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Abstract

Humans possess an innate capability of recognizing ob-

jects and their corresponding parts and confine their at-

tention to that location in a visual scene where the object

is spatially present. Recently, efforts to train machines to

mimic this ability of humans in the form of weakly super-

vised object localization, using training labels only at the

image-level, have garnered a lot of attention. Nonetheless,

one of the well-known problems that most of the existing

methods suffer from is localizing only the most discrimina-

tive part of an object. Such methods provide very little or no

focus on other pertinent parts of the object. In this paper,

we propose a novel way of scrupulously localizing objects

using training with labels as for the entire image by min-

ing information from complementary regions in an image.

Primarily, we adapt to regional dropout at complementary

spatial locations to create two intermediate images. With

the help of a novel Channel-wise Assisted Attention Mod-

ule (CAAM) coupled with a Spatial Self-Attention Module

(SSAM), we parallely train our model to leverage the in-

formation from complementary image regions for excellent

localization. Finally, we fuse the attention maps gener-

ated by the two classifiers using our Attention-based Fu-

sion Loss. Several experimental studies manifest the supe-

rior performance of our proposed approach. Our method

demonstrates a significant increase in localization perfor-

mance over the existing state-of-the-art methods on CUB-

200-2011 and ILSVRC 2016 datasets.

1. Introduction

Given a visual scene, humans have an inherent abil-

ity to recognize and localize objects of interest with min-

imal effort. With the advent of deep convolutional neural

networks [16, 17], there has been a remarkable improve-

ment in image recognition [15, 26, 29] and object detection

[10, 20, 21, 23, 24, 27, 30, 35]. However, these methods rely
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Figure 1. Overview of our proposed approach. From a single in-

put image, we create two complementary images during training,

denoted by X and X̃ . For hiding patches in our complementary in-

puts, we adapt from [28]. We then extract features from X and X̃

using a shared CNN. Finally, we fuse information from the com-

plementary inputs and perform parallel training of two classifiers

to discover integral object regions. Our parallel classifiers aid in

mining all relevant parts of the object (e.g., for a dog - its face,

forelegs, hindlegs) along with its most-discriminative part (head).

In this way, our model learns to focus attention on “where to look”

for the specified object in the given input image as well as localize

objects in a weakly-supervised manner. During inference, we do

not hide any patches of the input image. The test image as a whole

is provided to our trained CNN model.

on full supervision during training. Recently, there has been

an increasing focus on Weakly Supervised Learning (WSL)

techniques that require minimal supervision or coarse an-

notation during training, which reduces the effort of using

costly pixel-level annotations. One of the fundamental com-

puter vision tasks like semantic segmentation that require

fine pixel-level annotations, can now be trained using only

bounding box annotations or image-based labels using the
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WSL approach [1, 18, 36, 44].

Weakly Supervised Object Localization (WSOL) aims to

classify as well as localize objects without using expensive

bounding box annotations during training. Recently, a lot

of approaches [7, 22, 28, 39, 42, 48, 49, 51] have been pro-

posed to tackle this challenging problem. Zhou et al. [51]

put forward the idea of appending a Global Average Pool-

ing (GAP) [19] layer at the end of convolutional neural net-

works (CNNs) followed by a fully-connected layer to gener-

ate a class activation map (CAM). CAM highlights the dis-

criminative image region used to recognize that object cat-

egory. However, a crucial limitation of this approach is that

it only localizes the most discriminative class-specific re-

gion instead of the entire object. For e.g., given an image of

a dog, it only tries to generate implicit attention on its face,

without paying any heed to its remaining body parts. Hence,

it often leads to sub-optimal localization performance.

To overcome this problem, a few recent methods [8, 28,

42, 46] have come up with making changes to input image

rather than modifying the algorithm. In the paper, Hide-

and-Seek (HaS) [28], Singh and Lee attempt to randomly

hide patches of an input image during training so that their

model tries to seek other visible relevant parts of the object.

Even though this approach focuses on non-discriminative

object parts, it loses information during training when the

patches are hidden, leading to a limited localization perfor-

mance. This gives rise to an interesting question: Is there

any way to optimize the localization performance by maxi-

mally utilizing the information lost in regional dropout?

