the complexity to

O(M2N), where M << N is the number of inducing

inputs [24]. For the classification task, the likelihood of

the model p(y|f(x)) is a softmax function and models the

probability of generating the output given the latent func-

tion value. However, due to the non-Gaussian nature of the

likelihood, approximate inference techniques such as varia-

tional inference are employed to get the marginal likelihood

and posterior [14, 3].

3.4. Adversarial Attacks and Uncertainty modelling

In order to study the robustness of models we consider

two scenarios : Adversarial attacks and uncertainty mod-

elling on out-of-distribution data. Adversarial attacks aim

to generate examples which can fool deep learning models

to predict a wrong class. We discuss two adversarial attacks

namely Fast Gradient Sign Method (FGSM) [11] and Pro-

jective Gradient Descent (PGD) [21] which are helpful to

determine robustness of the model.

• Fast Gradient Sign Method(FGSM) It is a one step

white-box adversarial attack, where the adversary has

access to the entire model. Given a sample im-

age x∗, gradient of loss with respect to each pixel

∇x∗
L(θθθ,x∗, y∗) is computed and a proportion of the

computed gradient is added to the original image.

Thus, x̃∗ = x∗+ ǫ sign(∇x∗
L(θθθ,x∗, y∗)). It involves

a hyperparameter ǫ which is the strength of the gradi-

ent added to the image 1.

• Projective Gradient Descent(PGD) Unlike FGSM

attack PGD attack is considered to be a powerful

white-box attack. PGD is an iterative algorithm, at ev-

ery step xt+1
∗ it computes the gradients of loss with

respect to each pixel ∇x∗
L(θθθ,x∗, y∗), and a propor-

tion of the computed gradient is added to the origi-

nal image to get an adversarial image. To avoid too

much dissimilarity between the actual and perturbed,

the perturbed image is projected back into a feasible set

around the actual image based on the provided lp norm.

In our experiments we choose l∞ norm. We have

to provide necessary hyperparameters like number of

steps n,radius ǫ used for constructing the feasible set

S(ǫ) around the sample x∗ with induced norm which

we choose l∞
2. Assuming

∏
as projection operator,

xt+1
∗ =

∏
(x∗+S(ǫ))(x

t
∗ + η sign(∇x∗

L(θθθ,x∗, y∗))).

1As our data set are normalized, we test the model performance on ǫ

ranging from 0.05 to 0.3.
2In our experiments, we choose n = 10, ǫ value varies from 0.05 to

0.3 and the step size η is 0.01.

3.4.1 Uncertainty Modelling

DNN models excel in generalization when the testing sam-

ple (x∗, y∗) are from the same as training data distribution.

An ideal model should exhibit the necessary feedback when

models are fed with test samples from a different distribu-

tion. We want our model to exhibit high uncertainty in this

case. We discuss two metrics to measure uncertainty, Vari-

ation Ratio and Entropy.

• Variation Ratio(VR): It is a measure of spread around

the mode of class probabilities. Variation ratio can be

computed as follows V R[x∗] := 1−maxy∗
p(y∗|x∗).

If the datapoint is not from the training data distribu-

tion or model is uncertain about its true class, we ex-

pect to have lower predictive probability, and conse-

quently a larger VR score.

• Entropy: It captures the information content and

uncertainties in the predictive distribution. It

measures the spread of the probability distribu-

tion not just over the maximum class but over all

the classes. Entropy is computed as H[x∗] :=
−
∑

c p(y∗c|x∗) log p(y∗c|x∗)) and is maximum when

the predictive distribution is uniformly distributed

across the classes and close to zero when it is high for

one particular class.

4. Proposed Methodology

In this section we propose a novel model which inher-

its the properties of NODE based deep learning models and

Bayesian non-parametric Gaussian process. This model ad-

dresses the drawbacks of NODE and equivalent Resnet in

terms of uncertainty handling and robustness. We also dis-

cuss the impact of numerical techniques used in NODE

models for robustness and propose different NODE archi-

tectures based on this observation.

