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Abstract

Humans possess an innate capability of recognizing ob-
jects and their corresponding parts and confine their at-
tention to that location in a visual scene where the object
is spatially present. Recently, efforts to train machines to
mimic this ability of humans in the form of weakly super-
vised object localization, using training labels only at the
image-level, have garnered a lot of attention. Nonetheless,
one of the well-known problems that most of the existing
methods suffer from is localizing only the most discrimina-
tive part of an object. Such methods provide very little or no
focus on other pertinent parts of the object. In this paper
we propose a novel way of scrupulously localizing objects
using training with labels as for the entire image by min-
ing information from complementary regions in an image.
Primarily, we adapt to regional dropout at complementary
spatial locations to create two intermediate images. With
the help of a novel Channel-wise Assisted Attention Mod-
ule (CAAM) coupled with a Spatial Self-Attention Module
(SSAM), we parallely train our model to leverage the in-
formation from complementary image regions for excellent
localization. Finally, we fuse the attention maps gener-
ated by the two classifiers using our Attention-based Fu-
sion Loss. Several experimental studies manifest the supe-
rior performance of our proposed approach. Our method
demonstrates a significant increase in localization perfor-
mance over the existing state-of-the-art methods on CUB-
200-2011 and ILSVRC 2016 datasets.

1. Introduction

Given a visual scene, humans have an inherent abil-
ity to recognize and localize objects of interest with min-
imal effort. With the advent of deep convolutional neural
networks [16, 17], there has been a remarkable improve-
ment in image recognition [15, 26, 29] and object detection
[10, 20,21, 23,24, 27, 30, 35]. However, these methods rely
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Figure 1. Overview of our proposed approach. From a single in-
put image, we create two complementary images during training,
denoted by X and X. For hiding patches in our complementary in-
puts, we adapt from [28]. We then extract features from X and X
using a shared CNN. Finally, we fuse information from the com-
plementary inputs and perform parallel training of two classifiers
to discover integral object regions. Our parallel classifiers aid in
mining all relevant parts of the object (e.g., for a dog - its face,
forelegs, hindlegs) along with its most-discriminative part (head).
In this way, our model learns to focus attention on “where to look”
for the specified object in the given input image as well as localize
objects in a weakly-supervised manner. During inference, we do
not hide any patches of the input image. The test image as a whole
is provided to our trained CNN model.

on full supervision during training. Recently, there has been
an increasing focus on Weakly Supervised Learning (WSL)
techniques that require minimal supervision or coarse an-
notation during training, which reduces the effort of using
costly pixel-level annotations. One of the fundamental com-
puter vision tasks like semantic segmentation that require
fine pixel-level annotations, can now be trained using only
bounding box annotations or image-based labels using the
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WSL approach [1, 18, 36, 44].

Weakly Supervised Object Localization (WSOL) aims to
classify as well as localize objects without using expensive
bounding box annotations during training. Recently, a lot
of approaches [7, 22, 28, 39, 42, 48, 49, 51] have been pro-
posed to tackle this challenging problem. Zhou et al. [51]
put forward the idea of appending a Global Average Pool-
ing (GAP) [19] layer at the end of convolutional neural net-
works (CNNGs) followed by a fully-connected layer to gener-
ate a class activation map (CAM). CAM highlights the dis-
criminative image region used to recognize that object cat-
egory. However, a crucial limitation of this approach is that
it only localizes the most discriminative class-specific re-
gion instead of the entire object. For e.g., given an image of
a dog, it only tries to generate implicit attention on its face,
without paying any heed to its remaining body parts. Hence,
it often leads to sub-optimal localization performance.

