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Abstract

Synthesis of long-term human motion skeleton sequences

is essential to aid human-centric video generation [8] with

potential applications in Augmented Reality, 3D character

animations, pedestrian trajectory prediction, etc. Long-

term human motion synthesis is a challenging task due

to multiple factors like, long-term temporal dependencies

among poses, cyclic repetition across poses, bi-directional

and multi-scale dependencies among poses, variable speed

of actions, and a large as well as partially overlap-

ping space of temporal pose variations across multiple

class/types of human activities. This paper aims to address

these challenges to synthesize a long-term (> 6000 ms) hu-

man motion trajectory across a large variety of human ac-

tivity classes (> 50). We propose a two-stage activity gen-

eration method to achieve this goal, where the first stage

deals with learning the long-term global pose dependen-

cies in activity sequences by learning to synthesize a sparse

motion trajectory while the second stage addresses the gen-

eration of dense motion trajectories taking the output of the

first stage. We demonstrate the superiority of the proposed

method over SOTA methods using various quantitative eval-

uation metrics on publicly available datasets.

1. Introduction

Skeleton sequences are traditionally used for human ac-

tivity/action representation & analysis [26]. Recently, hu-

man motion synthesis [3, 5, 6, 9, 21, 23] is gaining ground

as it is widely used to aid human-centric video generation

[8] with potential applications in Augmented Reality, 3D

character animations, pedestrian trajectory prediction, etc.

Human motion synthesis is a challenging task due

to multiple factors like long-term temporal dependencies

among poses, cyclic repetition across poses, bi-directional

and multi-scale dependencies among poses, variable speed

of actions, and a large as well as partially overlapping space

∗Indicates equal contribution

of temporal pose variations across multiple class/types of

human activities.
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Figure 1: Motivation: a) Using the same set of sparse initial

poses, our method can generate differents type of activities

based on the input class label. The figure depicts two such

activities - Drinking and Standing up that were synthesized

from the same set of initial poses. b) Our method is also

capable of transitioning across actions. The figure demon-

strates the transition from Standing Up to Drinking activity.

Existing methods for human motion synthesis [3, 5, 9,

10, 14, 21] primarily uses auto-regressive models such as

LSTM [13], GRU [2] and Seq2Seq [27] which aim to pre-

dict a temporally short-duration motion trajectories (of near

future) given a set of few initial poses (or sometime re-

ferred as frames). However, these models do not gener-

alize well while generating long-duration motion trajecto-

ries across multiple activity classes due to following inher-

ent limitations. First, typically these auto-regressive mod-
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els are fed with temporally redundant poses and thus their

Markovian dependency assumption fails to exploit the long-

duration dependencies among poses. Second, the model

only learns the temporally forward dependency on short-

term sequences (again with temporally redundant poses)

and hence miss to exploit the temporally backward long-

term dependencies in poses. Third, the majority of these

methods do not attempt the conditional generation across

a large class of activities. This is probably because there

could be a significant amount of partial overlap of short-

term pose trajectories across multiple activity classes. Thus,

modeling the long-term pose dependency is critical for

learning a generalized model.

Recently, graph convolution networks (GCN), that are

traditionally used in an action recognition task, are em-

ployed to synthesize human motion sequence. GCN based

methods [32, 33] model intra-frame (joint level spatial

graph) and inter-frame (frame level temporal graph) rela-

tions as one spatio-temporal graph for every sequence and

perform graph convolution. However, these methods also

have multiple limitations that are discussed in detail in Sec-

tion 2.

This paper aims to overcome the limitations of exist-

ing methods and synthesize a long-term human motion

trajectory across a large variety of human activity classes

(> 50). We propose a two-stage activity generation method

to achieve this goal, where the first stage deals with learn-

ing the long-term global pose dependencies in activity se-

quences by learning to synthesize a sparse motion trajectory

while the second stage addresses the generation of dense

motion trajectories taking the output of the first stage.

