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Abstract

We present a system for real-time RGBD-based estima-

tion of 3D human pose. We use parametric 3D deformable

human mesh model (SMPL-X) as a representation and fo-

cus on the real-time estimation of parameters for the body

pose, hands pose and facial expression from Kinect Azure

RGB-D camera. We train estimators of body pose and

facial expression parameters. Both estimators use previ-

ously published landmark extractors as input and custom

annotated datasets for supervision, while hand pose is esti-

mated directly by a previously published method. We com-

bine the predictions of those estimators into a temporally-

smooth human pose. We train the facial expression ex-

tractor on a large talking face dataset, which we anno-

tate with facial expression parameters. For the body pose

we collect and annotate a dataset of 56 people captured

from a rig of 5 Kinect Azure RGB-D cameras and use

it together with a large motion capture AMASS dataset.

Our RGB-D body pose model outperforms the state-of-

the-art RGB-only methods and works on the same level

of accuracy compared to a slower RGB-D optimization-

based solution. The combined system runs at 25 FPS on

a server with a single GPU. The code will be available at

saic-violet.github.io/rgbd-kinect-pose

1. Introduction

A decade ago, realtime human pose estimation using

RGBD Kinect sensor became a landmark achievement for

computer vision [22, 38]. Over the subsequent decade, the

focus in human pose estimation has however shifted onto

RGB sensors [8, 9]. Also, while the original Kinect-based

approach and many subsequent RGB-based works aimed at

skeleton joints estimation, most recent trend is to estimate

extended pose description that includes face expression and

hands pose [19, 35].

Here, we argue that despite all the progress in RGB-

∗equal contribution

based pose estimation, the availability of depth can still

be of great use for the pose estimation task. We there-

fore build an RGBD-based system for realtime pose esti-

mation that uses a modern representation for extended pose

(SMPL-X [35]) involving face and hands pose estimation.

To build the system, we adopt a simple fusion approach,

which uses pretrained realtime estimators for body, face,

and hands poses. We then convert the outputs of these esti-

mators into a coherent set of SMPL-X parameters.

To train our system, we collect a dataset of 56 people us-

ing a calibrated rig of five Kinect sensors. We then establish

“ground truth” poses using slow per-frame optimization-

based fitting process that accurately matches multi-view ob-

servations. We also fit the deformable head mesh to the

videos from the large-scale VoxCeleb2 dataset [12]. The

result of this fitting is then used as a ground truth for the

learnable components of our system.

To recover the body pose, we train a neural network that

converts the stream of depth-based skeleton estimates (as

provided by the Kinect API [6]) into a stream of SMPL pose

parameters (angles). We use a specific (residual) param-

eterization, which asks the network to predict corrections

to the angles of the Kinect Skeleton. In the comparison,

we observe that tracking accuracy of such depth-based sys-

tem considerably exceeds the accuracy of the state-of-the-

art RGB-based methods [11, 25, 24], validating the useful-

ness of the depth channel for human pose estimation. Fur-

thermore, we compare the performance of our feed-forward

network with the depth-based baseline that performs per-

frame optimization of pose parameters. We observe that

the feed-forward network achieves same accuracy and much

higher speed.

In addition to the body parameters inferred from depth

channel, we estimate the face and the hand parameters from

the RGB color stream, since the effective resolution of the

depth channel at the camera-to-body distances typical for

fullbody tracking is not sufficient for these tasks. We use

the outputs of the pretrained MinimalHand system [50] to

perform SMPLX-compatible (MANO [37]) hand pose esti-

mation. We also estimate the face keypoints using the Me-
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diaPipe face mesh model [21], and train a feedforward net-

work that converts the keypoint coordinates into the SMPL-

X compatible (FLAME [26]) face parameters. The MANO

and FLAME estimates are fused with the body pose to com-

plete the extended pose estimation.

Our resulting system thus uses the depth channel to esti-

mate the body pose, and the color channel to estimate hands

and face poses. It runs at 25 frames-per-second on a modern

desktop with a single 2080TI GPU card, and provides reli-

able extended body tracking. We demonstrate that same as

ten years back, RGBD-based pose estimation still strikes a

favourable balance between the simplicity of the setup (sin-

gle sensor is involved, no extrinsic calibration is needed),

and the accuracy of pose tracking (in particular, higher ac-

curacy is attainable compared to monocular RGB-based es-

timation).

