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Abstract

We propose a real-time general purpose semantic seg-

mentation architecture, RGPNet, which achieves significant

performance gain in complex environments. RGPNet con-

sists of a light-weight asymmetric encoder-decoder and an

adaptor. The adaptor helps preserve and refine the abstract

concepts from multiple levels of distributed representations

between encoder and decoder. It also facilitates the gradi-

ent flow from deeper layers to shallower layers. Our experi-

ments demonstrate that RGPNet can generate segmentation

results in real-time with comparable accuracy to the state-

of-the-art non-real-time heavy models. Moreover, towards

green AI, we show that using an optimized label-relaxation

technique with progressive resizing can reduce the train-

ing time by up to 60% while preserving the performance.

We conclude that RGPNet obtains a better speed-accuracy

trade-off across multiple datasets.

1. Introduction

Convolutional neural networks (CNNs) have brought

about a paradigm shift in the field of computer vision, lead-

ing to tremendous advances in many tasks [12, 13, 16, 17,

19, 32, 37]. Semantic segmentation, which associates each

pixel to the object class it belongs to, is a computationally

expensive task in computer vision [20]. Fast semantic seg-

mentation is broadly applied to several real-time applica-

tions including autonomous driving, medical imaging and

robotics [21, 24, 31, 34]. Accurate CNN-based semantic

segmentation requires larger neural networks with deeper

and wider layers. These larger networks are therefore not

suitable for edge computing devices as they are cumber-

some and require substantial resources.

Down-sampling operations, such as pooling and convo-

lutions with stride greater than one, can help decrease the

latency of deeper neural networks, however they result in

decreased pixel-level accuracy due to the lower resolutions

at deeper levels. Many recent approaches employ either
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encoder-decoder structure [30, 1, 36], a two or multi-branch

architecture [27, 44, 41] or dilated convolutions [4, 5, 6, 45]

to recover spatial information. While these real-time ar-

chitectures perform appropriately on simple datasets, their

performance is sub-optimal for complex datasets possess-

ing more variability in terms of classes, sizes, and shapes.

Thus, there is a significant interest in designing CNN archi-

tectures that can perform well on complex datasets and, at

the same time, are mobile enough to be of practical use in

real-time applications.

In this paper, we propose a real-time general purpose se-

mantic segmentation network, RGPNet, that performs well

on complex scenarios. RGPNet is based on an asymmetric

encoder-decoder structure with a new module called adap-

tor in the middle. The adaptor utilizes features at different

abstraction levels from both the encoder and decoder to im-

prove the feature refinement at a given level allowing the

network to preserve deeper level features with higher spatial

resolution. Furthermore, the adaptor enables a better gradi-

ent flow from deeper layers to shallower layers by adding

short paths for the back-propagation. Since training an av-

erage deep learning model has a considerable carbon foot-

print [33], we reduce the training time by 60% with negligi-

ble effect on performance by applying progressive resizing

for training.

Our main contributions are as follows:

• We propose RGPNet as a general real-time semantic

segmentation architecture that obtains deep features

with high resolution resulting in improved accuracy

and lower latency in a single branch network. It per-

forms competitively in complex environments.

• We introduce an adaptor module to capture multiple

levels of abstraction to help in boundary refinement of

segments. The adaptor also aids in gradient flow by

adding short paths.

• Towards green AI, we adopt progressive resizing tech-

nique during the training which leads to 60% reduc-

tion in training time and the environmental impact. We

combat aliasing effect in label map on lower resolu-

tions by employing a modified label relaxation
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Figure 1. Schematic illustrations of common semantic segmentation architectures. (a) In context-based networks, dilated convolutions

with multiple dilation rates are employed in cascade or in parallel to capture a multi-scale context. (b) In encoder-decoder networks,

encoder extracts the features of high-level semantic meaning and decoder densify the features learned by the encoder. (c) In attention-

based networks, the feature at each position is selectively aggregated by a weighted sum of the features at all positions. This can be done

across channels or spatial dimensions. (d) Multi-branch networks are employed to combine semantic segmentation results at multiple

resolution levels. The lower resolution branches yield deeper features with reduced resolution and the higher resolution branches learn

spatial details.