To overcome this problem, a few recent methods [8, 28,
42, 46] have come up with making changes to input image
rather than modifying the algorithm. In the paper, Hide-
and-Seek (HaS) [28], Singh and Lee attempt to randomly
hide patches of an input image during training so that their
model tries to seek other visible relevant parts of the object.
Even though this approach focuses on non-discriminative
object parts, it loses information during training when the
patches are hidden, leading to a limited localization perfor-
mance. This gives rise to an interesting question: Is there
any way to optimize the localization performance by maxi-
mally utilizing the information lost in regional dropout?

We propose to solve the above problem by introducing
to strategically mine information from complementary im-
age regions. Regional dropout methods [8, 50] have sig-
nificantly demonstrated the ability to generalize well on
image classification and object localization. We also ven-
ture to leverage this generalization ability and create two
complementary images, each possessing regional dropout
at complementary spatial locations in the respective images.
To create these input images, we adapt to randomly hide
patches in the input image similar to Hide-and-Seek [28],
as illustrated in figure 1. We perform joint training of these
complementary image regions as two input channels, using
two parallel classifiers. Further, we try to fuse the informa-
tion captured in both these input channels by incorporating
a novel Channel-wise Assisted Attention Module (CAAM)
along with a Spatial Self-Attention Module (SSAM). Both
these modules take input features extracted from pre-trained
CNNs. CAAM takes inspiration from [11, 40, 47], and tries
to model interactions in the channel dimension between fea-
tures extracted from two complementary images. SSAM
is inspired by [11, 36, 47] to capture feature dependencies
in the spatial dimension. We finally aggregate the inter-
dependencies modeled by these two modules: CAAM and
SSAM, for better localization ability. We also propose an

Attention-based Fusion Loss, inspired by [43], to fuse the
two attention maps obtained using the complementary im-
ages. Almost all the previous works rely only on the classifi-
cation objective to learn the implicit attention maps, which
serve as a testimony of visual explanations learned by the
model to localize objects. However, we feel that relying
only on the classification objective for localizing objects
limits the overall localization performance. The use of our
proposed Attention-based Fusion Loss, along with the usual
cross-entropy loss to train our localization model, to the best
of our knowledge, is the first of its kind.

Our key contributions are summarized as follows: 1) We
propose a novel way of training a network for weakly su-
pervised object localization that mines information from
complementary regions in an image, individually as well
as when fused. 2) We propose a novel Channel-wise As-
sisted Attention Module (CAAM). Along with a Spatial
Self-Attention Module (SSAM), CAAM jointly aids in lo-
calizing integral object regions. 3) We also propose an
Attention-based Fusion Loss criteria to fuse the attention
maps generated by the two parallel classifiers. Our pro-
posed loss function diligently captures all relevant parts of
the concerned object of interest, thereby suppressing back-
ground regions. 4) Our method achieves state-of-the-art ob-
ject localization performances on two benchmark datasets:
CUB-200-2011 [34] and ILSVRC 2016 [25]. We achieve
a Top-1 localization of 64.70% on CUB-200-2011 and
52.36% on ILSVRC 2016 datasets.

2. Related Work

Correspondence with human visual perception: The
two-stream theory of the human visual system proposed by
Goodale et al. [13] highlights the two distinct visual path-
ways in the human visual system viz., the ventral pathway
or the “what pathway” and the dorsal pathway or the “where
pathway” that jointly aid in recognizing and localizing ob-
jects respectively. We take motivation from the human vi-
sion system to jointly model the “what” and “where” path-
ways and efficiently perform object localization in a weakly
supervised setting.

Weakly Supervised Learning: Learning strong predic-
tive models using imprecise labels is becoming a trend since
it involves cheaper annotations and reduced human effort
for manual labeling of data. Also, the huge availability
of weakly labeled data in the form of videos and images
over the internet makes it possible to explore various real-
world problems in deep learning in a weakly supervised
paradigm. Although supervised object detection methods
[21, 23, 24, 27] have made tremendous progress, the fact
that they require costly bounding box annotations has led to
the exploration of weakly supervised object detection meth-
ods [9, 31, 32, 45] using only image-level labels.