2. Related work

Classic methods approach human pose estimation as

sparse keypoint localization in color [36, 14, 13] or RGB-

D [47, 38] images. In [43] the authors use dense per-pixel

prediction of surface coordinates in RGB-D images. Deep

network-based methods are significantly more accurate in

such a direct regression, e.g. [44, 34, 40]. Some methods

estimate the body joints in 3D from single [29] or multi-

ple RGB views [18]. RGBD-based 3D joint prediction us-

ing deep learning is proposed in [30, 32, 16], and in this

work we build on a recent commercial system [6] of this

kind. In [49], Zhou et al. use known constant bone lengths

and predict joint angles of a body kinematic model, for the

first time proposing a deep architecture which estimates the

body pose assuming the body shape is known in the form of

bone lengths. Subsequent research [31, 41, 42, 5] focuses

on incorporating structural knowledge into pose estimation.

Parametric body models [27, 35, 19, 46] are rich and

higher level representations of body geometry separated

into person-specific shape and pose. In this work we rely on

a recent SMPL-X model [35] which integrates body, face

and hand models into a unified framework, while alterna-

tives are [46] or [19]. The most accurate methods for the es-

timation of the body model parameters were computation-

ally intensive and offline [7, 35, 46, 45]. Recent research

features feedforward deep architectures achieving real-time

prediction of the body model parameters [20, 25, 11]. In

particular, [20] proposes to estimate shape and pose param-

eters of the SMPL model from a single RGB image, while

recent works, e.g. SPIN [25], show significant accuracy im-

provements in this direction. ExPose [11] is a real-time ca-

pable deep network predicting the whole set of SMPL-X

parameters. VIBE [24] is a fast video-based SMPL shape

and pose prediction method, while [46] shows a similar ap-

proach for the newer GHUM model. To the best of our

knowledge RGB-D based parameteric body model tracking
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Figure 1. The real-time system predicts the SMPL-X [35] pose

and expression from the RGB-D frame. We rely on the Kinect

Body Tracker [6], the MediaPipe face mesh [21] and the hand pose

regressor [50] (empty boxes). We propose the body pose extractor

to estimate the body joint angles from the 3D landmarks, the face

extractor to estimate the facial expression and jaw pose, and the

pose expression composer to integrate the predictions into a single

set of consistent SMPL-X parameters (filled boxes).

has not been tackled in previously published works.

For the body models, the recent research on body

pose forecasting [4, 3] relies on a large motion capture

dataset [28] with SMPL annotations. However, these ap-

proaches deal with prediction of noise-free poses rather than

extraction of the high-level pose representation in the form

of angles from the lower-level representation, as in this

work. Another closely related field is skeletal retargeting,

where researchers find ways of transforming the skeletons

between different animated characters, trying to keep the

pose semantics intact, e.g. [2, 1].

This work proposes a sequence-based method to esti-

mate poses of the SMPL-X model, which assumes knowl-

edge of the body shape as opposed to VIBE [24] and [48],

and uses a sequence of RGB-D frames as input.

3. Methods

We use the SMPL-X (Skinned Multi-Person Linear - eX-

pressive) format for extended pose [35], which represents

the shape of a human body using parametric deformable

mesh model. The mesh vertex positions M are determined

by a set of body shape β, pose Θ and facial expression ψ
parameters as follows:

M(β,Θ, ψ) =W (Tp(β,Θ, ψ), J(β),Θ,W)

Tp(β,Θ, ψ) = T̄ +BS(β;S) +BE(ψ; E) +BP (Θ;P) .

(1)

Here, M(β,Θ, ψ) is the posed human mesh, Tp(β,Θ, ψ)
encodes the deformed mesh in a default body pose, W is

a linear blend skinning function with vertex-joint assign-

ment weights W and joint coordinates J(β); the mesh Tp
is expressed as a sum of the vector of mean vertex coor-

dinates T̄ summed with the blend-shape function BS , the
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input image +global rotation +bending heuristic +refinement by GRU ground truth
Figure 2. Our body pose extractor has 4 steps. Step 1: align the SMPL mesh with a global rotation. Step 2: apply learning-free bending

heuristic to the limbs and the neck. Steps 3 and 4: refine the joint rotations with a GRU network, refine global rotation and translation.

displacements corresponding to the facial expression BE

and the pose BP , where S , E , P denote the mesh defor-

mation bases due to shape, expression and pose, see [35]

for the full definition of the model. The pose can be decom-

posed as Θ = [θT , ξT , ζT ]T into the parts corresponding

to the hands ξ, the face ζ and the remaining body joints

θ. The SMPL-X model is an “amalgamation” of the SMPL

body model [27], the FLAME face/head model [26], and

the MANO hand model [37] that had been proposed earlier.

