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Abstract

Despite the initial belief that Convolutional Neural
Networks (CNNs) are driven by shapes to perform vi-
sual recognition tasks, recent evidence suggests that tez-
ture bias in CNNs provides higher performing models
when learning on large labeled training datasets. This
contrasts with the perceptual bias in the human visual
cortex, which has a stronger preference towards shape
components. Perceptual differences may explain why
CNNs achieve human-level performance when large la-
beled datasets are available, but their performance sig-
nificantly degrades in low-labeled data scenarios, such
as few-shot semantic segmentation. To remove the tex-
ture bias in the context of few-shot learning, we propose
a novel architecture that integrates a set of Difference
of Gaussians (DoG) to attenuate high-frequency local
components in the feature space. This produces a set of
modified feature maps, whose high-frequency components
are diminished at different standard deviation values of
the Gaussian distribution in the spatial domain. As this
results in multiple feature maps for a single image, we
employ a bi-directional convolutional long-short-term-
memory to efficiently merge the multi scale-space repre-
sentations. We perform extensive experiments on three
well-known few-shot segmentation benchmarks —Pascal
15, COCO-20i and FSS-1000- and demonstrate that our
method outperforms state-of-the-art approaches in two
datasets under the same conditions.

1. Introduction

Deep models, and particularly convolutional neu-
ral networks (CNNs), have shown an impressive per-
formance in many visual recognition tasks, including
semantic segmentation [19]. However, their extreme
hunger for labeled training data strongly limits their
scalability to novel classes and reduces their applicabil-
ity to rare categories. Few-shot learning [23, 8| has ap-

peared as an appealing alternative to train deep models
in a low-labeled data scenario. In this setting, the model
is trained to accommodate for novel categories with only
a handful of labeled images, typically known as sup-
port images. In few-shot segmentation approaches, the
learned knowledge from the support images is typically
fed into a parametric module to guide the segmentation
of the unseen images, referred to as queries.

Recent works have demonstrated that the CNN bias
towards recognizing textures rather than shapes in-
troduces several benefits under the standard learning
paradigm |9, 2|, which contrasts with the inductive bias
found in the human visual cortex, that is driven by
shapes [13]. This does not represent a problem when
training and testing classes are drawn from the same
distribution in large-labeled datasets. Nevertheless, in
low-labeled data regime, the difference on perceptual
biases poses difficulties to CNNs to mimic human per-
formance, particularly if there exists a distributional
shift between training and testing classes, such as in
the few-shot learning scenario [24].

Thus, we argue that attenuating high-frequency lo-
cal components in the feature space yields to a better
generalization to unseen classes in the context of few-
shot semantic segmentation. Our motivation is inspired
by the findings in [9], who showed that CNNs have a
strong texture inductive bias that limits their ability
to leverage useful low-frequency (e.g, shape) informa-
tion. Although they show that the representational
power of CNN can be improved if CNNs are forced
to use shape information (by modifying input images),
how to design efficient algorithms that allow CNNs to
meaningfully use low-frequency information remains
an open problem. We tackle this issue by proposing
a novel architecture (Fig. 1) which integrates a set
of difference of gaussians (DOGs) [20] on the feature
representations. At each scale-space of the DOGs, the
original high-frequency signals are attenuated differ-
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ently, according to the standard deviation values, o,
employed to model the Gaussian distribution in the
spatial domain, which results in multiple versions of
the feature maps for a single image. The DoG at two
near standard deviations (o7 and o3) will smooth out
the features, reducing textural information that the fea-
ture extractor may have propagated. Then, following
the literature on few-shot segmentation, we generate
class representative prototypes from the learned repre-
sentations, with the difference that in our setting we
have multiple prototypes per image, i.e., one at each
scale-space of the DOG. Thus, for each query image,
our model produces an ensemble of segmentations, each
one associated with a prototype. To generate the final
prediction, we cast the problem into a sequential segmen-
tation task, where each segmentation on the ensemble
represents a time-point. To efficiently fuse temporal,
i.e., multiple segmentation masks, and spatial features
we resort to a Bi-directional convolutional long-short-
term memory (BConvLSTM) [29], which bidirectionally
encourages information exchange between LSTM units.
Furthermore, in the k-shot setting, our approach learns
a parametric fusion of the different support images by
jointly analyzing their contribution.