Regional Dropout: Randomly masking certain regions
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Figure 2. Our proposed architecture. After extracting CNN features for our complementary inputs, X and X, from a shared backbone,
we feed them to our proposed Channel-wise Assisted Attention Module (CAAM) along with a Spatial Self-Attention Module (SSAM) to
generate better feature representations. The aggregated outputs of CAAM and SSAM are then fed to the Global Average Pooling (GAP)
[19] layer. We perform parallel training for both the input branches corresponding to our inputs X and X and obtain two localization maps.
We combine the attention between these localization maps using our proposed Attention-based Fusion Loss function. The dual training
branches with Classifiers X and X focus attention on all regions of the object present in an image, thereby effectively localizing it.

in an input image have found to be effective in capturing
richer object context and better generalization performance.
Bazzani et al. [4] proposed to mask out certain regions in an
image that lead to a drop in the image recognition perfor-
mance, finally feeding the regions to an agglomerative clus-
tering algorithm which indicate higher objectness of such
merged regions in the input image. In Hide-and-Seek [28],
the crux was to randomly hide patches in an input image
forcing the network to focus on other relevant object parts.
Cutout [8] is yet another successful generalizable approach
that drops a certain amount of input region from the in-
put image. However, these methods lose information while
training the network using regional dropout. We make use
of information lost in regional dropout while training the
network, by generating two images to mask complementary
spatial locations.

Attention in Deep Neural Networks: Attention mech-
anism was first proposed in the pioneering work [33] by
Vaswani et al. in machine translation to model long-range
dependencies that the recurrent neural networks failed to
handle. Since then, attention has been used in a wide va-
riety of applications including image captioning [37], vi-
sual grounding [12], visual question answering [2], sound
source localization [3]. Self-attention has also made its way
in visual question answering [41], in which it was used for
question embedding, and in [40], it was used along with a
guided-attention module to model interactions for different
feature modalities. In one of the most recent works [47],
self-attention was used in image generation. In all these
works, self-attention has proved to generate better feature
representations. In our proposed framework, we adapt to at-

tention mechanism coupled with regional dropout for more
meaningful representations of our complementary images.

Other methods for weakly supervised object localiza-
tion: The work in [49] generates self-produced guidance
masks, which in turn are used in the form of pixel-level su-
pervision for localizing objects. Zhang et al. [48] proposed
adversarial erasing in feature space that mine information
from two adversarial parallel classifiers for superior local-
ization performance. Choe and Shim, in their work [7], pro-
posed to use self-attention mechanism to generate a drop
mask and an importance map from the input feature map
and randomly select either of them along with the input fea-
ture map for localizing objects. Yang et al. [39] uses a linear
combination of activation maps from the highest probability
score of a class to the lowest probability score, thereby as-
sisting in suppressing the background regions and focusing
more on the foreground object of interest. The most recent
work of EIL [22] by Mai et al. attempts to jointly perform
adversarial erasing and mining discriminative regions to lo-
calize objects efficiently.

3. Proposed Approach

Looking at complementary image regions helps the net-
work in paying attention to the concise details of the object.
Our detailed network architecture is illustrated in figure 2.

3.1. Notations

Given an input image I, with its image-level label, y;,
the goal of weakly supervised object localization is to learn
a model that is capable of classifying the input image I into
one of C object categories in the dataset and localizing the
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object in that image using a bounding box B. From I, we
create two input images, X and X , with regional dropout
at complementary spatial locations in an image, as shown
in figure 1. We adapt to hide patches in the input image as
in [28]. We form our input X by randomly hiding patches
of an image. However, we regain the information lost in
input X by forming another input X, which we call the X
complement. Input X reveals the information in the hidden
patches of input X, whereas hides the information in visible
patches of input X . We extract features from inputs X and
X using a shared CNN having parameters 6. We denote
these features as Fj, and Fj, where F,, [ € REXH*W