3.1. System Overview

The proposed system regresses the sequence of the

pose-expression pairs (Θi, ψi) from a sequence of RGB-D

frames, see Fig. 1. As a first step of processing the frame i
it extracts the vector of 3D body landmark predictions ji us-

ing the Kinect Body Tracker API [6]. For simplicity, we as-

sume that they are defined in the RGB camera coordinates,

in reality we use the intrinsics provided with the device for

the coordinate system alignment. We predict the body pose

sequence {θi}
N
i=1, where N is the total number of frames,

from a sequence of 3D landmarks {{xi,k}
m
k=1}

N
i=1 using

our body pose extractor module, where xi,k is the k-th 3D

landmark for the i-th frame. We then crop the face and pro-

cess it with MediaPipe face mesh predictor [21], and later

extract the facial expression ψi and the pose of the jaw ζi us-

ing our facial extractor module. We crop the hands and pre-

dict the hand pose ξi in the SMPL-X (MANO) format us-

ing the MinimalHand [50] method. The components of the

model are then combined together, and temporal smoothing

is applied: Slerp Quaternion interpolation is used for body,

jaw and hands rotations, and exponential temporal filter is

used for face expression.

3.2. Body Pose Extractor

The aim of the body pose extractor is to predict the body

pose θ given a known SMPL-X body shape vector β and

the 3D body landmarks {xk}
m
k=1 extracted by the Body

Tracker [6] observed at a certain moment of time. The

pose extractor should work for an arbitrary shape of a per-

son, while in the public domain to the best of our knowl-

edge there is no RGB-D dataset with sufficient variability

of human shapes. We achieve generalization to an arbitrary

human shape by two means. Firstly, using the landmark-

anchored vertices precomputed for the Body Tracker land-

marks, we are able to leverage a large and diverse motion

capture dataset [4] for learning our models. Secondly, we

propose a specific residual rotation-based architecture de-

signed to abstract from a particular human shape. Apart

from the temporal connections inside the architecture, the

whole pipeline estimates the pose independently for each

frame. We therefore omit the temporal indices.

We assume that the Azure Kinect 3D landmark loca-

tions {xk}
m
k=1 are given in the coordinate frame of the

RGB camera. For each xk we create an additional vertex

in the SMPL-X mesh: a total of 32 vertices are added to

10475 SMPL-X vertices. For the SMPLX-X mesh aligned

with the Azure Kinect skeleton, these additional vertices

should coincide with the corresponding {xk}
m
k=1. Each ad-

ditional vertex is created to minimize the distance to the

xk over a training dataset as explained at the end of the

Section 3.4. We call these additional vertices landmark-

anchored vertices. They were created during AzurePose

dataset annotation. As the body shape and the pose varies,

landmark-anchored vertices follow the SMPL-X skinning

equations (1).

For a landmark xk, we denote the position of the cor-

responding landmark-anchored vertex in the SMPL-X pose

θ as x̂k(θ). Our goal is essentially to find the body pose

θ that aligns landmark-anchored vertices {x̂k(θ)}
m
k=1 on

the SMPL-X body mesh with the corresponding observed

landmarks {xk}
m
k=1. The body pose extractor takes the ob-

served landmarks and outputs the body pose, while SMPL-

X inference takes the body pose and outputs the landmark-

anchored vertices, this way the body pose extractor ”in-

verts” the inference of SMPL-X. For body pose extractor we

use feed-forward computations without inverse kinematics-

like optimizations.

To achieve this, we propose a four-step approach (Fig-

ure 2). Firstly, we find the global (rigid) rotation of the body

mesh in the default SMPL pose. We define the vertical di-

rection v between the ’chest’ and ’pelvis’ landmarks and the

horizontal direction w between the left and right shoulder
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simple complex avg

AUC↑ Euler↓ joint-

ang↓
Pos↓ AUC↑ Euler↓ joint-

ang↓
Pos↓ AUC↑ Euler↓ joint-

ang↓
Pos↓

single-frame

SMPLify-X [35] 0.735 2.680 0.324 0.079 0.651 2.224 0.474 0.136 0.693 2.452 0.399 0.108