Our contributions can be summarized as follows:
(1) we propose to reduce the texture bias in CNNs in
the few-shot segmentation task by attenuating high-
frequency local components on the feature space, (2)
to merge the multiple segmentations produced at dif-
ferent scale-space representations we reformulate the
problem as a sequential segmentation task and employ a
bi-directional convLSTM to efficiently fuse all the infor-
mation, and (3) we report very competitive results on
few-shot segmentation across several public benchmarks,
outperforming most recent literature while keeping a
light architecture.

2. Related Work

Few-shot segmentation. Pioneer works on few-shot
semantic segmentation |26, 5, 22| incorporated two inde-
pendent branches: a conditional branch that generates
the prototypes (e.g., embedding) from the support set,
and a segmentation branch, which takes the learned
prototypes and the query image as input and produces
the segmentation masks. More recently, researchers
have unified these dual-branch architectures into a sin-
gle branch network which can derive better guidance
features with the addition of a masked average pool-
ing layer [42, 27, 34, 21]. For example, a similarity
guidance module is integrated in [42] to recalibrate
the query feature map based on a similarity score be-
tween the representative prototype and each spatial
location on the query features. In |27], authors present

an approach to generate the weights of the final segmen-
tation layer for the novel classes via imprinting. Other
works interchange support and query images for pro-
totype alignment regularization [34] or to concurrently
make predictions [17] with the goal of achieving better
generalization. Nguyen et al. [21] integrated a regular-
ization that estimates feature relevance by encouraging
jointly high-feature activations on the foreground and
low-feature activations on the background. Deep atten-
tion has also been exploited to learn attention weights
between support and query images for further label
propagation [11, 40]. More recently, some researchers
have adopted graph CNNs to establish more robust cor-
respondences between support and query images and
enrich the prototype representation [18, 33]. Our work
differs from previous approaches from a motivation and
methodological perspective. While most of the current
literature focuses on learning better prototypical repre-
sentations or iteratively refining these, we approach this
problem under the perspective of reducing the inductive
texture bias of CNNs. Thus, from a methodological
point of view, our approach is the first attempt to inte-
grate a pyramidal set of DoG to address the problem
of texture bias.

Semantic segmentation with conv LSTM. Conv
Long-Short Term Memory (LSTM) was presented in
[35] to address the limitations of LSTMs in tasks such as
semantic segmentation, where the learned intermediate
representations of the input images must preserve the
spatial information. Particularly, convLSTM addresses
this by integrating a convolution operator in the state-
to-state and input-to-state transitions. In the context of
image segmentation on 3-dimensional data, e.g. videos
or medical imaging, convLSTMs are integrated to en-
code the spatial-temporal relationships between frames
or slices [4, 31, 29, 41]. If only 2D images are available
instead, an alternative is to leverage convLSTM for
multi-level feature fusion [14, 1]. Li et al. [14] employed
convLSTM units to progressively refine the segmenta-
tion masks from high-level to low-level features. In
[1], features derived from the skip connections in the
encoding path of UNet [25] were non-linearly fused with
their corresponding features in the decoding path by
employing a bi-directional convLLSTM, instead of a sim-
ple concatenation. In a related work, Hu et al. [11]
employ a ConvLSTM to merge multiple segmentations
in a k-shot scenario (k > 1), where each segmentation is
generated from a different support image. This differs
from our work, where our goal is to fuse the segmenta-
tions from a single support image (k = 1) derived from
multiple scale-space representations. Furthermore, we
use a bidirectional ConvLLSTM to foster the exchange
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Figure 1. Overview of the proposed method (DoG-LSTM) for few-shot segmentation. It first applies a pyramid of difference
of gaussians (DoG) on the learned support features to attenuate high-frequency local components on the feature space. To
perform segmentation on a query image, the multiple scale-space support representations are combined with the query features,
and later fed as input to a bi-directional convLSTM. The convLSTM merges the information from multiple representations

and generates the final query segmentation map.

of information between the forward and backward path
of each recurrent module.