3.2. Mining Information from Complementary Im-
age Regions

The information captured from CNN features (F, and
F3;) of both inputs X and X are used individually as well
as combined (fused) using Spatial Self Attention Mod-
ule (SSAM) and Channel-wise Assisted Attention Module
(CAAM) modules respectively (shown in figure 2). Fi-
nally, we aggregate the features captured both by SSAM
and CAAM for better feature representations of F, and
F;, denoted by F! and F. respectively. F! and F! are
then passed to a global average pooling layer [19], followed
by their respective classifiers. By jointly training the two
branches concerning the inputs X and X, viz., classifier X
and classifier X, our model precisely gets an idea regard-
ing “where to look” in the input image while classifying it
correctly.

3.3. Channel-wise Assisted Attention Module

To compute CAMs [51], Zhou et al. proposed to multi-
ply the weights of the last fully connected layer of the clas-
sifier to the feature maps of the preceding convolution layer.
Towards the last layers of the CNN, the feature maps tend
to capture the class-specific responses. Hence, CAM high-
lights the most discriminative region of the object belong-
ing to that category. In the work [11], Fu et al. put forth the
idea of a Channel Attention Module to capture long-range
inter-dependencies between channels of feature maps in a
fully supervised setting for the task of semantic segmenta-
tion. Adapting the idea from [11], we attempt to leverage
the class-specific inter-dependencies between channels of
input features from both the branches, F, and Fj;. So, our
CAAM module takes as input the CNN features, F, and Fj;
and outputs features with more meaningful representation,
denoted by F¢ and F¥ respectively. F¢, FS¢ € ROXHXW,
A similar approach has been studied in [52] recently using
a cross-correlated attention network in the spatial dimen-
sion. However, our CAAM module tries to capture inter-
dependencies in the channel dimension of two feature maps.

To compute F2, we take the input features F;, F; and
reshape them to R“*Y, where N = H x W corresponds to

Features of X
Features of X
Reshape

Softmax

Matrix

Multiplication

Element-wise

Addition

Channel-wise attended features of
F, assisted by Fj

Figure 3. Channel-wise Assisted Attention Module (CAAM).
The input to this module is the CNN features, F}, and Fj; of inputs
X and X respectively, and it outputs the Channel-wise attended
features of input F;, assisted by input Fz. We interchange F, and
F% in figure 3 to obtain the Channel-wise attended features of input
F; assisted by input F;.. The part indicated in dotted blue rounded
rectangle indicates shared computation while computing both Fy
and Fj.

the number of pixels in the feature map. We then generate
channel attention matrix (), as follows:

Q. = Softmax(F, ® FI) (1

where, Q, € RE*® and ® denotes matrix multiplication.
Q. consists of the learnable attention weights denoted by
AJ € Qy,1,j € {1...C}, which capture inter-dependencies
between the channels of F, and Fj;. Further, we multiply
transpose of ), with F; to get Y,, as:

Y, =Qr®F; )

RCXHXW

We then reshape Y, as and generate F); as :

FS=F,+0,Y, 3

Here, 4. is used to scale the features of Y. It is initially set
to 0 and iteratively trained similar to that in [11, 47]. The
detailed expression for FY is as follows :

C
R ML T
k=1

F’; refers to channel-wise attended features of input F}, as-
sisted by input F;. We can see in equation (4) that the final
features F); are a weighted sum of features of all locations
of input feature F; and the original features F,.

Similarly, to compute F we follow the same set of steps
as followed for F5. However, we save computations as well
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as parameters in generating the channel attention matrix Qz
(shown in figure 3), as it is the transpose of Q..