We propose to solve the above problem by introducing

to strategically mine information from complementary im-

age regions. Regional dropout methods [8, 50] have sig-

nificantly demonstrated the ability to generalize well on

image classification and object localization. We also ven-

ture to leverage this generalization ability and create two

complementary images, each possessing regional dropout

at complementary spatial locations in the respective images.

To create these input images, we adapt to randomly hide

patches in the input image similar to Hide-and-Seek [28],

as illustrated in figure 1. We perform joint training of these

complementary image regions as two input channels, using

two parallel classifiers. Further, we try to fuse the informa-

tion captured in both these input channels by incorporating

a novel Channel-wise Assisted Attention Module (CAAM)

along with a Spatial Self-Attention Module (SSAM). Both

these modules take input features extracted from pre-trained

CNNs. CAAM takes inspiration from [11, 40, 47], and tries

to model interactions in the channel dimension between fea-

tures extracted from two complementary images. SSAM

is inspired by [11, 36, 47] to capture feature dependencies

in the spatial dimension. We finally aggregate the inter-

dependencies modeled by these two modules: CAAM and

SSAM, for better localization ability. We also propose an

Attention-based Fusion Loss, inspired by [43], to fuse the

two attention maps obtained using the complementary im-

ages. Almost all the previous works rely only on the classifi-

cation objective to learn the implicit attention maps, which

serve as a testimony of visual explanations learned by the

model to localize objects. However, we feel that relying

only on the classification objective for localizing objects

limits the overall localization performance. The use of our

proposed Attention-based Fusion Loss, along with the usual

cross-entropy loss to train our localization model, to the best

of our knowledge, is the first of its kind.

Our key contributions are summarized as follows: 1) We

propose a novel way of training a network for weakly su-

pervised object localization that mines information from

complementary regions in an image, individually as well

as when fused. 2) We propose a novel Channel-wise As-

sisted Attention Module (CAAM). Along with a Spatial

Self-Attention Module (SSAM), CAAM jointly aids in lo-

calizing integral object regions. 3) We also propose an

Attention-based Fusion Loss criteria to fuse the attention

maps generated by the two parallel classifiers. Our pro-

posed loss function diligently captures all relevant parts of

the concerned object of interest, thereby suppressing back-

ground regions. 4) Our method achieves state-of-the-art ob-

ject localization performances on two benchmark datasets:

CUB-200-2011 [34] and ILSVRC 2016 [25]. We achieve

a Top-1 localization of 64.70% on CUB-200-2011 and

52.36% on ILSVRC 2016 datasets.

2. Related Work

Correspondence with human visual perception: The

two-stream theory of the human visual system proposed by

Goodale et al. [13] highlights the two distinct visual path-

ways in the human visual system viz., the ventral pathway

or the “what pathway” and the dorsal pathway or the “where

pathway” that jointly aid in recognizing and localizing ob-

jects respectively. We take motivation from the human vi-

sion system to jointly model the “what” and “where” path-

ways and efficiently perform object localization in a weakly

supervised setting.

Weakly Supervised Learning: Learning strong predic-

tive models using imprecise labels is becoming a trend since

it involves cheaper annotations and reduced human effort

for manual labeling of data. Also, the huge availability

of weakly labeled data in the form of videos and images

over the internet makes it possible to explore various real-

world problems in deep learning in a weakly supervised

paradigm. Although supervised object detection methods

[21, 23, 24, 27] have made tremendous progress, the fact

that they require costly bounding box annotations has led to

the exploration of weakly supervised object detection meth-

ods [9, 31, 32, 45] using only image-level labels.

Regional Dropout: Randomly masking certain regions
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Figure 2. Our proposed architecture. After extracting CNN features for our complementary inputs, X and X̃ , from a shared backbone,

we feed them to our proposed Channel-wise Assisted Attention Module (CAAM) along with a Spatial Self-Attention Module (SSAM) to

generate better feature representations. The aggregated outputs of CAAM and SSAM are then fed to the Global Average Pooling (GAP)

[19] layer. We perform parallel training for both the input branches corresponding to our inputs X and X̃ and obtain two localization maps.