4.1. Combining Neural ODE with GPs

Bayesian learning models compute the predictions by

taking expectation over posterior distribution [9]. This al-

lows them to capture the uncertainty in the model predic-

tion and make them more robust against adversarial attacks.

In particular, we consider Bayesian non-parametric models

such as Gaussian processes, and an approach to combine the

predictive modelling capabilities of GPs into Neural ODEs.

Combining neural network representations with GPs were

shown to have good uncertainty modelling capabilities [28].

The proposed model NODE-GP replaces the fully con-

nected neural network part in the NODE architecture with

Gaussian processes. The neural ODE blocks transforms the

input to some latent representation. The latent representa-

tion is then passed through the GP layer to predict the output
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Figure 2. Proposed NODE-GP model combining NODE network with GPs in the final layer.

label. NODE-GPs are quite flexible and can consider any

variants of the Neural ODE model before passing it through

the final GP layer. Due to the GP final layer, training in

NODE-GP is not straightforward. It involves considerable

changes in the objective function especially due to the in-

tractable inference in GPs when used for image classifica-

tion. The loss function considers the GP marginal likeli-

hood or an approximation to it obtained using an appro-

priate inference technique. The Bayesian non-parametric

properties of GPs will also improve model selection capa-

bility of NODE and reduce the effective number of param-

eters. Figure 2 provides an outline of our proposed model

where NODE blocks of different complexity are concate-

nated together with GPs in the final layer to form NODE-

GPs.

From the point of view of GPs, the functions sampled

from GPs are now defined on a feature vector obtained

through multiple NODE block transformations. Let us as-

sume there are R NODE blocks, each with a neural network

transformation gi(h
i
t, θθθi), finally resulting in a Q dimen-

sional feature vector hR
T . Let the final representation over

all the data points be represented as HR
T . Typically, the size

of the representation is high and Gaussian processes strug-

gle with a high dimensional data. Following [28], P inde-

pendent GPs are considered with kernels k1, k2..kP applied

on the subsets of features in the Q dimensional feature vec-

tor. These GP outputs are then linearly mixed using a matrix

A of size P ×C and this captures the correlations across la-

tent function values associated with class labels. The class

probabilities are obtained by applying a Softmax function

as the likelihood. For a data point, considering one hot en-

coding of class label as yi ∈ {0, 1}C , function values from

P GPs as fi, the likelihood is given by

p(yi|fi) =
exp((Afi)

⊤yi)∑
c exp((Afi)⊤ec

(9)

where ec is an indicator vector with a value of 1 in dimen-

sion c and 0 elsewhere.

We use sparse GPs to avoid the O(N3) complexity of the

marginal likelihood. It assumes jth GP with function values

over data points f j (fj = {fij}
n
i=1) are associated with m

inducing points uj and inducing inputs Z. The prior can be

represented using inducing points as

p(fj |uj) = N (fj |kj(HR
T , Z)kj(Z,Z)−1uj , K̃j), (10)

K̃j = kj(HR
T , HR

T )− kj(HR
T , Z)kj(Z,Z)−1kj(Z,HR

T )

As the likelihood (9) is non-Gaussian the posterior can-

not be computed in closed form. To address this, varia-

tional inference is considered which also allows stochastic

gradient training [28]. It assumes the variational posterior

over inducing points are factorized over independent GPs

as q(u) =
∏

j N(uj |µµµj , Sj), where µµµj are variational mean

and Sj are covariance matrix parameters to be learnt. The

corresponding variational lower bound which forms the ob-

jective function for training NODE-GPs can be written as

log p(y) ≥ Eq(u)p(f|u)[log p(y|f)]−KL[q(u||p(u)]. (11)

The likelihood can be factorized over data instances as

log p(y|f) =
∏n

i=1[log p(yi|fi)] which helps in stochastic

computation of gradients. The parameters of both NODE

model and GP can be learnt jointly by maximizing the

lower bound using noisy approximation of gradient on mini

batches of data. Equation 11 is intractable due to the expec-

tation term and is approximated using sampling [28]. Pre-

dictions are made using a set of inducing point values and

consequently latent functions values are sampled from the

approximated posterior instead of a point estimate which

results in better uncertainty modeling and robustness.