SPIN [25] 0.802 3.018 0.298 0.058 0.756 1.920 0.342 0.074 0.779 2.469 0.32 0.066

ExPose-X [11] 0.781 3.345 0.305 0.064 0.746 2.6 0.369 0.078 0.764 2.972 0.337 0.071

Ours MLP 0.853 2.878 0.240 0.040 0.777 1.552 0.296 0.068 0.815 2.215 0.268 0.054

multi-frame

VIBE [24] 0.823 2.744 0.271 0.052 0.753 1.763 0.323 0.076 0.788 2.254 0.297 0.064

Ours RNN 0.870 2.988 0.233 0.038 0.791 1.846 0.287 0.063 0.83 2.417 0.26 0.05

Ours RNN-SPL 0.877 3.050 0.226 0.036 0.810 1.735 0.260 0.057 0.844 2.392 0.243 0.046
Table 1. Comparison with single- and multi-frame RGB baselines on AzurePose (simple/complex). For all metrics except AUC, lower is

better. Our RGBD-based methods are more accurate in most metrics (except Euler angles measured for local rotations in simple sequences).

landmarks, while the corresponding directions in the mesh

with the default pose are v̂ and ŵ, and all the direction vec-

tors have a unit norm. We find the rotation matrix R, such

that v = Rv̂, v × w = 1
‖v̂×ŵ‖R(v̂ × ŵ) which aligns v and

v̂, and the plane defined by v and w with the one defined by

v̂, ŵ. Such a rotation is unique given that v and w are not

collinear (which they are not by construction). It aligns the

coordinate system of the root joint with the 3D landmark

skeleton.

In the second step, we apply a learning-free bending

heuristic to obtain an initial pose estimate θ0. As Azure

Kinect skeleton topology roughly matches SMPL-X skele-

ton topology, and some of the landmark locations of Azure

Kinect skeleton are close to the joints of SMPL-X skele-

ton, we therefore can set a subset of rotations of SMPL-X

joints to match the rotations of Azure Kinect skeleton. To do

that we compute two types of bone vectors for Azure Kinect

skeleton: the observed bone vectors bk = xk−xp(k), where

a function p(k) returns the index of the parent of a land-

mark k in the kinematic tree, and the estimated bone vec-

tors defined by the current estimate of the pose θ: b̂k(θ) =
x̂k(θ) − x̂p(k)(θ). For each landmark-anchored vertex x̂k
we define a dominating SMPL-X joint s(k) as a joint with

the maximal weight for this particular vertex in the linear

SMPL deformable model. For two vectors a and b, denote

as R(a, b) the matrix of minimal rotation between a and b,
which we define as a rotation with the axis 1

‖a×b‖a×bwhich

aligns the vectors a and b, such that 1
‖a‖Ra = 1

‖b‖b. We then

process a subset of bones D corresponding to the limbs and

the neck, each bone from bk ∈ D having a unique s(p(k)),
and for each bone bk ∈ D, we set the rotation matrix of

s(p(k)) to R

(

b̂k(θ), bk

)

. We denote the resulting pose θ0.

The positions of the vertices in SMPL mesh are affected by

multiple joints, and not all of the bones are in D. Thus the

pose θ0 does not result in collinearity of all the bone vec-

tors {bk} and {b̂k(θ
0)}, and the goal of the next step is to

achieve a more precise alignment.

In the third step, we use machine learning to get a more

accurate alignment. We compute the residual minimal ro-

tations Rk = R(b̂k(θ
0), bk) aligning every estimated bone

direction b̂k(θ
0) with the observed one bk, in the coordinate

frame of the joint s(p(k)). Concatenating l = m−1 rotation

matrices Rk, we obtain a 9× l-dimensional rotation residual

vector. This vector serves as an input to a deep network, to-

gether with concatenated rotation matrices generated by the

initialization heuristic from θ0, in Table 3 we compare this

approach to other possible inputs. The goal of this network

is thus to refine the estimates produced by the initialization

bending heuristic.

We use Gated Recurrent Unit (GRU) architecture [10]

for this refinement network. The network thus predicts in-

cremental rotations ~Rk for each joint of the SMPL-X model,

and the resulting θ1 is obtained as a composition of these ro-

tations with θ0: Rk = R
0
k
~R
1
k, where R1k is the predicted rota-

tion from the k-th joint to its parent, R0k is the corresponding

rotation decoded from the initialization θ0. We encode the

obtained predictions into the vector θ1.