We combine the attention between these localization maps using our proposed Attention-based Fusion Loss function. The dual training

branches with Classifiers X and X̃ focus attention on all regions of the object present in an image, thereby effectively localizing it.

in an input image have found to be effective in capturing

richer object context and better generalization performance.

Bazzani et al. [4] proposed to mask out certain regions in an

image that lead to a drop in the image recognition perfor-

mance, finally feeding the regions to an agglomerative clus-

tering algorithm which indicate higher objectness of such

merged regions in the input image. In Hide-and-Seek [28],

the crux was to randomly hide patches in an input image

forcing the network to focus on other relevant object parts.

Cutout [8] is yet another successful generalizable approach

that drops a certain amount of input region from the in-

put image. However, these methods lose information while

training the network using regional dropout. We make use

of information lost in regional dropout while training the

network, by generating two images to mask complementary

spatial locations.

Attention in Deep Neural Networks: Attention mech-

anism was first proposed in the pioneering work [33] by

Vaswani et al. in machine translation to model long-range

dependencies that the recurrent neural networks failed to

handle. Since then, attention has been used in a wide va-

riety of applications including image captioning [37], vi-

sual grounding [12], visual question answering [2], sound

source localization [3]. Self-attention has also made its way

in visual question answering [41], in which it was used for

question embedding, and in [40], it was used along with a

guided-attention module to model interactions for different

feature modalities. In one of the most recent works [47],

self-attention was used in image generation. In all these

works, self-attention has proved to generate better feature

representations. In our proposed framework, we adapt to at-

tention mechanism coupled with regional dropout for more

meaningful representations of our complementary images.

Other methods for weakly supervised object localiza-

tion: The work in [49] generates self-produced guidance

masks, which in turn are used in the form of pixel-level su-

pervision for localizing objects. Zhang et al. [48] proposed

adversarial erasing in feature space that mine information

from two adversarial parallel classifiers for superior local-

ization performance. Choe and Shim, in their work [7], pro-

posed to use self-attention mechanism to generate a drop

mask and an importance map from the input feature map

and randomly select either of them along with the input fea-

ture map for localizing objects. Yang et al. [39] uses a linear

combination of activation maps from the highest probability

score of a class to the lowest probability score, thereby as-

sisting in suppressing the background regions and focusing

more on the foreground object of interest. The most recent

work of EIL [22] by Mai et al. attempts to jointly perform

adversarial erasing and mining discriminative regions to lo-

calize objects efficiently.

3. Proposed Approach

Looking at complementary image regions helps the net-

work in paying attention to the concise details of the object.

Our detailed network architecture is illustrated in figure 2.

3.1. Notations

Given an input image I , with its image-level label, yi,
the goal of weakly supervised object localization is to learn

a model that is capable of classifying the input image I into

one of C object categories in the dataset and localizing the
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object in that image using a bounding box B. From I , we

create two input images, X and X̃ , with regional dropout

at complementary spatial locations in an image, as shown

in figure 1. We adapt to hide patches in the input image as

in [28]. We form our input X by randomly hiding patches

of an image. However, we regain the information lost in

input X by forming another input X̃ , which we call the X
complement. Input X̃ reveals the information in the hidden

patches of input X , whereas hides the information in visible

patches of input X . We extract features from inputs X and

X̃ using a shared CNN having parameters θ̂. We denote

these features as Fx and Fx̃, where Fx, Fx̃ ∈ R
C×H×W .

3.2. Mining Information from Complementary Im
age Regions

The information captured from CNN features (Fx and

Fx̃) of both inputs X and X̃ are used individually as well

as combined (fused) using Spatial Self Attention Mod-

ule (SSAM) and Channel-wise Assisted Attention Module

(CAAM) modules respectively (shown in figure 2). Fi-

nally, we aggregate the features captured both by SSAM

and CAAM for better feature representations of Fx and

Fx̃, denoted by F t
x and F t

x̃ respectively. F t
x and F t

x̃ are

then passed to a global average pooling layer [19], followed

by their respective classifiers. By jointly training the two

branches concerning the inputs X and X̃ , viz., classifier X
and classifier X̃ , our model precisely gets an idea regard-

ing “where to look” in the input image while classifying it

correctly.