Qz = Softmax(F; ® FT) 5)

From equations (1) and (5), it is evident that () is actually
transpose of @),. But for the purpose of simplicity, we de-
note it as Qi‘ itself. Also, we denote its learnable attention
weights as A7 € Q; and 4, j € {1...C'}. Similarly, for F¢:

c
F{' = F 40 ) M'FY (©6)

k=1
Similar to equation (4), 0z is also used as a scaling factor
for Y;. It is initially set to 0 and learns weight as training
progresses. F< refers to channel-wise attended features of
input F} assisted by input F}. As shown in equation (6),
the features of F; are a weighted sum of features of all lo-

cations of input feature F, and the original features Fj.

3.4. Spatial Self-Attention Module

Apart from the inter-dependencies between the features
of channels F, and F; modeled by CAAM, it is significant
to consider their individual contribution as well for efficient
feature representation. We also hypothesize that to get the
object’s correct spatial location, it is important to have an
overall view of the visual scene and give the correspond-
ing weightage to the entire scene as per the objectness. In
the work [47], self-attention was used in GANs [14]. Tak-
ing motivation from [47], we propose to use spatial self-
attention for localizing objects. So the input to our SSAM
module is the features F, and F% and its output is spatially
attended features F; and F respectively. Both F; and F7;
are of dimension RE*#*W  Ag illustrated in figure 4, given
features F, we compute matricg:s M, L and P using 1x1
convolution where, { M, L} € RE*H*W where C' = C/8,
and P € RE*HXW Mathematically, we compute F¥ as:

K, = Softmax(M"* @ L)
R,=P® KL (7)
F)=F,+a,R,

where, o, is a weight factor for R,. The parameter «, and

the weight matrices M, L, P, K, and R, are learnt during
training. Similarly, FJ can be formulated as:

F: =F; +azR; 3
3.5. Aggregation

For features F, and F; coming from each of the input
branches, we have two enhanced feature representations,
{F¢, F:} and {F§, F£}: the channel assisted features and
the spatially attended features respectively. To take advan-
tage of complementary information in both these features,

Features of X

C1 1§

|:] I1x 1 Conv

D Reshape
Softmax

®  Matrix
Multiplication

@  Element-wise
Addition

Fs  Spatially attended features
of input F,

Figure 4. Spatial Self-Attention Module (SSAM). This module
helps in spatially localizing the object as it takes help from all
feature locations of the input feature map F, and outputs the cor-
responding spatially boosted features F,. Similarly, we also get
F? from the corresponding complementary features F.

we fuse them using an element-wise sum. Finally, a convo-
lution layer is used to bind them together as follows:

Fy = conv(Fy + Fy); Fy = conv(F§ + F7) (9

Here, F! and F denote the feature maps from final convo-
lution layer in our proposed framework. We use outputs of
these final convolution layers to generate localization maps.

3.6. Attention-based Fusion Loss

We train our model in an end-to-end way to obtain two
localization maps, in a manner similar to CAM [51]. We use
cross-entropy loss for training both the classifier branches.
However, both the classifiers discover complementary ob-
ject parts during training. Thus, it is necessary to fuse the
pair of localization maps. This is done by our Attention-
based Fusion Loss, such that our model learns to focus on
the entire object during training and generalizes well during
testing (as we do not use two branches during testing).

Calculating localization maps: The features from our
last convolution layer, F! and F having parameters 6 and
6% consist of C feature maps each having spatial dimension
H x W . These features are fed to the global average pooling
(GAP) [19] layer. Let the value of kth feature map at spatial
location (m, n) of F and F! be denoted as F!" (m,n) and
F%k (m, n) respectively. After performing GAP on the k"
feature maps, we get the activation units G* and G¥ respec-
tively. We pass the outputs from GAP layer to the respective
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Algorithm 1: Our training algorithm
Input: N training images along with their image-level
labels, {(I;, yi)} /.1, hyperparameter 3.
1 while convergence condition not met do
2 Create two images X and X with spatial dropout at
complementary image locations, for an input image;
3 Compute CNN features as: Fy, < f(X,0) and
Fr < f (X 5 9)7
4 Use CAAM to compute: F < fCAAM (Fy),
Ff < [OAAN(F);
5 Use SSAM to compute: FS « f354M (),
F2 e fSSAM (),
6 Aggregate CAAM and SSAM outputs:
F! < conv(FE + F2), FL + conv(F§ + F¥);
7 Compute predicted labels as: p, = g, (X, 6%, FL),
Pz = gi(Xa ei, Fg)’