3. Methodology
3.1. Problem Formulation

Following the standard notation and set-up in few-
shot semantic segmentation, we define three datasets:
a training sct Diqqin = {(X!, Y1)}t a support
set Dgypport = {(X7, Yis)}ﬁvzsf“"’”, and a test set
Dicst = {(XI)}Nts=t . In this setting, X; € REXWx3
denotes an RGB image, with H and W being the
height and the width of the image, respectively, and
Y; € {0,1}7*W is its corresponding pixel-level mask.
Furthermore, each set contains N images. The classes,
denoted as ¢ € C, are shared among the support and
test set, and are disjoint with the training set, i.e.,
{Ctrain} N {Csupport} = @

The purpose of few-shot learning is to train a neural
network fp(-) on the training set Dy,4, to have the
ability to segment a novel class ¢ ¢ Cipqin On the test
set Dicst, based on k references from the support set
Dupport- To reproduce this mechanism during training,
the network is trained on Dy.q;n following the episodic
paradigm [32]. Specifically, assuming a c-way k-shot
learning task, each episode is generated by sampling:
(1) a support training set DS . = {(X!, YE(c))}r_, C
Dyyqin for each class ¢, where Y/ (c) is the binary mask
for the class ¢ corresponding to the image X! and (2)
a query set D2 . = {XE, Y ()} C Dirain, where X!
is the query image and Y, (c) its corresponding binary
mask for the class ¢. The input of the model is com-
posed of the support training set and the query image,
fo(DE ins X +), which are employed to estimate the seg-
mentation mask for the class ¢ in the query image, th (o).
Then, the neural network parameters 6 are optimized

by employing an objective function between qu’(c) and
th(c)]. During the testing phase, the model fy(-) is
evaluated on the test set Dy.q given k images from the
support set Dgypport-

3.2. Removing Texture Bias

Recent findings suggest that perceptual bias on CNNs
do not correlate with those in the human visual cortex
[9], which may limit the performance of these models
in low-labeled data scenarios [24]. Inspired by this,
we propose to reduce the texture bias of CNNs in the
context of few-shot segmentation. To achieve this, we
integrate a set of difference of gaussians (DoGs) [20] into
the learned feature space to attenuate high-frequency
local components, i.e., texture. First, we use a CNN to
encode the input images into the latent space, resulting
in F, € RW'*H'*xM 454 F, € RW'XH' XM fo; the sup-
port and query samples. The variables W', H' and M
represent the width, height and feature dimensionality
on the latent space, respectively. To encode the high-
frequency information during training, we apply a DoG
on each channel m € M of the feature map from the
support samples Fy, which can be formulated as:

Gs = FO’] R (Fs)

_ x24y?

_ (Fsm " 271-0-% exp 209 )_
1 22442
(anl * m exp 201 ),Vm eM (1)

1

where o1 and o5 are (o2 > 1) are the variance of the
Gaussian filters, x and y represent the spatial position in
the encoded feature space and * denotes the convolution
operator. To encode different frequency information

1 Typically the standard cross-entropy loss function is employed
in the few-shot segmentation literature.

2676



we apply a pyramid of DoGs with increasing o values,
similar to [20]. This results in L level representations
(L = 4) for each support sample (See Fig. 2), where the
novel feature maps at each level (I € L) can be denoted
as GL e RW < H'xM

Support images can contain cluttered background,
as well as multiple object categories. Thus, we need
to find a representative embedding fs that corresponds
exclusively to the target class. Since we have L feature
representations, cach of them encoding different high-
frequency local components, we generate L prototypes
per class. To obtain the class prototypes, the novel
encoded feature maps at each scale G are averaged
over the known foreground regions in the support mask
Y,(c). Thus, at each level we can estimate f! as:

w'H'

fle—— S G 2)

T Vol =

where the support mask Yi(c) is down-sampled to
Yi(c) € {0,1}H>W" to match the spatial resolution
of the feature maps G4 and |Y;(c)| = 32, Yai(c) is the
number of foreground locations in Y;(c). Then, each
prototype is unpooled to the same spatial resolution as
the query features F, and the upsampled prototypes
are convolved with F,. We then define the scale-space
representation (SSR), which will serve as input signal
of the BConvLSTM. This representation can be for-
mulated as a convolution operation between the class
representative feature maps at each scale-space and the
feature maps derived from the query image:

SSR={BN(y.F,)},vlcL (3)

where ¢! are the upsampled prototypes f!, and BN
denotes a batch normalization layer.