• We report results on different datasets evaluated on sin-

gle scale images. RGPNet achieves 80.9%, 69.2%,

and 50.2% mIoU with Resnet-101 backbone and

74.1%, 66.9%, and 41.7% mIoU with Resnet-18 back-

bone on Cityscapes, CamVid and Mapillary, respec-

tively.

• For a 1024 × 2048 resolution image, RGP-

Net(Resnet101) obtains 10.9 FPS in Pytorch and

15.5 FPS in TensorRT on NVIDIA RTX2080Ti GPU

on the Cityscapes dataset whereas RGPNet(Resnet18)

obtains 37.8 FPS and 47.2 FPS respectively under the

same setting.

2. Related Work

Semantic segmentation lies at the core of computer vi-

sion. With the advent of deep learning, Long et al. [20] pro-

posed the seminal fully convolutional network (FCN) with

an end-to-end learning approach. However, FCN suffers

from the loss of spatial details as it only utilizes high-level

features from the last convolutional layer. Here, we sum-

marize four widely used approaches which have been put

forward that increase the feature resolution:

1) Context-based models: To capture the contex-

tual information at multiple scales, DeepLabV2 [4] and

DeeplabV3 [5] exploit multiple parallel atrous convolu-

tions with different dilation rates, while PSPNet [45] per-

forms multi-scale spatial pooling operations. Although

these methods encode rich contextual information, they can

not capture boundary details effectively due to strided con-

volution or pooling operations [7].

2) Encoder-decoder structure: Several studies entail

encode-decoder structure [30, 1, 26, 48, 18, 9, 11]. Encoder

extracts global contextual information and decoder recovers

the spatial information. Deeplabv3+ [7] utilizes an encoder

to extracts rich contextual information in conjunction with

a decoder to retrieve the missing object boundary details.

However, implementation of dilated convolution at higher

dilation rates is computationally intensive making them un-

suitable for real-time applications.

3) Attention-based models: Attention mechanisms,

which help networks to focus on relevant information and

ignore the irrelevant information, have been widely used

in different tasks, and gained popularity to boost the per-

formance of semantic segmentation. Wang et al. [38] for-

malized self-attention by calculating the correlation matrix

between each spatial point in the feature maps in video se-

quences. To capture contextual information, DaNet [10]

and OCNet [42] apply a self-attention mechanism. DaNet

has dual attention modules on position and channels to in-

tegrate local features with their respective global dependen-

3010



256

512

1024

2048

Backbone

1/4

1/8

1/16

1/32

64

128

256

512

64

128

256

512

N (segmentation
head)

Sp
at

ia
l R

es
ol

ut
io

n

Convolutional layers of the backbone 
1 X 1 convolution
Convolution with stride=2 (downsampler)
Deconvolution with stride=2 (upsampler)
Convblock with shared weights

Input

GroundTruth

Output

Figure 2. Network schematic diagram of the proposed architecture, RGPNet. Rectangular boxes depict tensor at a given level with number

of channels mentioned as their labels. Color coded arrows represent the convolution operations indicated by the legend.

cies. OCNet, on the other hand, employs the self-attention

mechanism to learn the object context map recording the

similarities between all the pixels and the associated pixel.

PSANet [46] learns to aggregate contextual information for

each individual position via a predicted attention map. At-

tention based models, however, generally require expensive

computation.

4) Multi-Branch models: Another approach to preserve

the spatial information is to employ two- or multi-branch

approach. The deeper branches extract the contextual infor-

mation by enlarging receptive fields and shallower branches

retain the spatial details. The parallel structure of these net-

works make them suitable for run time efficient implemen-

tations [41, 44, 28, 23]. However, they are mostly applica-

ble to the relatively simpler datasets with fewer number of

classes. On the other end, HRNet [35] proposed a model

with fully connected links between output maps of different

resolutions. This allows the network to generalize better

due to multiple paths, acting as ensembles. However, with-

out reduction of spatial dimensions of features, the com-

putational overhead is very high and makes the model no

longer feasible for real-time usage.

Building on these observations, we propose a real-time

general purpose semantic segmentation architecture that ob-

tains deep features with high resolution resulting in im-

proved accuracy and lower latency in a single branch

encoder-decoder network.