3.3. Channelwise Assisted Attention Module

To compute CAMs [51], Zhou et al. proposed to multi-

ply the weights of the last fully connected layer of the clas-

sifier to the feature maps of the preceding convolution layer.

Towards the last layers of the CNN, the feature maps tend

to capture the class-specific responses. Hence, CAM high-

lights the most discriminative region of the object belong-

ing to that category. In the work [11], Fu et al. put forth the

idea of a Channel Attention Module to capture long-range

inter-dependencies between channels of feature maps in a

fully supervised setting for the task of semantic segmenta-

tion. Adapting the idea from [11], we attempt to leverage

the class-specific inter-dependencies between channels of

input features from both the branches, Fx and Fx̃. So, our

CAAM module takes as input the CNN features, Fx and Fx̃

and outputs features with more meaningful representation,

denoted by F c
x and F c

x̃ respectively. F c
x , F c

x̃ ∈ R
C×H×W .

A similar approach has been studied in [52] recently using

a cross-correlated attention network in the spatial dimen-

sion. However, our CAAM module tries to capture inter-

dependencies in the channel dimension of two feature maps.

To compute F c
x , we take the input features Fx, Fx̃ and

reshape them to R
C×N , where N = H×W corresponds to

Features	of	

Reshape

Softmax

Matrix
Multiplication
Element-wise
Addition

Features	of	

Channel-wise	attended	features	of	
	assisted	by	

Figure 3. Channel-wise Assisted Attention Module (CAAM).

The input to this module is the CNN features, Fx and Fx̃ of inputs

X and X̃ respectively, and it outputs the Channel-wise attended

features of input Fx assisted by input Fx̃. We interchange Fx and

Fx̃ in figure 3 to obtain the Channel-wise attended features of input

Fx̃ assisted by input Fx. The part indicated in dotted blue rounded

rectangle indicates shared computation while computing both F c
x

and F c
x̃ .

the number of pixels in the feature map. We then generate

channel attention matrix Qx as follows:

Qx = Softmax(Fx ⊗ FT
x̃ ) (1)

where, Qx ∈ R
C×C and ⊗ denotes matrix multiplication.

Qx consists of the learnable attention weights denoted by

λij
x ∈ Qx, i, j ∈ {1...C}, which capture inter-dependencies

between the channels of Fx and Fx̃. Further, we multiply

transpose of Qx with Fx̃ to get Yx, as:

Yx = QT
x ⊗ Fx̃ (2)

We then reshape Yx as RC×H×W and generate F c
x as :

F c
x = Fx + δxYx (3)

Here, δx is used to scale the features of Yx. It is initially set

to 0 and iteratively trained similar to that in [11, 47]. The

detailed expression for F c
x is as follows :

F cij

x = F ij
x + δx

C
∑

k=1

λki
x F kj

x̃ (4)

F c
x refers to channel-wise attended features of input Fx as-

sisted by input Fx̃. We can see in equation (4) that the final

features F c
x are a weighted sum of features of all locations

of input feature Fx̃ and the original features Fx.

Similarly, to compute F c
x̃ we follow the same set of steps

as followed for F c
x . However, we save computations as well
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as parameters in generating the channel attention matrix Qx̃

(shown in figure 3), as it is the transpose of Qx.

Qx̃ = Softmax(Fx̃ ⊗ FT
x ) (5)

From equations (1) and (5), it is evident that Qx̃ is actually

transpose of Qx. But for the purpose of simplicity, we de-

note it as Qx̃ itself. Also, we denote its learnable attention

weights as λij
x̃ ∈ Qx̃ and i, j ∈ {1...C}. Similarly, for F c

x̃ :

F cij

x̃ = F ij
x̃ + δx̃

C
∑

k=1

λki
x̃ F kj

x (6)

Similar to equation (4), δx̃ is also used as a scaling factor

for Yx̃. It is initially set to 0 and learns weight as training

progresses. F c
x̃ refers to channel-wise attended features of

input Fx̃ assisted by input Fx. As shown in equation (6),

the features of F c
x̃ are a weighted sum of features of all lo-

cations of input feature Fx and the original features Fx̃.