8 Compute cross entropy loss for classifiers X and X:
Leg,=—32, yilogpe,i, Lor,=— Y2, yi log ps.i;
9 Compute Attention-based Fusion Loss as in eq. (14);
10 Obtain total loss as:
Ltot = LCEm + LCEi + ﬂ * Lat.fuse; R -
11 Backpropagate loss and update parameters 6, 6%, 6%;
12 end

classifiers. Let the weights for a given class ¢ coming from
the k*" activation unit be denoted as W}. The softmax out-
puts of the classifiers for a particular class c are denoted by
H,. and H;,. Mathematically, we denote this process as:

GE=N"F(mn);  GE=3"F'(mn) (10)

H, =Y WEGE; Hz, =Y WkGE (11)
k k
From equations (10) and (11),
k
H,, :ZZWfFai (m, n); (12)

m,n k

Similar to equation (12), we express Hjz_ in terms of W,
tk . . .
F% . For a particular class ¢, we denote the localization
maps for both the input features F/ and F}}, as follows:

Az (myn) = Z WfF;k (m,n);

F . (13)
Aﬂ-ﬂc(mfn) = Z chFa'ﬁ (m’n)

k

We finally combine these localization maps A, and Az,
using our proposed Attention-based Fusion Loss function
(as illustrated in figure 5).

Fusing the localization maps: Unlike in [48], which
relies on non-differentiable max function for fusing lo-
calization maps from two classifiers, we propose to com-
bine the localization maps using an Attention-based Fusion

After Attention-

Classifier X based Fusion Loss

Classifier X

Input image

—

Figure 5. Visualizing the effect of the proposed Attention-based
Fusion Loss. During training, we visualize the effect of our pro-
posed loss function. The left column denotes the input image, the
second and third columns denote the localization maps of our two
classifiers and the right column denotes the localization map after
applying our Attention-based Fusion Loss.

Loss inspired from [43]. We first convert the obtained lo-
calization maps into their respective vectorized forms, i.e.,
Ve, = vec(A;,) and Vi, = wvec(Az,) and perform la-
normalization of V,_ and V;_ . Our proposed Attention-
based Fusion Loss is formulated as follows:

v, Vi \?
La-use: < -
- <||vxc||2 |vfc||2>

We simply train our network with the proposed
Attention-based Fusion Loss coupled with the categorical
cross-entropy loss for efficient and integral object localiza-
tion. The total loss function for training our model is:

(14)

Lot = LCE(yapac) + LCE(yapaE) + B * Lat.fuse (15)

where, Lo g denotes the categorical cross-entropy loss
function, 3 is a hyperparameter used to scale our Attention-
based Fusion Loss. Empirically, we choose § = 50 in our
experiments. y denotes the true labels, p,, and p; denote the
predictions made by our complementary classifiers.

4. Experiments
4.1. Experimental Setup

Datasets: We perform our experiments on two bench-
mark datasets used for object localization, CUB-200-2011
[34] and ILSVRC 2016 [25]. CUB-200-2011 has a total
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Figure 6. Qualitative Results. We compare our results qualitatively with the baseline CAM [51] model. Ground truth bounding boxes are
denoted in Red, whereas predicted bounding boxes are denoted in Green. Visually, we observe that our attention maps are much precise
and our model tries to localize non-discriminative object parts (like the wings, legs, tail of the bird) as well.