3. Proposed Approach

3.1. Structure of RGPNet

RGPNet’s design is based on a light-weight asymmetric

encoder-decoder structure for fast and efficient inference. It

comprises of three components: an encoder which extracts

high-level semantic features, a light asymmetric decoder,

and an adaptor which links different stages of encoder and

decoder. The encoder decreases the resolution and increases

the number of feature maps in the deeper layers, thus it ex-

tracts more abstract features in deeper layers with enlarged

receptive fields. The decoder reconstructs the lost spatial in-

formation. The adaptor amalgamates the information from

both encoder and decoder allowing the network to preserve

and refine the information between multiple levels.

RGPNet architecture is depicted in Figure 2. In a given

row of the diagram, all the tensors have the same spatial

resolution with the number of channels mentioned in the

scheme. Four level outputs from the encoder are extracted

at different spatial resolutions 1/4, 1/8, 1/16 and 1/32
with 256, 512, 1024 and 2048 channels, respectively. The

number of channels are reduced by a factor of four using

1× 1 convolutions followed by batch norm and ReLU acti-

vation function at each level. These outputs are then passed

through a decoder structure with adaptor in the middle. Fi-

nally, segmentation output is extracted from the largest res-

olution via 1× 1 convolution to match the number of chan-

nels to segmentation categories.

Adaptor: Adaptor acts as a feature refinement module.

The presence of an adaptor precludes the need of a symmet-

rical encoder-decoder structure. It aggregates the features

from three different levels, and intermediates between en-

coder and decoder (Figure 3). The adaptor function is as

below:

xa
s = D(T (xe

s−1)) + T (xe
s) + U(xd

s+1) (1)

where superscripts a, e, and d denote adaptor, encoder, and

decoder respectively, s represents the spatial level in the
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Figure 3. Adaptor module: the adaptor fuses information from

multiple abstraction levels; T (.), D(.), and U(.) denote the trans-

fer, downsampling and upsampling functions, respectively. F (.)
is the decoder block with shared weights between layers.

network. D(.) and U(.) are downsampling and upsampling

functions. Downsampling is carried out by convolution with

stride 2 and upsampling is carried out by deconvolution with

stride 2 matching spatial resolution as well as the number

of channels in the current level. T (.) is a transfer function

that reduces the number of output channels from an encoder

block and transfers them to the adaptor:

T (xe
s) = σ(ωa

s ⊗ xe
s + bas) (2)

where ω and b are the weight matrix and bias vector, ⊗

denotes the convolution operation, and σ denotes the ac-

tivation function. The decoder contains a modified basic

residual block, F , where we use shared weights within the

block. The decoder function is as follows:

xd
s = F (xm

s ;ωd
s ) (3)

The adaptor has a number of advantages. First, the adap-

tor aggregates features from different contextual and spa-

tial levels. Second, it facilitates the flow of gradients from

deeper layers to shallower layers by introducing a shorter

path. Third, the adaptor allows for utilizing asymmetric de-

sign with light-weight decoder. This results in fewer con-

volution layers, further boosting the flow of gradients. The

adaptor, therefore, makes the network suitable for real-time

applications as it provides rich semantic information while

preserving the spatial information.

3.2. Progressive Resizing with Label Relaxations

Progressive resizing is a technique commonly used in

classification to reduce the training time. The training starts

with smaller image sizes followed by a progressive increase

of size until the final stage of the training is conducted using

the original image size. For instance, this technique can the-

oretically speed up the training time by 16 times per epoch

if the image dimensions are decreased by 1/4, and corre-

spondingly the batch size is increased by a factor of 16 in a

single iteration.

However, applying progressive resizing for semantic

segmentation is more challenging as the resizing method

should be applied to images and their corresponding label

maps. Bi-linear or bi-cubic interpolation cannot be applied

to label maps as they exist in integer space and these meth-

ods will result in float values for labels. On the other hand,

nearest-neighbor interpolation for resizing introduces noise

in the label maps around the borders of the objects due

to aliasing. To reduce the effects of boundary artifacts in

progressive resizing for label maps, inspired by Zhu et al.

[47], we propose an optimized variant of the label relaxation

method.