3.3. Encoding Scale-Space Representation

Fusion of the query features Fj with the multi-scale
class representations from the support features ¢! pro-
duces L joint feature maps, one at each scale-space rep-
resentation. While logical or average operations may be
a straightforward solution to obtain a unique representa-
tion, they fail to exploit the inner relationship between
sequential scale-space representations. To efficiently
solve this, we reformulate the problem as a sequential
task, and integrate a bidirectional convolutional long
short term memory (BConvLSTM) [29] on the output
of the CNN architecture (Fig. 2). Even though LSTM
have been proposed to deal with sequential problems,
this sequential processing strategy may fail to explic-
itly encode the spatial correlation, since they use full
connections in input-to-state and state-to-state tran-
sitions. To overcome this limitation, ConvLLSTM was

proposed in [35], which leverages convolution operations
into input-to-state and state-to-state transitions instead.
Specifically, three gating functions are calculated in the
ConvLSTM, which are defined as:

h=0(Wgx X+ Wy, «H,_ 1 + W, 0Ci_1 + 1)
(4)

fi=0(W,rx X+ WypxH, 1 + Wero0Cyy 4 by)
(5)

Ot = U(on * X+ WhoxHy 1 + Weo0Cy1 + bO)
(6)

where A; and H; denote the input (i.c., SSR in eq. (3))
and hidden state at time t, respectively, and b is used
to represent the bias term in each state. Similarly, W,
W), and W, represent the set of learnable parameters.
Last, ‘o’ denotes the Hadamard product. The LSTM
module generates a new proposal for the cell state by
looking at the previous H and current X', resulting in:

Ci = tanh(Woe % X + Wy x Hy 1 +b.)  (7)

Now we linearly combine the newly generated proposal
C; with the previous state C;_; to generate the final
cell state in the recurrent model:

Ci=fi0Ci_1+i,0Cy (8)
Finally, the new hidden state H can be estimated as:
Ht — 0+ © tanh(Ct) (9)

Inspired by [29], we employ in this work a BConvLSTM
to encode the different scale-space representations (SSR)
at the output of the convolutional network (Fig. 2).
The bidirectional modules with forward and backward
paths allow to strength the spatio-temporal informa-
tion exchanges between the two sides, facilitating the
memorization of both past and future sequences. This
contrasts with the standard convLSTM, where only the
dependencies on the forward direction are employed for
the predictions. Thus, the output prediction for a query
image X7 is given at the output of the BConvLSTM,
which is defined as:

Y4 —tanh(WHH + WL H 1) (10)

where ﬁ and ﬁ represent the hidden states of the for-
ward and backward convLSTM units, respectively, and
b is the bias term. Last, the output of the BConvLSTM
is passed through a series of convolutions, followed by
upsampling and batch normalization layers to produce
the final segmentation masks in the original input image
resolution.
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Figure 2. The scale-space encoding block in the proposed method.

3.4. k-shot Segmentation

To fuse the information from several support im-
ages (k > 1), most previous works estimate the class
prototype @ by simply taking the average of the rep-
resentation vectors among k samples (non-parametric
approach) |26, 42, 27|. Nevertheless, this strategy as-
sumes that each k sample has equal importance, and
thus fails to provide a robust category representation
when dealing with noisy or corrupted samples. To deal
with this limitation, we propose to use a non-linear
parametric method to further improve the model per-
formance on the k-shot setting. The key idea is to
first generate the embedded representation between
the query and each k support samples and then apply
BConvLLSTM on these representations to get the final
representation in a non-linear parametric fashion. Mov-
ing k-shot setting inside the scale-space representation
gives the BConvLSTM more freedom to generate better
representations using various samples.