We have tried two variants of the architecture. The first

variant utilizes GRU architecture with two layers and hid-

den size equal to 1000. In the second variant we apply a

structured prediction layer (SPL) [4] with hidden size 64 to

GRU outputs. We use dense SPL which means that while

making prediction for a joint we take into account all its an-

cestors in the kinematic tree instead of using only one parent

joint. Also in this architecture we use dropout with rate 0.5.

The networks are trained by minimizing the l1 loss on con-

catenated rotation matrices using Adam optimizer [23] with

learning rate 0.0001. We decided to use the recurrent ar-

chitecture that uses temporal context from previous frames

to predict the corrections. This allows to improve tempo-

ral stability (slightly). In the single-frame experiments be-

low, we replace the GRU network with a simple multi-layer

perceptron (MLP) with 5 layers (each layer consists of 512

neurons).

In the fourth and final step, we modify the global lo-

cation and orientation of the resulting mesh through Pro-

2810



simple complex avg

AUC↑ Euler↓ joint-

ang↓
Pos↓ AUC↑ Euler↓ joint-

ang↓
Pos↓ AUC↑ Euler↓ joint-

ang↓
Pos↓

SMPLify-RGBD-Online 0.897 2.9 0.227 0.03 0.841 1.698 0.277 0.047 0.869 2.299 0.252 0.039

SMPLify-RGBD 0.905 1.821 0.141 0.027 0.887 1.281 0.163 0.033 0.896 1.551 0.152 0.03

Ours-RNN 0.899 2.846 0.177 0.029 0.829 1.514 0.237 0.051 0.864 2.18 0.207 0.04

Ours-RNN-SPL 0.896 2.819 0.189 0.029 0.837 1.361 0.233 0.048 0.867 2.09 0.211 0.039
Table 2. Comparison with multi-frame RGB-D baselines on AzurePose (simple/complex), the slow offline optimization-based method is

the most accurate. The proposed Ours-RNN-SPL method performs on a similar level of accuracy as the online optimization-based method,

but is 2.5 times faster. The feedforward network inside our approach thus serves as an efficient approximation of the optimization process.

crustes analysis between the two sets of 3D points {xk}
m
k=1

and {x̂k(θi)}
m
k=1. This step further improves the alignment

accuracy.

One may question whether our multi-stage alignment

procedure can be replaced with a simpler one, or if the

shape body parameters β can help at the fine-tuning pre-

diction stage. In the experiments, we therefore provide an

ablation study that compares our full procedure described

in this sections with baselines.

3.3. Face and hands

For each input frame, we crop the RGB image regions

corresponding to the face and the hands. For each hand we

select a Body Tracker landmark corresponding to a hand,

define a cube with a center in a selected landmark and a side

of 0.3m, project its vertices to image plane, and determine

bounding box from projected points. To extract face region

we project Body Tracker 3D face landmarks to the image,

calculate minimal square bounding box and expand it by a

factor of two.

On the face region, we run the MediaPipe face mesh pre-

dictor [21], which outputs 468 2.5D landmarks and rotated

bounding box in real time. Absolute X , Y -coordinates of

2.5D landmarks are normalized on width and height of the

rotated bounding box correspondingly, while relative Z-

coordinate is scaled with a constant value of 1/256. Nor-

malized landmarks are used to predict jaw pose and facial

expression of the SMPL-X head (FLAME) model. Land-

marks are first passed through a seven-layer MLP with

Linear-BatchNorm-ReLU [17, 33] blocks to extract 32-

dimensional feature vector. Then this feature vector is fed

into two linear layers, which predict jaw pose and facial ex-

pression separately. The model is trained on a large dataset

of video sequences depicting talking humans, which we an-

notated with SMPL-X parameters as described in the next

section. During training we use two losses: Mean Squared

Error (MSE) of facial expressions and Mean Per-Joint Posi-

tion Error (MPJPE) of SMPL-X 3D face keypoints. Addi-

tionally, we increase the weight of the mouth 3D keypoints

in the MPJPE loss to make the predicted mouth more re-

sponsive (see section 4 for ablation study). All face predic-

tors are trained with ADAM optimizer [23] with a learning

rate 0.0005.

On the hands regions, we run a method [50], which out-

puts SMPL-X compatible set of pose parameters.

3.4. AzurePose dataset and SMPL­X Annotation

For training our models, we collect a dataset of 56 sub-

jects recorded by five synchronous Kinect Azure devices.