In cross-entropy loss function, the negative log-

likelihood of softmax probability for a given label is max-

imized. In contrast, label-relaxation is a custom loss func-

tion where the negative log-likelihood of softmax probabil-

ities for a given label as well as bordering pixel labels is

maximized. This is established by taking the sum of soft-

max probabilities mentioned, before applying the negative

log-likelihood. We identify the border pixels as those which

have more than one unique label in the window with kernel

size k centered on it. The loss at a given border pixel can be

calculated as follows where N is a set of border labels:

Lboundary = − log
∑

C∈N

P (C) (4)

To apply label relaxation efficiently, first, one-hot labels

are created from the label map followed by max-pool op-

eration with stride 1. This effectively dilates each one-hot

label channel transforming it into multi-hot labels along the

borders which enables optimized selection of border pix-

els along with their corresponding labels. Border pixels are

usually in minority; for instance, in the Cityscapes dataset,

on average, only 2.4% of total pixels are border pixels. This

loss function is only applied to border pixels whereas nor-

mal cross-entropy loss is applied to the rest of the pixels.

4. Experimental Results

We conduct experiments on Mapillary [22] as a highly

complex dataset, CamVid [2] and Cityscapes [8] as moder-

ately complex datasets.

Mapillary consists of 20, 000 high-resolution street-

level images taken from many different locations around the

globe and under varying conditions annotated for 65 cate-

gories. The dataset is split up in a training set of 18, 000
images and a validation set of 2, 000 images.

CamVid consists of 701 low-resolution images in 11

classes which are divided into 376/101/233 image sets for

training, validation and testing, respectively. Here, we use
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(a) Input image (b) RGP-Net (c) TASCNet (d) BiSeNet (e) Ground Truth

Figure 4. Semantic segmentation results on Mapillary Vistas validation set. The columns correspond to input image, the output of RGPNet,

the output of TASCNet, the output of BiSeNet, and the ground-truth annotation. For all methods R101 is used as the backbone. RGPNet

mainly improves the results on road and road-related objects’ pixels. Best viewed in color and with digital zoom.

the same experimental setup as SegNet [1]: 352 × 480 im-

age resolution for training and inference, 477 images for

training and validation, and 233 image as test set.

Cityscapes contains diverse street level images from

50 different cities. It contains 30 classes and only 19
classes of them are used for semantic segmentation eval-

uation. The dataset contains 5000 high quality pixel-level

finely annotated images and 20000 coarsely annotated im-

ages. The finely annotated 5000 images are divided into

2975/500/1525 image sets for training, validation and test-

ing. We do not use coarsely annotated data in our experi-

ments.

We implement the RGPNet based on PyTorch frame-

work [25]. For training on both datasets, we employ a poly-

nomial learning rate policy where the initial learning rate

is multiplied by (1 − iter/total iter)0.9 after each itera-

tion. The base learning rate is set to 1× 10−3. Momentum

and weight decay coefficients are set to 0.9 and 1 × 10−4,

respectively. We train our model with synchronized batch-

norm implementation provided by Zhang et al. [43]. Batch

size is kept at 12 and trained on two Tesla V100 GPUs.

For data augmentation, we apply random cropping and re-

scaling with 1024 as crop-size. Image base size is 1536
for Mapillary and 2048 for Cityscapes. Re-scaling is done

from range of 0.5 to 2.0 respectively followed by random

left-right flipping during training.

As a loss function, we use cross entropy with online hard

example mining (OHEM) [39, 42]. OHEM only keeps the

sample pixels which are hard for the model to predict in a

given iteration. The hard sample pixels are determined by

probability threshold θ for the corresponding target class,

thus the pixels below the threshold are preserved in the
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Table 1. CamVid test set results calculated on 352× 480 image resolution. The inference times are calculated on a single NVIDIA TitanV

GPU with a single-image batch size.

Model(backbone) P
ar

am
s(

M
)

F
P

S

B
u

il
d

in
g

T
re

e

S
k
y

C
ar

S
ig

n

R
o

ad

P
ed

es
tr

ia
n

F
en

ce

P
o

le

S
id

ew
al

k

C
y

cl
is

t

m
Io

U
(%

)

P
ix

el
A

cc
.