of 11,788 images spanning across 200 bird categories, of
which 5,994 images are used for training and 5,794 for test-
ing. ILSVRC 2016 has approximately 1.2 million images in
the training set across 1000 different categories, and 50,000
images in the validation set. We compare our results across
different methods on the ILSVRC 2016 validation set.
Evaluation Metrics: We evaluate our method using the
following metrics: 1) Top-1 localization (Top-1 Loc) accu-
racy [25] calculates the fraction of images that are correctly
classified and the predicted bounding box has 50% IoU with
the ground truth bounding box. 2) Top-1 classification (Top-
1 Clas) accuracy determines the fraction of images that are
correctly classified. 3) GT-known localization (GT-Loc) ac-
curacy [28] only considers the fraction of images for which
the predicted bounding box has 50% IoU with the ground
truth bounding box, independent of the Top-1 classifica-
tion accuracy. 4) Apart from the above three standard met-
rics, we also evaluate our method on the recently proposed
MaxBoxAccv2 [6] metric (as shown in table 4).

4.2. Implementation Details

We experiment with VGG16 [26] and ResNet50 [15]
as the backbone CNN architectures for our proposed ap-
proach. As in [51], we remove the layers after conv5-3 in
the VGG16 network. We insert our CAAM and SSAM
modules after conv5-3 layer of the original VGG16 net-
work. The aggregated outputs from both CAAM and SSAM
modules are then fed to a global average pooling (GAP)
layer [19], followed by a fully-connected layer for classifi-
cation. We follow similar steps for ResNet50 backbone as
well. Both VGG16 and ResNet50 architectures are initial-
ized with weights pre-trained on ImageNet [25] dataset. We
extract our localization maps followed by bounding boxes,
in a similar way to [51]. During testing, we do not hide
patches in the input image, similar to [28]. Also, we de-

Method

| Top-1Loc | Top-1 Clas |

InceptionV3-CAM [51] 43.67 73.80
InceptionV3-SPG [49] 46.64 -

InceptionV3-DANet [38] 49.45 71.20
VGG-CAM [51] 34.41 67.55
VGG-ACoL [48] 45.92 71.90
VGG-ADL [7] 52.36 65.27
VGG-CCAM [39] 50.07 73.20
VGG-EIL [22] 56.21 72.26
Ours-VGG 58.12 72.59
ResNet50-CAM [51] 49.41 75.68
ResNet50-CutMix [42] 54.81 -

Ours-ResNet50 64.70 77.28

Table 1. Quantitative Results on CUB-200-2011 dataset.

activate CAAM and SSAM modules during testing, similar
to vanilla CAM [51] model for fair comparison with other
existing state-of-the-art methods (shown in tables 1, 2 & 3).

4.3. Ablation Studies

Hyperparameters: For our complementary input im-
ages, we use a hide probability of 0.5 to hide and render
complementary image locations, in the corresponding input
images. Similar to [28], we also experiment with differ-
ent patch sizes, {16, 32, 44,56} for regional dropout during
training. As illustrated in Algorithm 1, we use a hyper-
parameter (3 to scale the proposed Attention-based Fusion
Loss during training. We set S to 50 in all our experiments.

Importance of each module in the architecture:
Our proposed architecture has three components, CAAM,
SSAM, and an Attention-based Fusion Loss to fuse local-
ization maps from two distinct branches during training. We
study the effect of each of these modules on localization ac-
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Method | Top-1Loc | GT-Loc
InceptionV3-CAM [51] 46.29 -
Googl.eNet-HaS-32 [28] 45.21 60.29
InceptionV3-SPG [49] 48.60 64.69
InceptionV3-DANet [38] 47.53 -
InceptionV3-MEIL [22] 49.48 -
VGG-CAM [51] 42.80 57.72
VGG-ACoL [48] 45.80 62.96
VGG-ADL [7] 44.92 -
VGG-CCAM [39] 48.22 63.58
VGG-EIL [22] 46.27 -
Ours-VGG 51.64 66.32
ResNet50-CAM [51] 38.99 51.86
ResNet50-SE-ADL [7] 48.53 -
ResNet50-CutMix [42] 47.25 -
Ours-ResNet50 52.36 67.89

