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Abstract

We propose SinGAN-GIF, an extension of the image-

based SinGAN [27] to GIFs or short video snippets. Our

method learns the distribution of both the image patches

in the GIF as well as their motion patterns. We do so by

using a pyramid of 3D and 2D convolutional networks to

model temporal information while reducing model param-

eters and training time, along with an image and a video

discriminator. SinGAN-GIF can generate similar looking

video samples for natural scenes at different spatial res-

olutions or temporal frame rates, and can be extended to

other video applications like video editing, super resolution,

and motion transfer. The project page, with supplemen-

tary video results, is: https://rajat95.github.

io/singan-gif/

1. Introduction

Generative Adversarial Networks (GANs) have come a

long way since they were first proposed in 2014 [9]. GANs

can now generate high fidelity images, particularly when

constrained to a specific class like cars, faces, etc. [2, 17].

They have been used for various image processing appli-

cations including super resolution, image editing, and style

transfer [5, 19, 41].

Recent work showed that GANs can be trained using

only a single image [27, 28]. By learning the distribution

of patches in the single training image, these methods can

generate diverse high quality samples that contain seman-

tically similar visual content but in different configurations

and structures. Since structures are more repetitive in tex-

tured images [42], these methods typically perform better

on natural scenes.

In this work, we propose SinGAN-GIF, an extension of

SinGAN [27] to GIFs (or short video clips). Our approach

takes a single GIF as input, and learns the spatio-temporal

patch distributions. Once trained, it can generate new GIFs

that contain the same semantic content of the input train-

ing GIF but with different spatio-temporal structures and

configurations (e.g., different spatial aspect ratios, different

Figure 1. Given a single GIF (short video clip) as input, our model

SinGAN-GIF, learns a generator to generate random samples that

capture variations of the same visual content. SinGAN-GIF can

generate samples at any aspect ratio, perform super-resolution,

change the temporal frame rate, and be used for video editing ap-

plications.

temporal speeds). See Figure 1.

There are some key challenges that make the exten-

sion of SinGAN to the video domain non-trivial. De-

spite tremendous progress in image generation, generating

videos is still a largely open problem. The main difficulties

are increased data complexity with the addition of the tem-

poral dimension, and typically huge computation and mem-

ory requirements that hinder direct extensions of image gen-

eration techniques to the video domain. Despite these chal-

lenges, a GIF or short video snippet is much simpler than

regular videos in complexity and demands far less compu-

tational resources. Furthermore, GIFs often contain sim-

ple, repetitive patterns, especially if they pertain to natural

scenes. Therefore, by focusing on GIFs, we can circumvent

many of the usual difficulties of video generation.

Our network architecture builds upon SinGAN [27] as a

baseline and extends it to videos. SinGAN’s network con-

sists of a pyramid of fully convolutional GANs, each re-
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sponsible for capturing the patch distribution at different

resolutions. We replace the 2D spatial convolutions with

3D spatio-temporal convolutions, use two sets of discrimi-

nators – one spatial (2D) and one spatio-temporal (3D), and

to improve color fidelity, we apply a color statistic match-

ing loss. To alleviate large computation cost and training

time, we perform channel-wise separable 3D convolutions

and perform only 2D spatial convolutions at larger resolu-

tions in the pyramid, once the coarse spatio-temporal struc-

ture is modeled at lower resolutions. We show that our

model can generate diverse variations of a single GIF with

different aspect ratios and resolutions especially on natural

scenes (similar to single image generation models), which

contain repetitive and smooth spatio-temporal patterns. We

also demonstrate video specific applications including slo-

mo, extrapolation, and motion transfer.

2. Related Work

We summarize related work in generative video models

and single image generation models.

2.1. Generative Video Models

Although videos are essentially only a sequence of

frames, extending image generation techniques to videos

continues to be a challenging problem. Works that gener-

ate motion can broadly grouped into two types: (1) uncon-

ditional in which a video is generated from a noise vector,

and (2) conditional in which the a video is generated condi-

tioned on a specific, often user supplied, input.