We demonstrate the superiority of the proposed method

over SOTA methods using various quantitative evaluation

metrics on publicly available datasets [15, 25, 1], where our

method generalizes well even on 60 activity classes. As

shown in Figure 1a, our method is capable of generating the

different types of activities based on input class labels and in

Figure 1b we demonstrate the transition between Standing

Up and Drinking activity. Following are the key contribu-

tions of our work:

• We propose a novel two-stage deep learning method to

synthesize long-term (> 6000 ms) dense human mo-

tion trajectories.

• Our method is capable of generating class-aware mo-

tion trajectories. The proposed GloGen embed the

sparse activity sequences into a lower dimensional dis-

criminative subspace enabling generalization to a large

number of activity classes.

• Proposed method can generate a new motion trajectory

as a temporal sequence of multiple activity types.

• Proposed method can control the pace of generated

activities, thereby enabling the generation of variable

speed motion trajectories of the same activity type.

• To the best of our knowledge, our method first time

demonstrates the generalization ability of any long-

term (> 6000 ms) motion trajectory synthesis method

over 60 activity classes.

2. Related Work

Traditional methods [19, 24, 17, 7] used graph-based

modeling of poses for motion trajectory synthesis. Major-

ity of the recent deep learning methods aimed at short or

medium-term motion synthesis and that limited to a single

or small set of activity classes. [14] used foot and ground

contact information to synthesize locomotion tasks over a

given trajectory using a convolutional autoencoder. How-

ever, the proposed approach is limited to the locomotion

task only and cannot synthesize any other type of action.

In [32], the authors proposed a method to generate human

motion using a graph convolution network.

RNN based approaches have performed well for action

recognition, as shown in [20]. Several researchers followed

a similar direction to solve the task of human motion syn-

thesis and proposed approaches based on RNNs. Kundu et

al. [18] proposed a method for the task of human motion

synthesis using an LSTM autoencoder setup. The proposed

network encodes and then decodes back a given motion but

is not capable of generating any novel human motion. In

[10], the authors proposed an approach to generate human

motion using the LSTM autoencoder setup. In [12] authors

proposed a variational autoencoder setup to generate human

motion. In [23] the network is trained on multiple actions,

but they didn’t provide any way to control the type of output

motion trajectory.

There has been a significant increase in applications and

performance of generative models with the arrival of GAN

[11]. Generative adversarial networks were originally pro-

posed to generate images and later on for videos. Recent

methods attempted to synthesize better human motion by

incorporating GANs with RNNs in Seq2Seq autoencoders.

In [16] Kiasari et al. proposed a method to generate hu-

man motion using labels starting poses and a random vec-

tor to synthesize human motion, but they did not provide

any quantitative results in the paper, and qualitative analy-

sis is also unsatisfactory. In [3], the authors proposed an

approach to generate human motion using GAN.

Recent GCN-based method [33] models a sequence as a

spatio-temporal graph and perform class conditioned graph

convolution. However, their fixed size graph modeling lim-

its their scalability to generate long-term sequences. More

importantly, the size of the frame sequence that can be

considered for learning the temporal dependencies across

frames/poses is shown to be relatively small. Additionally,
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Figure 2: Overview of our two-stage framework, GlocalNet. In the first stage, GloGen generates the sparse motion trajectory

of an activity, followed by the second stage, LocGen, that predicts the dense poses from the generated sparse motion.
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Figure 3: Architecture of GloGen network used as sparse motion trajectory generator.

since their method takes random noise as input, it lacks con-

trol using the initial state of the activity and hence is not ca-

pable of transitioning between two actions as done by our

method in Figure 1b. Similarly, one can not synthesize a

long duration motion sequence by repeatedly invoking their

fixed length GCN generator. Another similar work in [32]

proposed to synthesize very long-term sequences but fails to

model class conditioning in their generative model, which

is an essential aspect of motion synthesis.