Table 2. Localization Results on ILSVRC 2016 dataset.

| Method | Top-1 Clas (in %) |
InceptionV3-CAM [51] 68.10
GoogLeNet-HaS-32 [28] 70.70
VGG-CAM [51] 66.60
VGG-ACoL [48] 67.50
VGG-ADL [7] 69.48
VGG-CCAM [39] 66.60
VGG-EIL [22] 70.48
Ours-VGG 71.24

Table 3. Classification performance on ILSVRC 2016 dataset.

| Method | CUB-200-2011 [ ILSVRC 2016 |
CAM [51] 71.1 61.1
HaS-32 [28] 76.3 61.8
ACoL [48] 723 60.3
SPG [49] 63.7 61.6
ADL [7] 75.7 60.8
CutMix [42] 71.9 62.1
Ours 77.5 63.4

Table 4. Evaluating our method on MaxBoxAccv2. We evaluate
our model on the recently proposed M ax Box Accv2 metric [6] on
VGG16 as the backbone. Experiments for ResNet50 are provided
in the Supplementary Section A.

curacies. Table 5 shows how accuracies vary with different
modules in our architecture on ILSVRC dataset. Overall,
we observe that all our proposed modules are crucial to sig-
nificantly boost the localization accuracy.

Effect of Patch Size on localization accuracy: We
perform experiments with different patch sizes as in [28].
The patch sizes we use during training are either one of
{16,32,44,56}. We also come up with a Mixed model

| CAAM | SSAM | Lat_fuse | Top-1Loc | GT-Loc
v v X 50.49 64.87
v X v 50.95 65.58
X v v 49.46 65.10
v v v 51.64 66.32

Table 5. Effect of each module in the architecture. For the above
experiment, we have used VGG16 as the backbone CNN.

Patch CUB-200-2011
Size | Top-1Loc | GT-Loc

ILSVRC 2016
Top-1 Loc | GT-Loc

16 61.89 74.16 50.97 65.31
32 60.49 72.14 51.37 66.24
44 61.51 73.35 51.89 67.10
56 62.58 75.22 51.64 67.31
Mixed 64.70 77.35 52.36 67.89

Table 6. Localization accuracies with different patch sizes. For
the above experiment, we have used ResNet50 as the backbone
CNN architecture.

wherein the patch size is randomly sampled among the
patch sizes {16,32, 44,56}, with uniform probability, for
every image in every epoch during training. Unlike [28],
we do not show full image during training in our Mixed ap-
proach. Our Mixed approach outperforms all the existing
state-of-the-art models on localization accuracy (as shown
in table 6). We do lose on some classification accuracy, as
our model never encounters full image during training. Still,
our method achieves comparable Top-1 Clas and best Top-
1 Loc performance on both CUB-200-2011 and ILSVRC
2016 datasets. Qualitative results (shown in figure 6) en-
sure that our model looks at all object parts to make correct
predictions. In future, we plan to evaluate our method on
the recently proposed Openlmages30K [5, 6] dataset.

5. Discussion and Conclusion

We propose a novel way of mining information from
complementary image regions to tackle the problem of
Weakly-Supervised Object Localization. We show that our
novel Channel-wise Assisted Attention Module (CAAM),
when combined with a Spatial Self-Attention Module
(SSAM), boosts existing feature representations for local-
izing integral object regions. We also propose a novel
Attention-based Fusion Loss function to fuse the localiza-
tion maps coming from two different input branches during
training. In this way, our method is able to focus on discrim-
inative as well as non-discriminative object parts for precise
localization. Even though we study the task of single-object
detection in a weakly-supervised manner, it will be interest-
ing to explore the case of detecting multiple objects in a
scene, laying the foundation for significantly bridging the
gap between supervised and weakly-supervised methods.
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