3.5. Weakly-supervised Few-shot Segmentation

To push further the idea of training with very few
supervision, we explore the performance of our method
when other forms different than full-supervision , i.e.,
full pixel-level masks, are available. Particularly, we
investigate bounding box annotations, which are less
time-consuming to obtain than exhaustive segmentation
masks. In this context, we relax the support mask
by considering all the area inside the bounding box
as the foreground. We show in the experiments that,
compared to pixel-level annotations, our model achieves
very competitive results by employing sparse support
annotations.

4. Experiments

In this section, we present the datasets employed to
evaluate our method and the experimental setting in
our experiments. We then report the results compared
to state-of-the-art few-shot segmentation approaches,
demonstrating the benefits of our method.
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4.1. Datasets

We perform extensive evaluations on three few-shot
semantic segmentation benchmarks, i.e., PASCAL-5?,
FSS-1000 and COCO, following standard procedures
in the literature. Details are given in Supplemental
materials.

4.2. Experimental Set-up
4.2.1 Network and implementation details.

We employ VGG [28] and ResNet-101 pre-trained on Im-
ageNet as the backbones for feature extractor. The pro-
posed model is trained end-to-end by using Adam [12]
for 50K episodes with a batch size of 5. The initial learn-
ing rate is set to 10~* and reduced by 107! at every 10K
iterations. The work is carried out using one NVidia Ti-
tan X GPU. The code is written in Keras with tensorflow
as backend and the code is publicly available at https:
//github.com/rezazad68/fewshot-segmentation

4.2.2 Evaluation protocol.

To evaluate the performance of the few-shot segmenta-
tion models, we employ the average IoU over all classes
(mlIoU). As pointed out in [40], the mIoU is a better
metric, compared to background-foreground IoU (FB-
IoU), in the context of few-shot semantic segmentation
for several reasons. First, if a given image contains very
small objects, the model may completely fail to segment
those objects. Nevertheless, the background IoU can
still be very high, which misleads information about the
real performance of the model. And second, FB-IoU is
more suitable for binary segmentation problems, such
as video or foreground segmentation, while our purpose
is on semantic segmentation.

4.3. Results
4.3.1 Comparison with state-of-the-art.

Comparison of the proposed model with state-of-the-art
methods on the FSS-1000 and PASCAL-5 datasets is re-
ported in Tables 1 and 2, respectively?. Results in Table
1 show that the proposed model outperforms the state-
of-the-art methods in both 1-shot and 5-shot settings
employing the same backbone, i.e., VGG. Particularly,
in the 1-shot task, our method achieves a significant
improvement of 5.5% over the second best performing
model. In the case of 5-shot learning, we found that
fusing the segmentations from the different supports
in a non-parametric way brings nearly 1% of improve-
ment with respect to the 1-shot setting. Nevertheless,
combining the 5 support segmentations in a parametric

2Results on COCO are given in Supplemental Material.

fashion, i.e., with BConvLSTM, increases the mIoU by
2.5%. It is noteworthy to mention that the method in
DAN [33] uses ResNet-101 as backbone, which might
explain the differences between the different methods.

Table 1. Results of 1-way 1-shot and 1-way 5-shot segmen-
tation on the FSS-1000 data set employing the mean Inter-
section Over Union (mloU) metric. Best results in bold.

Method mloU
1-shot
OSLSM |26] 70.3
co-FCN [22] 71.9
FSS-1000 [16] 73.5
FOMAML [10] 75.2
Baseline 74.2
Baseline+DoG 78.7
Baseline+-DoG+-BConvLSTM 80.8
DAN [33] (ResNet-101) 85.2
5-shot
OSLSM [26] 73.0
co-FCN [22] 74.3
FSS-1000 [16] 80.1
FOMAML+regularization [10] 80.6
FOMAML+regularization+UHO [10] 82.2
Baseline+DoG+BConvLSTM (non-param)  81.7
Baseline+DoG+BConvLSTM (param) 83.4
DAN [33] (ResNet-101) 881