3. Our Method: GlocalNet

Our novel two-stage human motion synthesis method

attempts to address the key challenges associated with the

task of long-term human motion trajectory synthesis across

a large number of activity classes. More precisely, we

aim to learn the long-term temporal dependencies among
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Figure 4: Output of GloGen using different activity labels and initial poses.

poses, cyclic repetition across poses, bi-directional, and

multi-scale dependencies among poses. Additionally, our

method attempts to incorporate class priors in the genera-

tion process to learn a discriminatory embedding space for

motion trajectories, thereby addressing the generalisability

aspect over a large class of human activities.

Two Stage Motion Synthesis

The key limitation of the existing temporal auto-regressive

models like Seq2Seq is the Markovian dependency assump-

tion, where a new set of poses is assumed to be depending

upon just a few preceding poses. This impairs their capabil-

ity to capture the long-term dependence among poses that

are far apart and thus led to an accumulation of the pre-

diction error (e.g., mean joint error) while attempting iter-

ative prediction of long-term motion trajectories. We pro-

pose to overcome this limitation by splitting the process into

two stages, where the first stage is employed to capture the

global dependence among poses by learning temporal mod-

els on sparsely sampled poses instead of original dense mo-

tion trajectories. Thus, the second stage can subsequently

deal with the generation of more detailed motion trajecto-

ries starting from sparse motion trajectories synthesized by

the first stage. This also enables the additional capability to

control the frame rate of the synthesized motion trajectories.

The other key drawback of the Markovian model is its in-

competence to exploit the temporally backward dependen-

cies in poses. Thus, we propose to employ the bi-directional

LSTMs in the first stage to overcome this limitation. Fi-

nally, existing methods fail to generalize the motion synthe-

sis for a large class of activity types, probably because of

significant overlap among motion trajectories across mul-

tiple classes. We propose to overcome this limitation by

employing a conditional generator (with class prior) in the

first stage itself (while generating sparse global motion tra-

jectories).

Such decoupling enables the first stage to learn the class-

specific long-term (bi-directional) pose dependence while

the second stage primarily focuses on the generation of class

agnostic fine-grained dense motion trajectories given the

sparse output trajectories from the first stage. Figure 2 out-

lines the overview of our proposed two-stage method.

3.1. First Stage: GloGen

The first stage is implemented as auto-regressive

Seq2Seq network equipped with bi-directional LSTMs

called GloGen, shown in Figure 3. The GloGen encoder

takes as input a sequence of a sparse set of t initial poses

{X1, X2...Xt} that are uniformly sampled from input mo-

tion trajectory during training. Here each pose Xi depicts

a fixed dimensional vectorial representation of the human

pose. These poses are then concatenated with the action

class priors encoded as one-hot vectors and fed to the en-

coder. Unlike traditional Seq2Seq models, we feed all the

output states of the encoder i.e., {H1, H2...Ht} as input to

the GloGen decoder instead of just the last state. The ra-

tionale behind this choice is that all hidden states jointly

capture the sparse input poses’ global embedding. Finally,

the decoder output is considered as the set of predicted t
number of poses. These predicted poses are used as input to

synthesize the next set of t iteratively to generate the sparse

global motion.

Hi+1, Hi+2...Hi+t =

GloGenEncoder(Xi+1, Xi+2...Xi+t)
(1)

Xi+t+1, Xi+t+2...Xi+2t =

GloGenDecoder(Hi+1, Hi+2...Hi+t)
(2)
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Figure 5: Comparison of linear interpolation v/s LocGen

based generation of dense motion trajectories.

3.2. Second Stage: LocGen

Once we predict the sparse motion trajectories from Glo-

Gen, we need to process them further to obtain dense mo-

tion trajectories as the predicted pose will be far apart in

pose space and hence would lack the temporal smoothness

behavior. One option to obtain a dense set of poses from

sparse-poses is to perform simple interpolation based up-

sampling in Euclidean representation of poses. However,

from Figure 5, we can infer that simple interpolation is not

a good option as it leads to unnatural motion trajectories.