SegNet 29.5 63.0 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4 62.5

FCN8 135 47.6 77.8 71.0 88.7 76.1 32.7 91.2 41.7 24.4 19.9 72.7 31.0 57.0 88.0

FC-DenseNet56 1.4 38.2 77.6 72.0 92.4 73.2 31.8 92.8 37.9 26.2 32.6 79.9 31.1 58.9 88.9

FC-DenseNet103 9.4 20.4 83.0 77.3 93.0 77.3 43.9 94.5 59.6 37.1 37.8 82.2 50.5 66.9 91.5

FC-HarDNet68 1.4 75.2 80.8 74.4 92.7 76.1 40.6 93.3 47.9 29.3 33.3 78.3 45.7 62.9 90.2

FC-HarDNet84 8.4 34.8 81.4 76.2 92.9 78.3 48.9 94.6 61.9 37.9 38.2 80.5 54.0 67.7 91.1

RGPNet(R18) 17.7 190 82.6 75.5 91.2 85.1 54.3 94.1 61.5 50.4 36.8 82.2 59.8 66.9 90.2

RGPNet(R101) 50.1 68.2 85.8 77.3 91.2 87.0 62.5 90.6 67.6 51.4 46.8 70.7 67.2 69.2 89.9

training. To have enough representative of each class in the

mini batch, the minimal pixel ratio M is applied. In our

experiments, we set θ = 0.6 and M = 5× 103.

4.1. Results on Mapillary

In this section, we evaluate and compare overall per-

formance of RGPNet with other real-time semantic seg-

mentation methods (BiSeNet [41], TASCNet [18], and

ShelfNet [48]) on Mapillary validation set. we use differ-

ent feature extractor backbones ResNet [14] (R101, R50

and R18), Wide-Resnet [40] (WRN38), and HarDNet [3]

(HarDNet39D).

Table 2 compares speed (FPS), mIoU and number of

parameters on these methods on 32-bit precision computa-

tion. RGPNet(R101) achieves 50.2% mIoU which outper-

forms TASCNet and ShelfNet with a significant margin and

lower latency. Although RGPNet(R101) has more param-

eters than the TASCNet(R101), both speed and mIoU are

considerably higher. However, BiSeNet demonstrates poor

performance on Mapillary resulting in the lowest mIoU. Us-

ing TensorRT, RGPNet (R101 as the encoder) speeds up to

61.9 FPS on full image resolution (Table 5). Our method

also achieves impressive results with a lighter encoder (R18

or HarDNet39D) surpassing BiSeNet with a heavy back-

bone (R101) significantly, 41.7% vs 20.4% mIoU and 54.4

vs 15.5 FPS. Finally, Figure 4 shows some qualitative re-

sults obtained by our model compared to TASCNet and

BiSeNet.

4.2. Results on Camvid

In Table 1, we compare overall performance of RGPNet

with other real-time semantic segmentation methods (Seg-

Net, FCN [20], FC-DenseNet [15], and FC-HarDNet [3]) on

CamVid test set. We find that RGPNet with R18 and R101

backbones obtain 66.9% and 69.2% mIoU with 190 and

68.2 FPS. RGPNet achieves significant increase in mIoU

for Car, Traffic Sign, Pole, and Cyclist categories. Overall

we observe that our model outperforms the state-of-the-art

Table 2. Mapillary Vistas validation set. Inference speed is calcu-

lated on 1024× 2048 image resolution.

Model(backbone) FPS mIoU(%) Params(M)

BiSeNet(R101) 9.27 20.4 50.1

TASCNet(R50) 11.9 46.4 32.8

TASCNet(R101) 8.84 48.8 51.8

ShelfNet(R101) 9.11 49.2 57.7

RGPNet(R101) 10.8 50.2 52.2

RGPNetB(WRN38) 3.37 53.1 215

RGPNet(HarDNet39D) 34.7 42.5 9.4

RGPNet(R18) 35.7 41.7 17.8

real-time segmentation models.

4.3. Results on Cityscapes

Table 3 shows the comparison between our RGP-

Net and state-of-the-art real-time (BiSeNet, ICNet [44],

FastSCNN [27], and ContextNet [29]) and offline (HRNet

[35] and Deeplabv3 [7]) semantic segmentation methods

on Cityscapes validation dataset. RGPNet achieves 74.1%
mIoU which is slightly lower than BiSeNet 74.8% mIoU.

ICNet, ContextNet and FastSCNN achieve lower mIoU.

Compared to the heavy offline segmentation methods, RG-

PNet(R101) not only is the fastest, but also outperforms

Deeplabv3, BiSeNet (R101) and is comparable to HRNet.