We now report in Table 2 an extensive evaluation
of all previous works on PASCAL-5, the most com-
mon benchmark in few-shot semantic segmentation.To
make a fair comparison under different feature extractor
backbones, we split the table into three groups. The
top group shows the approaches that rely on VGG-
16 as backbone architecture, whereas the methods in
the middle and bottom groups resort to ResNet-50 and
ResNet-101 to extract features, respectively. From the
reported values, we can observe that the proposed ap-
proach outperforms most previous methods, under the
same backbone and in both 1- and 5-shot scenarios.
Specifically, compared to the second best performing
approach based on VGG-16 (i.c., [17]), our method
achieves nearly 3% and 2% of improvement in 1- and 5-
shot, respectively. Furthermore, our approach achieves
the best and second best performance across all the
methods in the 1- and 5-shot scenarios, respectively,
regardless of the backbone architecture. These quan-
titative results demonstrate the strong learning and
generalization capabilities of the proposed model in
both 1- and 5-shot settings.

4.3.2 Qualitative results.

We depict visual results of the proposed method on
Pascal5’ in Fig 3. Particularly, the support image-mask
pair and the segmentation generated by our method for
multiple query images, as well as their corresponding
ground truths for several categories are shown. Without
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Table 2. Results of 1-way 1-shot and 1-way 5-shot segmentation on PASCAL-5" data set employing the mean Intersection-
Over-Union (mloU) metric. Best results for each backbone architecture are highlighted in bold. We employ V to denote the

difference between 1- and 5-shot settings.

| 1-shot 5-shot
Method | fold!  fold? fold® fold® Mean | fold! fold> fold® fold! Mean | V
| Backbone (VGG 16)
OSLSM |[26] BMVC’18 336 55.3 409 335 40.8 359 581 427 391 43.9 3.1
co-FCN [22] ICLRW’18 36.7 50.6 44.9 324 41.1 37.5 50.0 44.1 33.9 41.4 0.3
AMP [27] ICCV’19 41.9 502  46.7 347 434 41.8 55.5  50.3 399 46.9 3.5
PANet [34] ICCV’19 423 58.0 511 41.2 48.1 51.8 64.6 59.8 46.5 55.7 7.6
FWB|21] ICCV’19 47.0 596  52.6 483 51.9 509 629 56.5  50.1 55.1 3.2
Meta-Seg [3] IEEE Access’19  42.2  59.6 481 444 48.6 43.1 625 499 453 50.2 1.6
MDL [6] COMPSAC’'19  39.7 583 46.7 36.3 45.3 40.6  58.5  47.7  36.6 45.9 0.6
SG-One [42] IEEE SMC’20 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1 0.8
OS aqv [37] Inf. Sci.’20 46.9  59.2 493 434 49.7 472 588 488 474 50.6 0.9
ARNet [15] ICASSP’20 42.6 59.5 50.2 40.2 48.1 43.3 59.8 51.7 41.4 49.1 1.0
CRNet [17] CVPR’20 - - - - 55.2 - - - - 58.5 3.3
F'SS-1000 [16] CVPR’20 - - - - - 374 609 46.6 422 56.8 -
RPMM (18] ECCV’20 471 658 50.6 485 53.0 50.0 66.5 51.9 476 54.0 1.0
PFNet [30] TPAMI’20 56.9 68.2 544 524 58.0 | 59.0 69.1 548 529 59.0 1.0
Proposed - 56.2 66.0 56.1 53.8 58.0 57.5 70.6 56.6 57.7 60.6 2.6
| Backbone (ResNet-50)
CANet [40] CVPR’19 52.5 659 51.3 519 55.4 55.5 678 519  53.2 57.1 1.7
PGNet [39] ICCV’19 56.0 66.9 50.6 504 56.0 57.7 687 529 54.6 58.5 2.5
LTM [38] MMM’20 52.8 69.6 532 523 57.0 579 69.9 569 57.5 60.6 3.6
CRNet [17] CVPR’20 - - - - 55.7 - - - - 58.8 2.9
PPNet [18]* ECCV’20 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0 10.5
RPMM ([36] ECCV’20 552  66.9 52.6  50.7 56.3 56.3 673 545 510 57.3 1.0
PFNet [30] TPAMI'20 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9 1.1
| Backbone (ResNet-101)
FWB [21] ICCV’19 51.3 645 56.7 522 56.2 549 674 62.2 553 59.9 3.7
DAN |[33] ECCV’20 547 686 57.8 51.6 58.2 579 69.0 60.1 549 60.5 2.3
PFNet [30] TPAMI’20 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.5 1.4
Proposed - 57.0 672 56.1  54.3 58.7 57.3 685 61.5  56.3 60.9 2.2