Unconditional methods usually use GANs [9] to learn

a mapping between a noise vector and a data sample in

the true distribution. Existing video generation work split

the noise vector to model background and foreground sepa-

rately and then stitch them together [34], split the generator

into temporal and image parts and use a temporal generator

to predict a sequence of noise vectors for the image gener-

ation submodule [26], use RNNs to recursively obtain mo-

tion codes while using per-frame and video-level discrimi-

nators [33], use multiple streams to model motion and ap-

pearance [35], or propose the sliced Wasserstein loss for

video generation [38]. Recent work uses a BigGAN [2] like

architecture along with temporal and spatial downsampling

for the discriminators to achieve state of the art generation

results on the Kinetics-600 dataset [6].

An overwhelming majority of works in video genera-

tion are conditional in nature in the sense that their out-

put is conditioned on previous frames (video prediction

[1, 3, 20, 30, 36, 37]; video in-betweening [21]) rather

than predicting new videos from a single noise vector. For

video prediction, existing work use VAEs to estimate a pos-

terior on the input frames to stochastically predict future

frames [1, 20], add a residual to the noise vector to sequen-

tially predict future frames [8], propose video pixel net-

works to directly model the joint distribution of raw RGB

pixels [16], or propose latent video transformers that model

dynamics in latent space and thereby reduce computational

complexity [25]. Other lines of work instead deal with fixed

domains like cityscapes, clouds, and time-lapses [7, 23, 24].

However, these methods are either limited to low spatial

resolution or model simpler optical flow instead of predict-

ing in a more complex RGB space. Moreover, many of

the above models operate at the frame-level and fuse the

frame-level information to form a representation for videos,

whereas we focus on directly modeling videos as a whole.

2.2. Single Image Generation Models

Single Image generative models work on the principle

that patches repeat internally across the image at various

scales and can be used to create new images that largely

maintain a global structure while retaining finer textures.

[29, 40] successfully trained such models for specific tasks

like super-resolution, texture expansion, etc. InGAN [28]

used a generative model to learn the internal distribution

of image patches using a multi-scale hierarchical discrim-

inator, but focused mainly on changing aspect ratio. Sin-

GAN [27] successfully trained a multi-purpose generative

model that generates realistic random samples from a sin-

gle image and demonstrated numerous applications includ-

ing harmonization, super-resolution, image editing, etc.

While we are still a long way from generic realistic video

generation, our work focuses on generating a single GIF

(i.e., a short video clip). This problem is much simpler

in complexity compared to modeling a large video dataset.

Furthermore, since existing work have shown to be able to

model the internal distribution of image patches well, we

demonstrate that they can be extended to generate realistic

video samples for video editing applications, especially for

natural scenes.

3. Approach

We first briefly describe SinGAN [27] which was pro-

posed for images, and then describe in detail the modifica-

tions that we made to extend it to video data.

3.1. Background: SinGAN [27]

SinGAN consists of a series of generators

(G1, G2, ..., Gn) operating on an image pyramid

(x1, x2, ..., xn) where each successive training sample

xi’s spatial dimensions are upsampled by a factor of r
(r > 1) over its coarser counterpart xi−1. Each generator

Gi focuses on modeling the distribution of patches at the

scale corresponding to xi via adversarial training [9]. At

the coarsest scale, generator G1 take a Gaussian noise map

z1 as input and produces image sample x̃1:

x̃1 = G1(z1). (1)
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Figure 2. Training pipeline for SinGAN-GIF’s 3D convolutional network. Given a video snippet at scale n with spatial dimensions H and

W , channel dimension C, and temporal dimension T , we first upsample it by a factor of r. This upsampled video is added to a randomly

sampled Gaussian noise map and passed through a 3D CNN to estimate a residual value to refine the upsampled video output. It is trained

with adversarial losses from two discriminators working on the entire snippet and individual frames, respectively. This refined output is

used as input for the next scale where the process repeats.

The remaining generators focus on refining and adding

missed details to the output of the generators preceding

them. This is done by up-sampling the output of the preced-

ing generator and adding a Gaussian noise map to predict a

residual image, which when added to the input upsampled

image results in a more detailed image. Residuals are esti-

mated at each stage instead of directly generating the image,

so that the generators do not disregard the output from the

coarser generators. This process can be written as:

x̃n =↑ x̃n−1 +Gn(zn, ↑ x̃n−1). (2)

Along with random samples, SinGAN also preserves a

series of noise maps zopt = (z∗, 0, 0, ..., 0), which are used

to reconstruct the original image back via a reconstruction

loss. z∗ is a noise map that is drawn once and kept fixed dur-

ing training. Having a pre-decided zopt enables the model

to generate the original image back, which is necessary for

image manipulation applications that directly edit the origi-

nal image.