This is because the intermediate poses provided by the in-

terpolation typically yield straight lines due to which fix

bone length constraint is violated frequently, and the motion

does not seem natural. Interpolation in Euler angle space

is an alternate option that do not violate bone-length con-

straint. However, such representation of skeleton has issue

that even small error in joint angles near root of kinematic

tree results in large error in the joint locations for other de-

pendent joints, while doing interpolation. Thus, we stick to

Euclidean [x, y, z] representation of joints in this work but

Method LocGen ↓ Interpolation ↓
Vae Seq2Seq 0.222 0.230

Seq2Seq [23] 0.214 0.223

att. Seq2Seq [28] 0.336 0.352

acLSTM [21] 0.328 0.355

Our Method 0.172 0.177

Table 1: Comparison of Our Method GlocalNet (GloGen +

LocGen) in terms of Euclidean Distance per frame on NTU

RGB+D(3D) dataset. LocGen majorly contributes to the

qualitative results rather than quantitative.

other representations can also be considered.

We propose to obtain dense motion trajectories using

another auto-regressive network named LocGen, shown in

Figure 2. Input to LocGen encoder is a set of (Euclidean) in-

terpolated poses. The encoder first embeds the human pose

into a higher dimension and then fed the hidden states to

the decoder (similar to GloGen), generating more natural

motion trajectories. LocGen has the same architecture as

GloGen except that instead of sparse motion poses, Loc-

Gen takes interpolated dense motion trajectories as input,

and there is no class prior concatenated with input poses.

Thus, LocGen learns to transform interpolated trajectories

into natural looking temporally smooth motion trajectories.

In order to generate interpolated poses between given

two sparse-poses generated by GloGen, we use the follow-

ing formulation. Let M be the number of interpolated poses

that need to be synthesized between two given sparse-poses

Xi and Xi+1. Let X̃j be the j-th interpolated pose for

1 ≤ j ≤ M , then we can compute X̃j as:

X̃j = αj ∗Xi + (1− αj) ∗Xi+1 (3)

where αj = j/M .

{X̃j+1, X̃j+2 ... X̃j+M} are given as input to the

LocGen which first embeds them into the higher dimension

and then use the embeddings to generate natural looking

poses{Yj+1, Yj+2 ... Yj+M}.

Yj+1, Yj+2...Yj+M = LocGen(X̃j+1, X̃j+2...X̃j+M )
(4)

4. Experiments & Results

Every model is trained individually from scratch using

same setting in Table 1. All of the trained models, code, and

data shall be made publicly available, along with a working

demo. Please refer to our supplementary material for an

extended set of video results.

4.1. Datasets

Human 3.6M [15]: Following the same pre-processing

procedure as in [30], we down-sampled 50 Hz video frames

to 16 Hz to obtain better representative and larger variation

2D human motions. The skeletons consist of 15 major

body joints, which are represented in 2D. We consider

ten distinctive classes of actions in our experiments, that

includes sitting down, walking, direction, discussion,

sitting, phoning, eating, posing, greeting, and smoking.

NTU RGB+D(3D) [25]: This dataset contains around

56,000 samples on 60 classes performed by 40 subjects

and recorded with 3 different cameras. Hence, it provides
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Models
cross-view cross-subject

MMDavg ↓ MMDseq ↓ MMDavg ↓ MMDseq ↓
SkeletonVAE [12] 1.079 1.205 0.992 1.136

SkeletonGAN [6] 0.999 1.311 0.698 0.788

c-SkeletonGAN [30] 0.371 0.398 0.338 0.402

SA-GCN [33] 0.316 0.335 0.285 0.299

Our Method (LJ ) 0.213 0.218 0.201 0.212

Our Method (LMF ) 0.646 0.647 0.601 0.625

Our Method (LJ + LMF ) 0.195 0.197 0.177 0.187

Table 2: Comparison of Our Method (GloGen) in terms of MMD on NTU RGB+D(2D).

a good benchmark to test 3D human motion synthesis.

We have used the available Cross-Subject split provided

by the dataset for our experiments. We resort to standard

pre-processing steps adopted by existing methods [18].

NTU RGB+D(2D) [25]: To compare with previous works

[33], we follow the same setting to obtain 2D coordinates

of 25 body joints and consider the same ten classes to

run experiments. We use the available Cross-View and

Cross-Subject splits.