We, therefore, conclude that RGPNet is a real-time gen-

eral purpose semantic segmentation model that performs

competitively in a wide spectrum of datasets compared

to the state-of-the-art semantic segmentation networks de-

signed for specific datasets.

4.4. Progressive resizing with label relaxation

Here, we compare the result of progressive resizing train-

ing with and without label relaxation. In these experiments

for the first 100 epochs, the input images are resized by a

factor of 1/4 both in width and height. At the 100th epoch,

the image resize factor is set to 1/2 and, at the 130th epoch,

full-sized images are used. To analyze the effect of label re-
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Table 3. Cityscapes validation set result on 1024 × 2048 image.

Numbers with * are taken from respective paper. SS and MS de-

note single-scale and multi-scale. OOM stands for out-of-memory

error. Numbers with † are computed in TensorFlow framework

with our in-house implementations which are better than originally

reported in respective paper.

Model mIoU (%)
FPS

Backbone Head SS MS

R18 BiSeNet 74.8* 78.6* 40.4

PSPNet50 ICNet 67.7* - 40.6†

N/A FastSCNN 68.1 - 43.5†

N/A ContextNet 60.6 - 37.9†

R18 SwiftNet 75.4* - 56.3

R18 RGPNet 74.1 76.4 37.8

W48 HRNet 81.1* - OOM

R101(OS-8) Deeplabv3 77.82* 79.30* 2.48

R101 BiSeNet - 80.3* 10.4

R101 RGPNet 80.9 81.9 10.9

laxation in progressive resizing technique, we illustrate the

difference in entropy between two setups (progressive resiz-

ing with and without label relaxation). Figure 5 shows that

the model trained with label relaxation is more confident in

the predictions around the object boundaries.

Green AI To examine the energy efficiency, we run the

experiments with and without progressive resizing train-

ing technique and label relaxation on a single GPU for 15

epochs. In the standard training experiment, we use a full

size Cityscapes image 1024 × 2048. In the progressive re-

sizing training experiment, we start with 1/4 of image size

and then scale up by a factor of 2 at the 10th and the 13th

epochs. The speedup factor can theoretically be calculated

as 1/16 × 9/15 + 1/4 × 3/15 + 3/15 = 0.2875. Table 4

shows that the training time reduced from 109 minutes to 32

minutes, close to the speedup expected from theoretical cal-

culation. Note that, inclusion of our optimized label relax-

ation causes a minute increase in the energy consumption

(less than 10 KJ) and time (4 minutes more). The energy

consumed by GPU decreases by an approximate factor of 4

when compared to full scale experiment with slight drop in

the performance. Towards green AI, as a result of remark-

able gain in energy efficiency, we therefore suggest adopt-

ing progressive resizing technique with label relaxation for

training a semantic segmentation network.

Table 4. Progressive resizing result on energy efficiency. PR and

LR stand for progressive resizing and label relaxation, respec-

tively. mIoU reported here are from the complete experiment.

Training Scheme Energy(KJ) Time mIoU(%)

PR w/o LR 203 27m 37s 78.3

PR with LR 212 31m 43s 78.8

Full scale 873 108m 44s 80.9
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Figure 5. Heatmap of difference in entropy between label relax-

ation and without label relaxation based trained model evaluated

on a sample image from validation set. On boundaries of objects,

models trained with label relaxation are more confident about the

label and hence have lower entropy (blue shades).

4.5. Ablation study

In this section, we perform an empirical evaluation on

the structure of the adaptor module in our design. We show

the significance of the downsampling layers which provides

information from a higher resolution of encoder to adaptor.

Table 6 shows that the performance of our model signifi-

cantly drops from 50.2% to 46.8% on Mapillary validation

set when the downsampling layers are removed. This in-

dicates that the specific design of adaptor has an important

role in feature preserving and refinement in our model. We

show similar effect in in Table 7 which showcases results

on Cityscapes dataset where adding downsampling layers

result in boost in mIoU with Resnet101 backbone.

We perform an ablation study on components of our

training framework on Cityscapes dataset. These tech-

niques are namely; cross entropy (CE), addition of down-

sampling layers (DS), cross entropy with online hard exam-

ple mining (OHEM) and using pretrain weights from Map-

illary (PM). For the last technique mentioned, we adopt a

pretrained model on Mapillary dataset by sorting the last

layer weights according to mapping between Maplillary and

Cityscapes categories. This results in more than 4.2% and

2.4% boost in mIoU with Resnet101 and Resnet18 back-

bones respectively while evaluating on multiple scales. As

illustrated in Table 7, all these components contribute sig-

nificantly in improving the final performance.