3.2. SinGAN­GIF

A simple approach to extend SinGAN to videos is to

use dual discriminators, with one of them distinguishing

generated samples from real ones at the image-level while

the other focuses on the temporal information at the video-

level, similar to prior video generation work [6, 33, 35]. In

accordance with SinGAN, we maintain a pyramid of gen-

erators each of which operates on a successively upscaled

version of the input video; i.e., given a pyramid of n gen-

erators from 1 to n, each generator operates on a version of

the original input scaled by a factor ri. The output from the

ith generator is upsampled and added to a noise map before

being fed to the next generator, as shown in Fig. 2. This en-

sures that successive generators consider both the noise as

well as the previous generation for the new output.

Each generator is associated with two discriminators:

one of which operates on each of the output frames indi-

vidually, while the other works on the entire video snippet

as a whole. Ideally, only a single video discriminator should

be able to check for both spatial and temporal inconsisten-

cies but empirically we found high frequency noise artifacts

to be frequent when using only the video discriminator.

Another difference in training procedure when working

with longer GIF sequences of e.g., T = 32 frames, is that all

frames may not fit in GPU memory within a single forward

pass especially for higher resolutions. This means that we

need to have different zopt’s (needed for the reconstruction

loss) for different chunks of the same video clip since we

can only pass e.g., t = 8 frames at a time. We solve this

by simply pre-setting a T × h× w noise map for the entire

snippet but clip a t× h×w portion out of it, corresponding

to the frames currently being processed through the network

(where h and w are height and width at a specific scale).

We notice this simple approach gives reasonably accurate

reconstructions.

While this simple approach achieves qualitatively good

results, it is quite slow to train even at a low spatial reso-

lution of about 160x160 and a low temporal resolution of

8 frames on a NVIDIA 1080ti GPU. The reason is in large

part due to naive 3D convolutions having many more pa-

rameters than an analogous 2D convolutional network.
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Figure 3. Training pipeline for SinGAN-GIF’s 2D convolutional network. At a given scale n, frames are first extracted from a video snippet

obtained from the last scale n− 1. The frames are then upsampled and appended to their temporal neighbors along the channel dimension

and noise is added. They are then passed through a 2D CNN which predicts residuals to refine each input frame. The refined frames are

individually passed through an image discriminator and also converted back to a video and passed through a video discriminator.

3.3. Towards a More Lightweight Architecture

We make the following adjustments to speed up training

at higher resolutions.

3.3.1 Channel-wise separable 3D Convolution

Channelwise 3D convolutions split a k×h×w convolution

into a 1 × h × w spatial convolution and a k × 1 × 1 tem-

poral convolution [13, 12]. This not only reduces the num-

ber of learnable parameters but also makes training faster

and more stable without any major impact on the quality

of results. We use separable 3D convolutions for the 3D

generator. We attempted to use separable convolutions for

the discriminator as well but we found that it leads to highly

unstable training so we use regular 3D convolutions instead.

3.3.2 3D-2D Hybrid Pyramid Scheme

We notice that beyond a certain spatial resolution, the tem-

poral context from all frames is not necessary and the con-

text from the immediate temporal neighboring frames is

more important. Therefore, to further improve training

speed, we start with 3D convolutions for the initial few

scales but later switch to 2D convolutions. These 2D convo-

lutions take an upsampled frame from the previous scale as

well as its preceding and proceeding neighboring frames ap-

pended along the channel dimension. Just like the 3D gener-

ator, the output is passed through both image and video dis-

criminators. Furthermore, to ensure each individual frame

forms part of the same video sequence, we set the sampled

additive noise z to be the same for all individual frames. A

detailed description of this step is shown in Fig. 3.

With this change, combined with separable convolutions,

we notice a decrease in training time of approximately

∼20% at 256x256 resolution.

3.4. Training Procedure

Each generator is trained sequentially moving from

coarser scales to finer scales, and we only estimate resid-

uals when moving towards finer scales. Once a generator

is trained, it is kept fixed while the next generator is opti-

mized. Each generator is trained using adversarial losses

from both video and image discriminators, a reconstruction

loss, and a color statistics matching loss:

LGn
= min

Gn

max
Dn img

Ladv img(Gn, Dn img)+

α ·min
Gn

max
Dn vid

Ladv vid(Gn, Dn vid)+

β · Lrec(Gn) + γ · Lstat(Gn), (3)

where Gn, Dn vid, Dn img denote the generator, video dis-

criminator, and image discriminator at the n’th scale of gen-

eration, respectively. Ladv vid and Ladv img are the adver-

sarial losses for video and image discriminators, respec-

tively, while Lrec and Lstat are reconstruction and color

statistics matching losses, respectively. We explain each

loss in detail next.