CMU Dataset [1]: The dataset is given as sequences of

the 3D skeleton with 57 joints. We evaluate our method

on three distinct classes from the CMU motion capture

database, namely, martial arts, Indian dance, and walking

similar to [21].

4.2. Implementation Details

Network Training: We use Nvidia’s GTX 1080Ti, with

11GB of VRAM to train our models. For training GLoGen,

the output dimension of our Encoder is 200. We are using

1 layered Bi-LSTM as our Encoder as well as Decoder.

Dropout regularization with a 0.25 discard probability, was

used for the layers. We use the AdamW optimizer [22] with

an initial learning rate of 0.002, to get optimal performance

Models MMDavg ↓ MMDseq ↓
E2E [31] 0.991 0.805

EPVA [31] 0.996 0.806

adv-EPVA [31] 0.977 0.792

SkeletonVAE [12] 0.452 0.467

SkeletonGAN [6] 0.419 0.436

c-SkeletonGAN [30] 0.195 0.218

SA-GCN [33] 0.146 0.134

Our Method 0.103 0.102

Table 3: Comparison of Our Method (GloGen) in terms of

MMD on Human 3.6M.

on our setup. We use MSE loss to calculate our objective

function. Similar to [33], we set the predicted action

sequence length for Human 3.6M and NTU RGB+D(2D)

datasets to be 50 and input sequence length to be 10. We

set the batch size for training to be 100, for testing to be

1000. For datasets CMU and NTU RGB+D(3D), a batch

size of 64 is used. For training on NTU RGB+D(3D) with

all 60 classes, we use input action sequence length to be 5

and predicted sequence length of sparse poses to be 15 for

GloGen and then using LocGen, we generate 4 new poses

for every pair of adjacent sparse-poses.

Loss Function: Loss function is calculated on joint loca-

tions and motion flow. We use the following loss function

to train out network LJ and LMF .

L = (λ1 ∗ LJ) + (λ2 ∗ LMF ) (5)

The joint loss LJ in Equation 6 gives the vertex-wise Eu-

clidean distance between the predicted joints Xi and ground

truth joints ˆXi+1.

LJ =

t∑

i=1

||X[i]− X̂[i]||2 (6)

In order to enforce smoothness in temporal sequence, we

minimize the motion flow loss LMF defined in Equation 7,

which gives the Euclidean distance between the predicted

motion flow Vi and ground truth motion flow ˆVi+1.

LMF =

t−1∑

i=1

||V [i]− ˆV [i]||2 (7)

Where, motion flow for the ith frame ˆVi+1. is the difference

between joint locations ˆXi+1 and X̂i.

V̂i = ˆXi+1 − X̂i (8)

4.3. Evaluation Metrics

Maximum Mean Discrepancy: The metric is based on a

two-sample test to measure the discrepancy of two distribu-

tions based on their samples. The metric has been used in
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Method 80ms 160ms 240ms 320ms 400ms 480ms 560ms 640ms

Walking

acLSTM [21] 1.05 1.77 2.20 2.46 2.66 2.79 2.99 3.24

Scheduled Sampling [4] 0.42 0.56 0.71 0.83 0.93 0.99 1.02 1.05

Seq2Seq [23] 0.09 0.13 0.24 0.42 0.74 1.22 1.85 2.79

Our Method 0.36 0.47 0.52 0.60 0.62 0.65 0.71 0.82

Indian Dance

acLSTM [21] 0.685 0.99 1.22 1.53 1.89 2.08 2.27 2.55

Scheduled Sampling [4] 1.54 2.24 2.49 2.52 2.65 2.90 2.94 3.12

Seq2Seq [23] 0.49 0.79 1.48 2.95 5.41 8.88 13.29 18.73

Our Method 0.50 0.56 0.64 0.68 0.69 0.69 0.79 0.84

Martial Arts

acLSTM [21] 0.52 0.74 0.95 1.14 1.35 1.56 1.73 1.88

Scheduled Sampling [4] 0.63 0.86 0.91 0.98 1.07 1.12 1.20 1.28

Seq2Seq [23] 0.28 0.43 0.87 1.57 2.53 3.89 5.83 8.62

Our Method 0.40 0.43 0.47 0.52 0.55 0.59 0.67 0.71

Table 4: Comparison of Our Method (GloGen) in terms of Euclidean Distance per frame on CMU dataset.