4.6. TensorRT

We use TensorRT for RGPNet and evaluate on Nvidia

RTX2080Ti and Xavier. RGPNet obtains 79.26% and

79.25% mIoU on Cityscpaes validation with half and full

precision floating point format, respectively. The inference

speed results for different backbones, two input resolutions

using 16-bit and 32-bit floating point numbers are reported

in Table 5. RGPNet(R18) using TensorRT on full input res-
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(a) Input image (b) Ground truth

road sidewalk building wall fence

pole traffic light traffic sign vegetation terrain

sky person rider car truck

bus train motorcycle bicycle void

traffic sign terrain

(c) Label map

(d) Pytorch (e) TensorRT FP16 (f) TensorRT FP32
Figure 6. Results obtained by RGPNet on Cityscapes validation set on 1024× 2048 image resolution. Top row: input image, ground-truth

annotation, and label maps. Bottom row: the output of PyTorch model, TensorRT FP16 model, and TensorRT FP32 model. The results

show that optimization on TensorRT on half and full precision floating point format does not affect the qualitative outputs.

Table 5. RGPNet inference speed (FPS) using TensorRT on Nvidia RTX2080Ti and Xavier evaluated on half and full resolution images

from Cityscapes dataset. Comparison between floating point 16 bit (FP16) and 32 bit (FP32) computation is also shown.

Backbone

Nvidia RTX2080Ti Xavier

512× 1024 1024× 2048 512× 1024 1024× 2048
FP16 FP32 FP16 FP32 FP16 FP32 FP16 FP32

R18 430.2 180.9 153.4 47.2 78.45 24.6 20.8 6.17

R50 265.7 88.8 87.2 24.3 44.6 12.6 11.7 3.17

R101 176.9 58.5 61.9 15.5 30.3 8.14 7.89 2.05

Table 6. Ablation study on Mapillary validation set: it highlights

the effect of downsampling layers which are shown in red in Fig-

ure 2 from adaptor. MS+F stands for multi-scale evaluation with

left/right image flip.

Method DS MS+F mIoU(%)

RGPNet(R101) 46.8

RGPNet(R101) X 50.2

Table 7. Ablation study on Cityscapes validation set with RGP-

Net on 1024 × 2048 image resolution. CE, DS, OHEM, PM de-

note cross-entropy loss, down-sampling connections, online hard

example mining loss, and pretrained model on Mapillary, respec-

tively. MS+F stands for multi-scale evaluation with left/right im-

age flip.

CE DS OHEM PM
R101 R18

SS MS+F SS MS+F

X 73.0 74.6 69.1 71.2

X X 73.1 75.5 69.0 71.3

X X X 76.5 77.7 71.9 74.0

X X X X 80.9 81.9 74.1 76.4

olution leads to a significant increase in speed from 37.8

FPS to 153.4 FPS with 16-bit floating point operations. The

speed up with FP16 compared to FP32 is noticeable for all

backbones, and two different input resolutions. The results

suggest that RGPNet can run high speed on edge computing

devices with little or negligible drop in accuracy. A real-

world example is provided in Figure 6.

5. Conclusion

In this paper, we proposed a real-time general purpose

semantic segmentation network, RGPNet. It incorporates

an adaptor module that aggregates features from different

abstraction levels and coordinates between encoder and de-

coder resulting in a better gradient flow. Our conceptu-

ally simple yet effective model achieves efficient inference

speed and accuracy on resource constrained devices in a

wide spectrum of complex domains. By employing an op-

timized progressive resizing training scheme, we reduced

training time by more than half with a small drop in per-

formance, thereby substantially decreasing the carbon foot-

print. Furthermore, our experiments demonstrate that RG-

PNet can generate segmentation results in real-time with

comparable accuracy to the state-of-the-art non real-time

models. This optimal balance of speed and accuracy makes

our model suitable for real-time applications such as au-

tonomous driving where the environment is highly dynamic

due to the presence of high variability in real world scenar-

ios.
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