3.4.1 Adversarial Losses

Each pair of generator and corresponding discriminators are

trained using the WGAN-GP [10] loss as it is shown to in-

crease stability:

L = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)]
︸ ︷︷ ︸

CriticLoss

+

λ · Ex̃∼Pg
([‖∇D(x̃)‖2 − 1])2

︸ ︷︷ ︸

GradientPenalty

(4)

We train the discriminators by averaging over image

patches and video volumes for images and videos, respec-

tively, similar to patchGAN [14].
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Figure 4. Effect of adding color statistics loss. First Row: Original 4 consecutive frames of a given video. Second Row: Random

consecutive frames generated without Color Statistics Loss. Third Row: Random consecutive frames generated with Color Statistics Loss.

It is clear that images in second row seem to not have the same color scheme of the original video. But after adding the statistics loss the

color matches the input frames faithfully while also being sufficiently distinct from the input video in terms of layout.

3.4.2 Reconstruction Loss

In order to make it possible to edit the original frames, we

need to be able to generate training frames back from gen-

erators in a controllable way. To ensure this, we choose a

set of z’s prior to training (as explained earlier) which must

map back to the original frames. Thus at a scale n, the re-

construction loss can be stated as:

Lrec =‖(Gn(z
n−1

opt , ↑ x̃rec
n−1

) + x̃rec
n−1

)− xn‖1 (5)

where xn is the original snippet at the n’th scale while x̃rec
n−1

is the generated sample and zn−1

opt is the pre-determined

noise map at the preceding n− 1 scale.

Similar to SinGAN [27], we use the reconstruction loss

to determine σ for the Gaussian noise map of the next finer

scale. However, since we are using a set of frames of a

video instead of a single image, we use the average RMSE

between all frames of the reconstructed video and the input

video to determine σn for scale n+1. Using reconstruction

error to estimate σ helps the network estimate the extent

of details to be added since a higher RMSE would mean

more significant changes are required for improvement as

compared to a lower RMSE.

3.4.3 Color Statistics Loss

While SinGAN [27] uses only the adversarial and recon-

struction losses, for videos we see that with just these losses

the generated samples do not match the color distribution of

the training video frames; see Fig 4. We hypothesize that

small errors in estimating residual images leads to small di-

vergences from the original distribution which over multi-

ple scales leads to a very noticeable difference. This issue

was also reported in [39] and was resolved by matching the

mean and covariance of color channels of generated images

at successive spatial resolutions. Since we are training our

model on a single video, we simply match the mean and

variance of each color channel of each frame of the gener-

ated video to the input video:

Lstat = Ex̃∼Pg,x∼Pr,i∼{r,g,b}[‖µ(x̃i)− µ(xi)‖2+
‖Cov(x̃i)− Cov(xi)‖2] (6)

where µ is mean, cov is covariance, Pr is real distribution,

Pg is generated distribution, x is the set of training frames,

and x̃ denotes generated frames.

3.5. Implementation Details

Training all pairs of generators and discriminators using

Adam [18] with a learning rate of 5e-4 for roughly 8000 it-

erations produces decent results for all GIFs, although the

optimal hyperparameters can vary for individual GIFs. We

start with a batch size of 16 (or total number of frames if less

than 16) and gradually reduce to 8. We find that 3D convo-

lution for the coarsest 4 scales followed by 2D convolutions

for the rest of the finer scales give the best results. The val-

ues for α, β, γ in Eq. 3 are determined empirically to be 5,

50, and 2 respectively. The smallest spatial dimension at the

coarsest scale is set at 25 pixels while r = 4/3 is the scaling

factor. The gradient penalty term for both discriminators is

set to 0.1.

4. Results

With SinGAN-GIF, we can train GIFs with a spatial res-

olution of 256x256 using a single Titan XP GPU. We ex-

periment with a variety of GIFs to show the flexibility and

generality of our approach. The training videos belong to

diverse natural scenes like cloudy sky, waterfall, desert,

mountains, sunset, seashore, nightime-timelapse, river, and

flock of birds. Each GIF consists of 8-32 frames.