4.2. Numerical Methods and Robustness of NODE

It’s found that in ANODE, the choice of numerical

method doesn’t have much significance in model accu-

racy [10]. First order methods like Euler or Fourth order like

RK4 have the same accuracy, but we observe the models

vary in their robustness depending on the numerical method

used. In [12], it is shown that NODE [4] is robust towards

adversarial attacks compared to CNN of similar architec-

ture. In this NODE model, the intermediate feature vectors

are computed using an adaptive numerical method [18] us-

ing a higher order numerical method (RK4/RK5) with step

size dynamically changing during the forward propagation.

In this section, we study and investigate how the order of the

numerical technique affects the robustness modelling capa-

bilities in NODE.
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Epsilon 0.05 0.1 0.15 0.2 0.25 0.3

NODE NT2 (RK4) 60.2 54.4 50.05 45.15 40.8 36.2

NODE NT2 (Euler) 46.8 35.7 31.4 27.7 24.05 19.95

Table 1. Performance of NODE models under FGSM adversarial attack on Cifar10 data. Both the models trained with number of steps 2,

Row-1 using Runge-kutta method of order 4 and Row-2 using Euler method
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(b) RK4 Method

Figure 3. t-sne plots of the features, green points represent feature vectors of clean images and red points represent feature vectors of

adversarially affected images (a) ANODE trained with Euler numerical method (b) ANODE trained with RK4 numerical method

To study robustness, in Table 1 we provide performance

of NODE models trained with different numerical methods

under FGSM adversarial attack [11] on the Cifar10 dataset

with increasing epsilon values. It can be seen that the per-

formance of ANODE model trained with Euler numerical

method degrades more compared to the model trained with

RK4 numerical method. To determine the variation in per-

formances of Euler and RK4 based NODEs, we plotted the

t-SNE plots of the representations learned by the models

in Figure 3. In Figure 3(b), we can see the representa-

tions(without noise) learned by the model with RK4 numer-

ical method got clustered into 10 clusters which is equal to

the number of classes in the Cifar10 dataset. But, this is not

the same for NODE models trained using the Euler method.

In Figure 3(a), we do not see a clear 10 clusters as compared

to RK4 method. This problem in representation learning

without clear distinct boundaries between the classes possi-

bly has led the adversary to easily fool the model. From a

numerical method point of view, the solution computed by

the Euler method is not close to the actual solution as com-

pared to RK4. Therefore, the path traced by Euler method

can be easily altered with a small change in input.

4.2.1 Numerical Methods in NODE-GP

Based on our observation in the previous section, we find

that the numerical method used in a NODE plays a role in

defining the robustness. But, increasing the order of the

numerical method will have an adverse effect on the com-

putational cost. One should trade-off between computa-

tional cost and achievable robustness. We consider differ-

ent variants of the NODE-GP model differing in the numer-

ical method used in the different blocks of the NODE-GP

model. Combining the robustness and uncertainty mod-

elling capability of NODE-GP with an appropriate numer-

ical technique will lead to even more robust models as we

observe in the experimental section.

5. Experiments

We conducted experiments to test the ability of the pro-

posed models in terms of modelling robustness under ad-

versarial attack and in capturing uncertainty on out-of-

distribution samples 3. We consider different variants of

the NODE 4 models and NODE-GP models considering dif-

ferent numerical techniques in different blocks. For all the

NODE models time is varied between 0 and 1.