The maximal horizontal angular parallax between different

devices is approximately 90 degreees, the distance to the

person from the device is 2-3 meters. Subjects perform a

fixed set of motions, with each recording being 5-6 minutes

long. As a test set, we collect additionally two recordings

of two subjects, with fixed sets of motions, so that the first

recording contains basic motions (’simple’), while the other

has more occlusions and extreme rotations for several joint

(’complex’). The test recordings were taken in a separate

session with modified camera geometry to ensure a realistic

gap between the train and the test set.

To obtain ground truth SMPL-X poses, we use a slow

optimization-based multiview fitting procedure. We thus

optimize the SMPL-X parameters to fit the observations.

Essentially, we are extending the SMPLify-X [35] method

to process multiview synchronous RGB-D sequences. We

use the OpenPose landmarks [8, 39] for body, face and

hands, as well as 3D landmarks of the Body Tracker [6], and

optimize the smooth l1 regression cost [15]. We perform

body pose estimation in the VPoser domain [35], use the l2

costs for regularizing the estimation of the jaw and eye pose

in the angular domain, the hand pose in the MANO [37]

parameter domain, the body shape in the SMPL-X do-

main, face expression in the FLAME [26] domain, the

body pose increment between the subsequent frames in the

VPoser [35] domain.

We use the explained procedure to obtain SMPL-X an-

notations on the AzurePose dataset. Since the AzurePose

dataset has limited identity and pose variability, we have

also built a (semi)-synthetic test set based on AMASS

dataset [28], which contains a large variety of tracks in the

SMPL format captured with motion capture equipment. We

turned the AMASS tracks into synthesized keypoint tracks

by taking the coordinates of the landmark-anchored vertices

and treating them as Kinect body tracker output. We call the

obtained dataset ’AMASS-K’.

To enable feedforward prediction of facial pose and ex-
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Figure 3. Comparison of the RGB baselines and the proposed

methods on AzureTest frames. The use of depth in the proposed

methods in most cases leads to more accurate poses. The right-

most column shows a failure case where our method cannot re-

cover from a mistake of the Kinect BodyTracker.

pression, we also require a large dataset of face videos an-

notated with facial parameters of SMPL-X, which are es-

sentially the parameters of the FLAME model. We use a

VoxCeleb2 dataset [12] for this purpose. First, we select

sequences in which the speaker’s face has a high resolu-

tion (face bounding box more than 512× 512 pixels). Then

OpenPose [8] is used to get face landmarks, and the sub-

set of sequences is filtered again according to landmark’s

confidences. Next, we use an offline optimization-based

sequence fitting procedure. Specifically, we optimize the

shape (shared across sequence), expression, and jaw param-
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Figure 4. Comparison of the RGB-D baselines and the proposed

methods on AzureTest frames. The second column shows an ex-

ample where our method performs worse than optimization-based

approaches. In other examples, the proposed Ours-RNN-SPL

method matches the optimization methods closely.

eters of the SMPL-X model to fit the observations. We use

the smooth l1 regression cost for optimization and also add

l2 cost for smoothness regularization.

For our tasks, we require the landmark-anchored ver-

tices, for which the average distance between them and cor-

responding Body Tracker landmarks is minimal. We find

the optimal landmark-anchored vertices consistently with

linear blend skinning (LBS) transformations (1). Firstly,

we find a closest SMPL-X vertex i to a landmark over the

SMPL-X annotated dataset, denoting its LBS weights as

Wi. Then, we optimize for the coordinates of a new virtual

vertex vm in a default body pose, fixing the LBS weights

of this vertex equal to Wi. Finally, we add a vertex with

weights Wm = Wi and coordinates vm to the model.

4. Experiments

In this section, we evaluate the accuracies of our body

pose and face extractors, and report timings of the obtained

system. Additional qualitative results and comparisons are

available in the Supplementary video.

Datasets. Firstly, we use the test set of the AzurePose

dataset, collected by ourselves, see Section 3.4. As this

dataset has low shape variability (just two people), we also

report test results on the hold-out part of the AMASS-K

dataset (140 sequences with 1120 frames).