3.4. Spatial SelfAttention Module

Apart from the inter-dependencies between the features

of channels Fx and Fx̃ modeled by CAAM, it is significant

to consider their individual contribution as well for efficient

feature representation. We also hypothesize that to get the

object’s correct spatial location, it is important to have an

overall view of the visual scene and give the correspond-

ing weightage to the entire scene as per the objectness. In

the work [47], self-attention was used in GANs [14]. Tak-

ing motivation from [47], we propose to use spatial self-

attention for localizing objects. So the input to our SSAM

module is the features Fx and Fx̃ and its output is spatially

attended features F s
x and F s

x̃ respectively. Both F s
x and F s

x̃

are of dimension R
C×H×W . As illustrated in figure 4, given

features Fx, we compute matrices M , L and P using 1x1

convolution where, {M,L} ∈ R
C̃×H×W , where C̃ = C/8,

and P ∈ R
C×H×W . Mathematically, we compute F s

x as:

Kx = Softmax(MT ⊗ L)

Rx = P ⊗KT
x

F s
x = Fx + αxRx

(7)

where, αx is a weight factor for Rx. The parameter αx and

the weight matrices M,L, P,Kx and Rx are learnt during

training. Similarly, F s
x̃ can be formulated as:

F s
x̃ = Fx̃ + αx̃Rx̃ (8)

3.5. Aggregation

For features Fx and Fx̃ coming from each of the input

branches, we have two enhanced feature representations,

{F c
x , F s

x} and {F c
x̃ , F s

x̃}: the channel assisted features and

the spatially attended features respectively. To take advan-

tage of complementary information in both these features,

1	x	1	Conv

Reshape

Softmax

Matrix
Multiplication
Element-wise
Addition

Features	of	
	

Spatially	attended	features
of	input	

Figure 4. Spatial Self-Attention Module (SSAM). This module

helps in spatially localizing the object as it takes help from all

feature locations of the input feature map Fx and outputs the cor-

responding spatially boosted features F s
x . Similarly, we also get

F s
x̃ from the corresponding complementary features Fx̃.

we fuse them using an element-wise sum. Finally, a convo-

lution layer is used to bind them together as follows:

F t
x = conv(F c

x + F s
x); F t

x̃ = conv(F c
x̃ + F s

x̃) (9)

Here, F t
x and F t

x̃ denote the feature maps from final convo-

lution layer in our proposed framework. We use outputs of

these final convolution layers to generate localization maps.

3.6. Attentionbased Fusion Loss

We train our model in an end-to-end way to obtain two

localization maps, in a manner similar to CAM [51]. We use

cross-entropy loss for training both the classifier branches.

However, both the classifiers discover complementary ob-

ject parts during training. Thus, it is necessary to fuse the

pair of localization maps. This is done by our Attention-

based Fusion Loss, such that our model learns to focus on

the entire object during training and generalizes well during

testing (as we do not use two branches during testing).

Calculating localization maps: The features from our

last convolution layer, F t
x and F t

x̃ having parameters θx and

θx̃ consist of C feature maps each having spatial dimension

H×W . These features are fed to the global average pooling

(GAP) [19] layer. Let the value of kth feature map at spatial

location (m,n) of F t
x and F t

x̃ be denoted as F tk

x (m,n) and

F tk

x̃ (m,n) respectively. After performing GAP on the kth

feature maps, we get the activation units Gk
x and Gk

x̃ respec-

tively. We pass the outputs from GAP layer to the respective
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Algorithm 1: Our training algorithm

Input: N training images along with their image-level

labels, {(Ii, yi)}
N
i=1, hyperparameter β.