• NODE NT2 and NODE NT2-GP: This model uses 4

NODE blocks, with all the NODE blocks using the

RK4 numerical solver of two time steps with step size

0.5. The final transformation is done using FCNN in

the first and GPs in the second.

• NODE NT3 and NODE NT3-GP: Here the number of

steps are three instead of two, and step size is 0.33.

• NODE Adap-NODE NT2 and NODE Adap-

NODE NT2-GP: First block uses adaptive numerical

method [18] followed by three NODE blocks which

uses RK4 numerical method of time steps two, step

3Code available at https://github.com/srinivas-quan/NODE-GP.git
4NODE block architecture is similar to the one defined in [10]
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Figure 4. Test accuracy of the models on Cifar10 dataset under (a) PGD attack and (b) FGSM attack

size is 0.5. The two methods differ in the final

transformation which is FCNN in the former and GPs

in the later.

• NODE Adap-NODE NT3 and NODE Adap-

NODE NT3-GP: Here the number of steps are

three instead of two, and step size is 0.33.

Here, NODE NT2 and NODE NT3 are the standard NODE

model and are considered as the baseline. Our primary ob-

jective of experiments is to show improvements in robust-

ness and uncertainty handling capabilities obtained using

NODE-GP variants. For completeness, we also compare

against standard Resnet34 architecture and its variants us-

ing GPs in the final layer (Resnet34-GP) [28].

5.1. Experimental Setup

We conduct our experiments on datasets Cifar10 [19]

with 10 classes and Cifar100 [19] with 100 classes. Both the

datasets contain 60000 data samples, and we split the sam-

ples into 50000 training samples, 5000 validation samples

and 5000 samples for testing. Validation dataset is used to

choose the model during training.Every model is trained for

350 epochs with varying learning rate similar to the train-

ing of Resnet. For the experiments involving adversarial

attack, the accuracy mentioned is for 2000 samples from

the test data set. For out of distribution experimental setup,

the model trained on Cifar10 is tested with samples of 10

classes from Cifar100 such that the class chosen from ci-

far100 does not match with any of the classes in cifar10.

5.2. Adversarial Attacks

We consider two adversarial attack methods FGSM and

PGD discussed in Section 3.4 to check the robustness of

proposed models. Figure 4(a) and 4(b) shows the plot of

test accuracy of the models trained on cifar10 with increas-

ing strength ǫ of the adversarial attacks PGD and FGSM

respectively. The results of PGD and FGSM attacks for Ci-

far100 is shown in Figure 5(a) and 5(b) respectively.

We can observe that in Figure 4 and Figure 5, the

models NODE Adap-NODE NT2-GP and NODE Adap-

NODE NT3-GP show better robustness towards attacks

compared to all the models. For example, un-

der PGD attack over cifar10 dataset in Figure 4(a),

NODE Adap-NODE NT3-GP gives 20% more accuracy

than NODE NT3-GP for ǫ ≥ 0.05 proving the choice

of numerical method matters and gives 22% more accu-

racy than NODE Adap-NODE NT3 for ǫ ≥ 0.05 prov-

ing that inclusion of GP has helped in improving the

robustness. In this case, NODE Adap-NODE NT2-GP

is 52% more accurate than the baseline standard NODE

(NODE NT2) and NODE Adap-NODE NT2 is 30% more

accurate than NODE NT2, demonstrating the superior ro-

bustness of the proposed NODE models over the standard

NODE model. The predictive distribution in GP consid-

ers distribution over function values rather than point esti-

mates, helping in reducing the adversarial noise in the im-

age. The proposed models NODE Adap-NODE NT2-GP,

NODE Adap-NODE NT3-GP perform better than Resnet

variants in almost all values of ǫ as observed in Figure 4 and

Figure 5. We can observe from Figure 4(a) and Figure 5(a)

after an ǫ value we don’t see much of a change in accuracy.

This is due to the particular nature of the PGD algorithm,

where not much change happens to the image after the ad-

versary noise is added and projected back to the feasible set

around the image.