To measure the quality of the face predictor we fil-
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Input type AMASS-K AzurePose Test (simple/complex)

Method Res KP β Init Twists AUC↑ Euler↓ joint-

ang↓
Pos↓ AUC↑ Euler↓ joint-

ang↓
Pos↓

0 - + - - - 0.885 1.629 0.211 0.033 0.849 2.187 0.231 0.046

1 - + + - - 0.859 1.761 0.238 0.041 0.852 2.204 0.237 0.045

2 - + - + - 0.9 1.492 0.181 0.028 0.863 2.16 0.213 0.04

3 + - - - + 0.935 3.001 0.139 0.018 0.761 3.897 0.443 0.075

4 + + + + - 0.897 1.543 0.184 0.029 0.864 2.118 0.215 0.04

5 + - - + + 0.937 1.264 0.109 0.017 0.864 2.18 0.207 0.04

Table 3. Comparison of our models, with different types of inputs and outputs, see text. A model taking the initial pose θ0i and the minimal

bone-aligning rotations, and producing the rotation increments is the best on the shape-diverse AMASS-K dataset.

tered and annotated the test split of VoxCeleb2 dataset [12],

which consists of subjects, who don’t appear in the train

set. For evaluation, we randomly selected 150 annotated

test videos with 73 unique subjects. Our face evaluation

set covers a wide variety of human face appearance, camera

viewpoints, and motions.

Metrics. We use the set of metrics proposed by recent

SMPL pose prediction work [4]. We obtain the Euler an-

gles in the z, y, x order, choose the solution with the least

amount of rotation, and compute a mean over the l2 norm of

the vectors of concatenated angles for all body joints. Next,

we compute the joint angle difference as the mean l2 norm

of the rotation logarithm for each body joint. Following [4],

we compute the Euler angle error on local rotations of joints

with respect to their kinematic parents, and the joint an-

gle difference on global rotations between the joint and the

body root coordinate systems. We also compute the posi-

tional mean-squared error over the positions of the joints.

Finally, we report the normalized area under curve (AUC)

for the PCKρ values, where PCKρ is a probability for a po-

sitional error for a certain landmark to be lower than ρ. For

face predictor evaluation we use MPJPE, which is an Eu-

clidean distance between the ground-truth and predicted 3D

keypoints. For computing MPJPE we use 68 SMPL-X head

3D keypoints. For comparing facial expression vectors we

employ Mean Squared Error (MSE).

We run the experiments on a single server with AMD

Ryzen Threadripper 1900X 8-Core CPU clocked at 3.8GHz

and a NVIDIA GeForce RTX 2080Ti GPU.

Comparison with RGB-based methods. We start with

comparing our approach to the recent RGB-only methods,

in order to highlight the benefits of using the depth infor-

mation. We use the recent single frame baselines SMPLify-

X [35], SPIN [25], ExPose [11]. In a sequence-based setup,

we compare against the state-of-the-art RGB video-based

VIBE [24]. Although our method assumes known shape,

other methods estimate the shape alongside with the pose.

The results on AzurePose, test in Table 1 indicate that

our MLP-based model significantly and consistently outper-

forms the other methods in a single-frame experiment with

respect to all metrics by 10-45%. As our method requires

Train AzurePose test

SPL AZ AM-

K

AUC↑ Euler↓ joint-

ang↓
Pos↓

- + - 0.845 2.22 0.237 0.047

+ + - 0.853 2.286 0.222 0.044

- + + 0.864 2.18 0.207 0.04

+ + + 0.867 2.09 0.211 0.039

Table 4. Comparison of the RNN body pose prediction mod-

els with or without the SPL layer, trained either only on the

AzurePose-train (AZ), or jointly on AzurePose-train and AMASS-

K (AM-K). Joint training on two datasets increases pose prediction

accuracy.

the body shape estimate β, we use a shape estimated by

SPIN [25] as an input to our method. We note that body

shape estimation may also benefit substantially from the

depth information, but we leave this for future work and

use the RGB-based body shape estimate.

In a multiframe experiment, we obtain the results which

are better by 5-30% than the ones of the strongest RGB-

based competitor (VIBE [24]) with respect to all the metrics

except the local Euler angles on simple sequences, which

can be explained by a bias toward complex body poses in

the training data. We use β estimated by VIBE.

Overall, we observe a consistent and significant increase

in the pose estimation accuracy when depth is used in addi-

tion to RGB, see also examples in Figure 3. We conclude

from this experiment, that RGB-D-based human pose esti-

mation still highly relevant for the tasks requiring high ac-

curacy, robustness, and speed.

Comparison with optimization-based approaches.

Next, we compare our model with the single-view RGB-

D methods. One of our baselines is the optimization-based

offline method ’SMPLify-RGBD’, which is a single view

modification of the offline model fitting, see Section 3.4.