1 while convergence condition not met do

2 Create two images X and X̃ with spatial dropout at

complementary image locations, for an input image;

3 Compute CNN features as: Fx ← f(X, θ̂) and

Fx̃ ← f(X̃, θ̂);
4 Use CAAM to compute: F c

x ← fCAAM (Fx),

F c
x̃ ← fCAAM (Fx̃);

5 Use SSAM to compute: F s
x ← fSSAM (Fx),

F s
x̃ ← fSSAM (Fx̃);

6 Aggregate CAAM and SSAM outputs:

F t
x ← conv(F c

x + F s
x ), F

t
x̃ ← conv(F c

x̃ + F s
x );

7 Compute predicted labels as: px = gx(X, θx, F t
x),

px̃ = gx̃(X̃, θx̃, F t
x̃);

8 Compute cross entropy loss for classifiers X and X̃:

LCEx= −
∑

i yi log px,i, LCEx̃
= −

∑
i yi log px̃,i;

9 Compute Attention-based Fusion Loss as in eq. (14);

10 Obtain total loss as:

Ltot = LCEx + LCEx̃
+ β ∗ Lat fuse;

11 Backpropagate loss and update parameters θ̂, θx, θx̃;

12 end

classifiers. Let the weights for a given class c coming from

the kth activation unit be denoted as W k
c . The softmax out-

puts of the classifiers for a particular class c are denoted by

Hxc
and Hx̃c

. Mathematically, we denote this process as:

Gk
x =

∑

m,n

F tk

x (m,n); Gk
x̃ =

∑

m,n

F tk

x̃ (m,n) (10)

Hxc
=

∑

k

W k
c G

k
x; Hx̃c

=
∑

k

W k
c G

k
x̃ (11)

From equations (10) and (11),

Hxc
=

∑

m,n

∑

k

W k
c F

tk

x (m,n); (12)

Similar to equation (12), we express Hx̃c
in terms of W k

c ,

F tk

x̃ . For a particular class c, we denote the localization

maps for both the input features F t
x and F t

y , as follows:

Axc
(m,n) =

∑

k

W k
c F

tk

x (m,n);

Ax̃c
(m,n) =

∑

k

W k
c F

tk

x̃ (m,n)
(13)

We finally combine these localization maps Axc
and Ax̃c

using our proposed Attention-based Fusion Loss function

(as illustrated in figure 5).

Fusing the localization maps: Unlike in [48], which

relies on non-differentiable max function for fusing lo-

calization maps from two classifiers, we propose to com-

bine the localization maps using an Attention-based Fusion

Input	image Classifier	 Classifier	 After	Attention-
based	Fusion	Loss

Figure 5. Visualizing the effect of the proposed Attention-based

Fusion Loss. During training, we visualize the effect of our pro-

posed loss function. The left column denotes the input image, the

second and third columns denote the localization maps of our two

classifiers and the right column denotes the localization map after

applying our Attention-based Fusion Loss.

Loss inspired from [43]. We first convert the obtained lo-

calization maps into their respective vectorized forms, i.e.,

Vxc
= vec(Axc

) and Vx̃c
= vec(Ax̃c

) and perform l2-

normalization of Vxc
and Vx̃c

. Our proposed Attention-

based Fusion Loss is formulated as follows:

Lat fuse =

(

Vxc

||Vxc
||2

−
Vx̃c

||Vx̃c
||2

)2

(14)

We simply train our network with the proposed

Attention-based Fusion Loss coupled with the categorical

cross-entropy loss for efficient and integral object localiza-

tion. The total loss function for training our model is:

Ltot = LCE(y, px) + LCE(y, px̃) + β ∗ Lat fuse (15)

where, LCE denotes the categorical cross-entropy loss

function, β is a hyperparameter used to scale our Attention-

based Fusion Loss. Empirically, we choose β = 50 in our

experiments. y denotes the true labels, px and px̃ denote the

predictions made by our complementary classifiers.