In all the results (see Fig. 5 and supplementary videos

in the project page), we see that our method not only cap-

tures the textures and relative positions of the objects in the

videos, but also their associated motion. Furthermore, de-

spite training with just 8 frames during a single forward

pass, our generation need not be limited to just an 8 frame
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Figure 5. Row1: Original training frames. Row2-4: Frames from videos generated with different aspect ratios. Link to generated GIFs in

supplementary.

video as the network is able to utilize the context to generate

meaningful videos of up to 32 frames.

In order to quantitatively evaluate the quality of our gen-

erated GIFs, we calculate the Single-GIF FID (SGFID)

score, which is a direct extension of the Single-Image FID

score [27]. Specifically, for each frame of the generated

GIF, we take the conv layer features right before the sec-

ond pooling layer of the Inception Network [31] (i.e., one

feature vector per spatial location in the corresponding fea-

ture map per frame). The SGFID is the FID [11] between

the statistics of those features in the real video (across all

frames) and those features in the generated sample.

We compare our scores against a simple modification of

SinGAN where instead of training with just a single image

we train it on all frames of a video together by passing a

randomly selected frame through the discriminator during

each forward pass. As can be seen from Table 1, our out-

put has significantly lower SGFID scores indicating that our

method models the patches in the original frames better than

trivially training SinGAN with all the frames of a given GIF.

Finally, we also perform qualitative user studies using

Amazon Mechanical Turk. Workers have access to each

video for 5 seconds and can play it twice before making a

decision. We asked mechanical turkers to identify whether a

video was real or fake. We generated 10 samples each for 9

videos (a total of 90 generated samples), and for each sam-

Model SGFID score

SinGAN-GIF 0.37

SinGAN (All Frames) 0.89

Table 1. SGFID scores averaged over 90 GIFs (9 training GIFs,

each with 10 generations). Each generated video has the same

number of frames as the training GIF.

ple had 3 turkers evaluate. We took the majority vote from

the 3 evaluaters to filter out noise. 44 out of 90 generated

samples were identified as real, and the remaining 46 were

identified as fake. This shows that our generated samples,

while not perfect, are reasonably real looking.

5. Applications

We next demonstrate a number of video editing applica-

tions using SinGAN-GIF. Our goal here is to demonstrate

the feasibility of our single architecture in performing a va-

riety of diverse tasks, but we note that there are task spe-

cific methods like [15] for video slo-mo and [32] for super-

resolution, which outperform our approach.

5.1. Changing Aspect Ratios

Figure 5 shows how our model is able to produce frames

that are variations of the original video in different spatial
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Figure 6. Row1: Frames edited using SinGAN-GIF. Row2: Seam introduced from naive translation of the frames to the left.

resolutions. Importantly, the temporal relationship between

consecutive frames also makes sense. This application can

have real world use cases where one may need similar look-

ing videos to fit to different screen-sizes or for data aug-

mentation to get a variety of videos from a single data point.

Since our model is fully convolutional, different spatial res-

olutions can be easily achieved by changing the shape of the

input Gaussian noise maps.

5.2. Video Slo­Mo

We can also modify SinGAN-GIF slightly to obtain

slower versions of an input GIF. For this, we model input

frames as a path in latent space i.e., we assume the first and

last frames come from two different Gaussian distributions

centered at -1 and +1, respectively. The rest of the frames

can then be sampled using the formula (n/N)∗z1+((N −
n)/N) ∗ z2, where n is the current frame while N is the to-

tal number of frames we want to generate. Sampling frames

like this can be thought of as a timer which can help the net-

work distinguish between the frame rate of the output video.

This though poses a problem since we get patches from the

input GIF only at a fixed rate.

To work around this problem, while the generator is

trained to generate frames at a variable frame rate, we

subsample the generated video back to the frame rate of

the original training GIF before passing it to the discrim-

inators. For example, in order to generate videos at half

speed, during each forward pass we will generate twice as

many frames as the original video, and select every alter-

nate frame and pass it to the discriminator so that it can

be compared against the original clip. All the frames are

still individually passed to the image discriminator to make

sure each frame looks realistic as well. The results of this

method can be seen in the supplementary.