Another one is ’SMPLify-RGBD-Online’, which is a sim-

plification of the former method to allow for the real-time

performance, which does not use VPoser, but relies on the

covariance-weighted l2 regularization in the domain of the

joint angles as a pose prior, with the covariance matrix com-

puted from the AMASS dataset [28], and uses the l2-norm

of the SMPL-X joint motion as a discontinuity cost. All the

methods in this comparison received the ground truth body
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Figure 5. Random samples from VoxCeleb2 test dataset [12] with face model predictions. Top-to-bottom: input image with overlayed face

landmarks [21], predicted SMPL-X model and offline-fitted SMPL-X model (used as ground truth during training, see section 3.4).

shape β.

The GRU network in our method serves as a fast replace-

ment for the iterative optimization process, achieving sim-

ilar accuracy, see Table 2. With our setting, the feedfor-

ward system is 2.5× faster than ’SMPLify-RGBD-Online’

and 25 times faster than ’SMPLify-RGBD’. Comparison to

Table 1 indicates the increase in accuracy from a better es-

timate of β.

On our desktop, the Body tracker takes 33 ms, Medi-

aPipe [21] face and our face extractor takes 16ms, Mini-

malHand [50] takes 20 ms, our body pose extractor takes

40ms, and composer filter takes 8 ms. The whole system

runs at 25 frames per second on a desktop computer with a

single GPU. To compare, SMPLify-X [35], ExPose-X [11],

SPIN [25] run at less that 1 FPS, VIBE [24] can run at al-

most 30 FPS on 2080ti GPU.

Ablation study. In Table 3, we evaluate ablations of our

model. For an RNN-based model we consider four types

of input: 3D body landmarks (KP), a shape vector β, the

initial pose θ0i (Init), and the minimal bone-aligning rota-

tions Ri,k (Twists); we compare models predicting rotation

increments (Res+), or full rotations (Res-). The AMASS-K

dataset has a diverse variety of body shapes, and the best

accuracy on this dataset is achieved by a model with high-

est body shape generalization ability. A model 5 taking θ0i
and minimal bone-aligning rotations Ri,k and producing ro-

tation increments achieves lowest errors on AMASS-K, and

has high accuracy on AzurePose Test. In Table 4 we show,

that adding AMASS-K with its diverse poses and shapes to

the training set helps pose estimation.

Face fitting evaluation. Next, we move on to the eval-

uation of the jaw pose and facial expression prediction on

VoxCeleb2 test dataset [12]. We compare 3 modifications of

our face predictor described in section 3.3 and report 3 met-

rics: MPJPE of SMPL-X 3D keypoints, MPJPE of SMPL-X

mouth 3D keypoints, and MSE of facial expression vectors.

Model
↓MPJPE

mm

↓MPJPE (mouth)

mm

↓Expression

MSE

2D landmarks 2.715 3.623 2.264

2.5D landmarks 2.462 3.487 1.705

2.5D landmarks + mouth loss 2.326 3.395 1.478

Table 5. Face predictor evaluation metrics on VoxCeleb2 test

dataset [12] for 3 modifications of our network. Usage of Z-

coordinate of input 2.5D landmarks and additional weighing of

SMPL-X 3D mouth keypoints in the loss improves metrics.

Table 5 summarizes the evaluation results. The first row

represents evaluation results for the model, which inputs 2D
landmarks (X,Y -coordinates). Next, we add Z-coordinate

to the input, which significantly improves all the metrics.

Our best model (last row) is additionally trained with 3×
weight on SMPL-X 3D mouth keypoints in the loss. We

find it important to focus the model on the mouth because

jaw pose mainly affects the mouth region.

5. Discussion
We have presented the details of the system that esti-

mates the extended pose (including face and hands artic-

ulations) from RGBD images or videos in real time. Our

systems builds on top of the previously developed compo-

nents (Kinect pose tracker [6], MediaPipe face tracker [21],

MinimalHand tracker [50]) and outputs the result in the

popular SMPL-X format [35]. Importantly, we show that

depth-based pose estimation still leads to considerable im-

provement in accuracy (and speed) compared to RGB-only

state-of-the-art approaches. This is, of course, hardly sur-

prising. What is perhaps more surprising given increas-

ing availability of excellent RGB-D sensors is the relatively

small interest towards depth-based pose estimation and the

lack of available frameworks for extended pose estimation

from RGB-D video streams. Our system will, hopefully,

address this gap and will be useful to multiple applications

in such domains as telepresence and human-computer inter-

action, where both the simplicity of setup and the accuracy

of results are important.
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