4. Experiments

4.1. Experimental Setup

Datasets: We perform our experiments on two bench-

mark datasets used for object localization, CUB-200-2011

[34] and ILSVRC 2016 [25]. CUB-200-2011 has a total
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Figure 6. Qualitative Results. We compare our results qualitatively with the baseline CAM [51] model. Ground truth bounding boxes are

denoted in Red, whereas predicted bounding boxes are denoted in Green. Visually, we observe that our attention maps are much precise

and our model tries to localize non-discriminative object parts (like the wings, legs, tail of the bird) as well.

of 11,788 images spanning across 200 bird categories, of

which 5,994 images are used for training and 5,794 for test-

ing. ILSVRC 2016 has approximately 1.2 million images in

the training set across 1000 different categories, and 50,000

images in the validation set. We compare our results across

different methods on the ILSVRC 2016 validation set.

Evaluation Metrics: We evaluate our method using the

following metrics: 1) Top-1 localization (Top-1 Loc) accu-

racy [25] calculates the fraction of images that are correctly

classified and the predicted bounding box has 50% IoU with

the ground truth bounding box. 2) Top-1 classification (Top-

1 Clas) accuracy determines the fraction of images that are

correctly classified. 3) GT-known localization (GT-Loc) ac-

curacy [28] only considers the fraction of images for which

the predicted bounding box has 50% IoU with the ground

truth bounding box, independent of the Top-1 classifica-

tion accuracy. 4) Apart from the above three standard met-

rics, we also evaluate our method on the recently proposed

MaxBoxAccv2 [6] metric (as shown in table 4).

4.2. Implementation Details

We experiment with VGG16 [26] and ResNet50 [15]

as the backbone CNN architectures for our proposed ap-

proach. As in [51], we remove the layers after conv5-3 in

the VGG16 network. We insert our CAAM and SSAM

modules after conv5-3 layer of the original VGG16 net-

work. The aggregated outputs from both CAAM and SSAM

modules are then fed to a global average pooling (GAP)

layer [19], followed by a fully-connected layer for classifi-

cation. We follow similar steps for ResNet50 backbone as

well. Both VGG16 and ResNet50 architectures are initial-

ized with weights pre-trained on ImageNet [25] dataset. We

extract our localization maps followed by bounding boxes,

in a similar way to [51]. During testing, we do not hide

patches in the input image, similar to [28]. Also, we de-

Method Top-1 Loc Top-1 Clas

InceptionV3-CAM [51] 43.67 73.80

InceptionV3-SPG [49] 46.64 –

InceptionV3-DANet [38] 49.45 71.20

VGG-CAM [51] 34.41 67.55

VGG-ACoL [48] 45.92 71.90

VGG-ADL [7] 52.36 65.27

VGG-CCAM [39] 50.07 73.20

VGG-EIL [22] 56.21 72.26

Ours-VGG 58.12 72.59

ResNet50-CAM [51] 49.41 75.68

ResNet50-CutMix [42] 54.81 –

Ours-ResNet50 64.70 77.28

Table 1. Quantitative Results on CUB-200-2011 dataset.

activate CAAM and SSAM modules during testing, similar

to vanilla CAM [51] model for fair comparison with other

existing state-of-the-art methods (shown in tables 1, 2 & 3).

4.3. Ablation Studies

Hyperparameters: For our complementary input im-

ages, we use a hide probability of 0.5 to hide and render

complementary image locations, in the corresponding input

images. Similar to [28], we also experiment with differ-

ent patch sizes, {16, 32, 44, 56} for regional dropout during

training. As illustrated in Algorithm 1, we use a hyper-

parameter β to scale the proposed Attention-based Fusion

Loss during training. We set β to 50 in all our experiments.

Importance of each module in the architecture:

Our proposed architecture has three components, CAAM,

SSAM, and an Attention-based Fusion Loss to fuse local-

ization maps from two distinct branches during training. We

study the effect of each of these modules on localization ac-
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Method Top-1 Loc GT-Loc

InceptionV3-CAM [51] 46.29 –

GoogLeNet-HaS-32 [28] 45.21 60.29

InceptionV3-SPG [49] 48.60 64.69

InceptionV3-DANet [38] 47.53 –

InceptionV3-MEIL [22] 49.48 –

VGG-CAM [51] 42.80 57.72

VGG-ACoL [48] 45.80 62.96

VGG-ADL [7] 44.92 –

VGG-CCAM [39] 48.22 63.58

VGG-EIL [22] 46.27 –

Ours-VGG 51.64 66.32

ResNet50-CAM [51] 38.99 51.86

ResNet50-SE-ADL [7] 48.53 –

ResNet50-CutMix [42] 47.25 –

Ours-ResNet50 52.36 67.89

Table 2. Localization Results on ILSVRC 2016 dataset.