5.3. Video Lengthening

Since our model learns the inherent pattern of motion

and the correct spatial locations of objects in relation to the

Figure 7. Top: Result for 3x upsampling using the finest scale of

SinGAN-GIF. Bottom: Result for 3x upsampling using bilinear

interpolation. One can see sharper details in the top figure. Link

to the complete super-resolution video result can be found in the

supplementary.

overall scene, we can train our model on a small clip of just

8 frames but generate realistic videos which are longer up to

32 frames. This is because motions are often repetitive es-

pecially in natural scenes, and neighboring frames provide

enough context to the model to reliably extend the motion

using the patterns it has learned from just the 8 input frames

of the GIF. The results can be found in the supplementary.

5.4. Video Seamless Composition

SinGAN-GIF can be used to create translated or locally

edited versions of input videos that are free of obvious

seams. Our method is able to achieve this by passing down-

sampled locally edited frames to a coarse generator (say n,

typically 3) and running it through the rest of the finer gen-

erators from {n + 1, ..., N}. That is, we skip the first n
generators, and instead input the locally edited frames di-

rectly to the n + 1’th generator. Also, unlike SinGAN, we

notice a single pass through the set of generators may not

fix all the artifacts. Thus, the output from one pass through

the generators is downsampled again and the process is re-
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Figure 8. Row 1: A random image of a waterfall semantically sim-

ilar to the training input. Row 2: Training input GIF of a waterfall.

Row 3: Animated input image. Link to complete result video can

be found in the supplementary.

peated. A small sequence of frames edited like this is shown

in Figure 6.

5.5. Video Super­Resolution

It has been shown that patches in a given image tend to

recur repeatedly over multiple scales [42]. This fact cou-

pled with the intrinsic design of our model enables us to

perform video super resolution by iteratively refining the

input frames through the finest generator, which adds the

most high frequency details. This is done in a manner sim-

ilar to what was proposed in SinGAN. To upsample frames

by a factor of k, we set the pyramid scale factor to
n
√
k,

where k ∈ N and the reconstruction error is given a higher

weight of 125. A result is shown in Figure 7.

5.6. Motion Transfer

We also explore animating a single image which looks

semantically similar to a training GIF. We replicate the im-

age 8 times along the temporal dimension and pass it to

the second coarsest generator. (Since the coarsest genera-

tor only takes a noise map as input, we cannot start at the

coarsest level.) While this is not perfect since a random im-

age will not exactly match the patches’ patterns in the train-

ing video snippet, our method is still able to transfer motion

reasonably well to correct regions and produce a reasonable

output despite this being a very hard task. See Fig. 8.

6. Limitations

Since 3D convolutions are the building blocks for our

architecture, memory is a bottleneck that limits us to train

with smaller frame lengths and spatial resolutions despite

the modifications in Section 3.3. Mixed precision train-

ing [22] or gradient checkpointing [4] are possible ways to

overcome this limitation.

Figure 9. Top: Single frame of the training GIF. Bottom: Sin-

gle frame from a random generated sample. Although the ran-

dom sample follows the distribution of patches in the training

frame, due to the absence of any high-level knowledge of the ob-

ject present, the output does not make semantic sense.

Another limitation arises from the fact that a single video

does not provide enough semantic information required to

model rich real world dynamics. Thus, it can produce un-

natural frames in the presence of a salient object as shown

in Fig. 9. But an interesting thing to note here is that de-

spite the unnatural appearance of frames, each part of the

frame does move in a predictable way indicating our model

successfully links motion to their corresponding ‘entity’.

7. Conclusion

In this paper, we presented an approach to train deep gen-

erative networks on a single GIF (or short video clip). We

showed that our model, SinGAN-GIF, can generate similar

looking samples at different resolutions or frame rates. We

also showed how SinGAN-GIF can be extended to other ap-

plications like video editing, super resolution, and motion

transfer. We achieved this by extending the image-based

SinGAN model, and using a combination of 3D and 2D

convolutions to model temporal information while reducing

model parameters.

Drawbacks include long training times and limited spa-

tial resolutions due to memory. While generating random

diverse videos is still a very open and challenging problem,

by limiting the training data to a single GIF, we can gener-

ate realistic video samples for natural scenes and can model

both the patch distribution and their associated motion suc-

cessfully. We believe our work is an encouraging step in

unconditional video generation research.
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