5.3. OutofDistribution Experiments

We conduct experiments to see the uncertainty modelling

capabilities of the proposed models through their perfor-

mance on out-of-distribution data. For the models trained

on cifar10, to test the model uncertainty we feed samples

from cifar100 dataset. Figure 6 shows the performance

of the models using the metrics Entropy and Variation ra-

tio. For every model, predictive probability is computed on

samples chosen from out-of-distribution data and an aver-

age Entropy and Variation ratio is computed. Models which
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Figure 5. Test accuracy of the models on Cifar100 dataset under (a) PGD attack and (b) FGSM attack

Dataset NODE NODE Res Res NODE NODE NODE NODE NODE NODE

NT2 NT3 net34 net34 Adap- Adap- NT2 NT3 Adap- Adap-

-GP NODE NODE -GP -GP NODE NODE

NT2 NT3 NT2-GP NT3-GP

cifar10 95.3 95.7 95.3 95.2 95.35 95.45 95.4 95.6 95.4 95.5

cifar100 76.1 76.4 78.3 76.8 76.9 76.5 75.8 77 76.6 76.7

Table 2. Generalization performance of Models in terms of test accuracies on Cifar10 and Cifar100 datasets.

Score

Resnet34

Resnet34-GP

NODE_NT2

NODE_NT2-GP

NODE_NT3

NODE_NT3-GP

NODE_Adap-NODE_NT2

NODE_Adap-NODE_NT2-GP

NODE_Adap-NODE_NT3

NODE_Adap-NODE_NT3-GP

0.0 0.5 1.0 1.5

Entropy Variation Ratio

Figure 6. Performance of Models on out-of-distribution setting

(trained on Cifar10 and tested on Cifar100) using metrics Entropy

and Variation Ratio

use Gaussian processes for final transformation exhibit high

Entropy and Variation ratio compared to the models with-

out GP. We find that NODE-GP model, NODE NT2-GP ex-

hibited the best uncertainty modelling capabilities in terms

of uncertainty and variation ratio. In fact, NODE NT2-GP

gave entropy score 1.51 and variation ratio score 0.6 as com-

pared to 0.137 and 0.038 by standard NODE (NODE NT2).

Thus, the proposed NODE-GP models provide much better

uncertainty estimates.

As stated before, the main objective of our work is to

improve robustness and uncertainty modeling capabilities

in NODE. The experimental results showed that we have

indeed achieved our objective. But we also study if this

will affect the generalization performance of the proposed

models. The test accuracy of various models on Cifar10

and Cifar100 data sets are provided in Table 2. We find

that the proposed NODE and NODE-GP models achieve an

accuracy close to the popular Resnet models. For Cifar10,

two of the NODE-GP models gave better performance than

standard Resnets. Thus, the proposed models are able to

achieve superior robustness and uncertainty modelling ca-

pabilities without affecting the generalization performance.

Moreover, NODE and NODE-GP models have the advan-

tage of less effort in model selection and smaller number of

parameters. NODE-GP involves only 13.2 Million parame-

ters compared to 23.4 Million parameters in Resnet34-GP.

6. Conclusion

Neural ODEs provide a continuous time counterpart to

Resnets, with advantages in the form of model selection

and reduced number of parameters. However, we found

that these models lack robustness and uncertainty handling

capabilities required to help decision making in many real

world problems. We propose a novel model combining

Neural ODEs with GPs which will provide the required

robustness and uncertainty handling capabilities. More-

over, the model is flexible enough to accommodate dif-

ferent types of NODEs. We also showed that numerical

method plays a role in NODE robustness. We consider var-

ious types of NODE architectures and numerical solvers to

improve the robustness and uncertainty handling capabili-

ties in NODE-GP. The experimental results on Cifar10 and

Cifar100 demonstrated the superior performance of the pro-

posed NODE-GP models against adversarial attacks and un-

certainty handling in out-of-distribution data.
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