Method Top-1 Clas (in %)

InceptionV3-CAM [51] 68.10

GoogLeNet-HaS-32 [28] 70.70

VGG-CAM [51] 66.60

VGG-ACoL [48] 67.50

VGG-ADL [7] 69.48

VGG-CCAM [39] 66.60

VGG-EIL [22] 70.48

Ours-VGG 71.24

Table 3. Classification performance on ILSVRC 2016 dataset.

Method CUB-200-2011 ILSVRC 2016

CAM [51] 71.1 61.1

HaS-32 [28] 76.3 61.8

ACoL [48] 72.3 60.3

SPG [49] 63.7 61.6

ADL [7] 75.7 60.8

CutMix [42] 71.9 62.1

Ours 77.5 63.4

Table 4. Evaluating our method on MaxBoxAccv2. We evaluate

our model on the recently proposed MaxBoxAccv2 metric [6] on

VGG16 as the backbone. Experiments for ResNet50 are provided

in the Supplementary Section A.

curacies. Table 5 shows how accuracies vary with different

modules in our architecture on ILSVRC dataset. Overall,

we observe that all our proposed modules are crucial to sig-

nificantly boost the localization accuracy.

Effect of Patch Size on localization accuracy: We

perform experiments with different patch sizes as in [28].

The patch sizes we use during training are either one of

{16, 32, 44, 56}. We also come up with a Mixed model

CAAM SSAM Lat fuse Top-1 Loc GT-Loc

✓ ✓ ✗ 50.49 64.87

✓ ✗ ✓ 50.95 65.58

✗ ✓ ✓ 49.46 65.10

✓ ✓ ✓ 51.64 66.32

Table 5. Effect of each module in the architecture. For the above

experiment, we have used VGG16 as the backbone CNN.

Patch

Size

CUB-200-2011 ILSVRC 2016

Top-1 Loc GT-Loc Top-1 Loc GT-Loc

16 61.89 74.16 50.97 65.31

32 60.49 72.14 51.37 66.24

44 61.51 73.35 51.89 67.10

56 62.58 75.22 51.64 67.31

Mixed 64.70 77.35 52.36 67.89

Table 6. Localization accuracies with different patch sizes. For

the above experiment, we have used ResNet50 as the backbone

CNN architecture.

wherein the patch size is randomly sampled among the

patch sizes {16, 32, 44, 56}, with uniform probability, for

every image in every epoch during training. Unlike [28],

we do not show full image during training in our Mixed ap-

proach. Our Mixed approach outperforms all the existing

state-of-the-art models on localization accuracy (as shown

in table 6). We do lose on some classification accuracy, as

our model never encounters full image during training. Still,

our method achieves comparable Top-1 Clas and best Top-

1 Loc performance on both CUB-200-2011 and ILSVRC

2016 datasets. Qualitative results (shown in figure 6) en-

sure that our model looks at all object parts to make correct

predictions. In future, we plan to evaluate our method on

the recently proposed OpenImages30K [5, 6] dataset.

5. Discussion and Conclusion

We propose a novel way of mining information from

complementary image regions to tackle the problem of

Weakly-Supervised Object Localization. We show that our

novel Channel-wise Assisted Attention Module (CAAM),

when combined with a Spatial Self-Attention Module

(SSAM), boosts existing feature representations for local-

izing integral object regions. We also propose a novel

Attention-based Fusion Loss function to fuse the localiza-

tion maps coming from two different input branches during

training. In this way, our method is able to focus on discrim-

inative as well as non-discriminative object parts for precise

localization. Even though we study the task of single-object

detection in a weakly-supervised manner, it will be interest-

ing to explore the case of detecting multiple objects in a

scene, laying the foundation for significantly bridging the

gap between supervised and weakly-supervised methods.
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