* We report the results where no additional unlabeled data is employed.

any post-processing step, the proposed model provides
satisfying segmentation results on unseen classes with
only one annotated support image. It is noteworthy
to highlight that the same support image can be em-
ployed to segment multiple query images presenting
high appearance variability. For example, our model
can successfully segment cats (first row of Fig. 3) when
only fractions of the target are shown, such as the head
(first column) or even a partial head (third column).
Looking at other categories, e.g., bike or table, we ob-
serve that the proposed method can also handle objects
viewed from a different perspective or presenting differ-
ent shapes. This illustrates that our model has a strong
ability to successfully generalize to unseen classes from
only a handful of labeled examples.

4.3.3 Impact of the multiple scale-space repre-
sentation fusion strategy

Logical operations, such as OR, have been typically
employed to fuse features from different support images

in k-shot segmentation. Even though these operations
are straightforward, their result is hard to interpret
and they fail to efficiently model the relation between
sequential data. Thus, in addition to the results in
Table 1, we show in Table 3 the impact of fusing the
multiple scale-space representations by both the sim-
ple average operation or an additional convolutional
layer. Particularly, employing a convolutional layer
to combine multiple scale-space representations brings
nearly 1% of improvement compared to the simple av-
erage. On the other hand, if we integrate the proposed
strategy, the performance is improved by 3% and 2%,
respectively. These results demonstrate that our fusion
achieves better few-shot segmentation performance.

4.3.4 Weakly supervised performance.

We further evaluate the proposed model with weaker
forms of annotations, e.g., bounding boxes. As reported
in Table 4, our method achieves comparable perfor-
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Figure 3. Visual results on Pascal-5° in 1-way 1-shot setting using the proposed method. The support set, as well as
predictions on several query images with corresponding ground truths are shown.

Table 3. Results of 1-way 1-shot segmentation on the FSS-
1000 dataset with different fusion strategies to combine
multiple scale-space representations. Best results in bold.

Method mloU
1-shot

Average 77.6

CNN layer 78.7

Proposed (BConvLSTM) 80.8

mance to full supervision when bounding boxes are
available in the support set of novel categories. Further-
more, compared to the very recent PANet architecture
[34] our model brings 10% of performance gain in the
context of weak supervision. This suggests that our
model is able to deal efficiently with noise introduced
by bounding box annotations, which ultimately results
in more representative class prototypes that approach
those obtained by pixel-level annotations.

5. Conclusions

We have presented a novel segmentation network
that tackles the challenging problem of few-shot learn-
ing from the perspective of reducing the inductive tex-
ture bias on CNNs. This contrasts with most prior

Table 4. Full supervision vs weak-supervision performance
in the 1-shot scenario. Type of supervision in brackets.

Method mloU
FSS-1000 | PASCAL
Proposed (Pixels) 80.8 | 580
Proposed (Bounding boxes) 78.2 56.4
PANet [34] (Bounding boxes) - 45.1

literature, which focuses on explicitly enhancing the
prototypes representation. Particularly, the proposed
model presents two novel contributions. First, we in-
tegrated a pyramid of Difference of Gaussians to at-
tenuate high-frequency local components in the feature
space. Second, to merge information at multiple scale-
space representations we reformulated the problem as
a sequential task and resorted to bi-directional con-
volutional LSTMs. For evaluation purposes, we have
compared the proposed method to prior work, and per-
formed ablations on important elements of our model
on public few-shot segmentation benchmarks. Results
demonstrated that the proposed model outperforms
most prior methods while maintaining a light architec-
ture, achieving a new state-of-the-art performance on
several few-shot semantic segmentation settings.
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