[29, 30, 33] for measuring the quality of action sequences

by evaluating the similarity between generated actions and

the ground truth. Similar to [30], for calculating MMD on

motion dynamics which are in the form of sequential data

points, the average MMD over each frame is denoted by

MMDavg and MMD over whole sequences are denoted by

MMDseq .

Euclidean distance: This metric used in [21] calculates er-

ror as the euclidean distance from the ground truth for the

corresponding frame.

4.4. Results

Long-term Dense Motion Synthesis: We use GlocalNet

to generate long-term dense motion sequences. Table 1

shows the results on NTU RGB+D(3D) for dense motion

trajectory synthesis and compare it with existing methods.

All the methods were trained from scratch using the same

data pre-processing [18] and have the same input(Class

Label & Initial Poses). These quantitative results show the

superior performance of the GlocalNet. Additionally, we

report detailed results including long term motion (> 6000
ms) and class-wise performance in the supplementary

material. We can clearly infer that our proposed solution

outperforms all the existing methods. Figure 4 depicts the

synthesized sparse motion trajectories obtained using the

GlocalNet on NTU RGB+D(3D) dataset for six different

activity classes. As we can see from the figure, the network

is able to learn the global long-term temporal dependence

in poses successfully across multiple classes and thus

generate significantly different motion trajectories for

similar initial input poses.

Comparison with Short-term Motion Synthesis Models:

To compare with existing short-term motion synthesis

models on different datasets, we use the first stage of our

network(GloGen). For fair comparison, we follow the same

settings as followed in these methods. Table 2 contains the

quantitative results on NTU RGB+D(2D) and our method

outperforms others with a good margin. Table 3 shows

the results on Human 3.6M for GloGen, which outputs

sparse-motion trajectory and compare with SOTA methods.

These quantitative results suggest the superior performance

of the GloGen over the MMD metric. Additionally, as

shown in Table 4 for CMU Dataset, we report superior

performance of our method over the existing ones on

Euclidean per frame metric. As reported in the table, our

method shows consistent performance even for longer

sequences across different actions.

Ablation Study on Loss Functions: In order to show the

importance of the proposed LJ and LMF loss separately,

we also trained our network using the individual loss com-

ponents and reported the results in Table 2. As it is clearly

visible, LMF alone is not sufficient; in combination with

LJ it helps improve the performance of our method. In

terms of qualitative results, we observed jitters in the gener-

ated sequence (without having LMF ). Thus, LMF enables

the network to learn generating smoother transition in skele-

ton sequences.

Synthesis for Sequence of Activities: Our network can

also be used to generate a multi-activity motion trajectory

by temporally varying the activity prior. To achieve this, we

first synthesize the motion trajectories using the approach

described in Section 3. Then we treat the final t poses of
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Figure 6: The t-SNE plot of GloGen embedding subspace along with the plot of selected motion trajectories where multiple

samples for different classes are represented as color-coded 3D points.

the generated trajectory as the initial t poses for generating

the next set of t poses belonging to new action class by pro-

viding the one-hot vector for the new class prior. This pro-

cess is repeated to generate a new sequence with potentially

multiple activity classes, in a single synthesized sequence

of arbitrary length.

Figure 1b shows an example of a sparse motion trajec-

tory where we generate poses for Stand Up activity and then

use its last set of poses to generate Drink activity. Here, we

can clearly visualize a smooth transition of poses across the

two classes of activities.

5. Discussion

A major limitation of the Seq2Seq models class is that

the last encoder hidden state becomes the bottleneck of

the network as all the information at the input side passes

through it to reach the decoder. To deal with this problem,

attention architecture was proposed [28], where all the

encoder hidden states are given to the decoder along with

affinity scores that tell the importance of every input state

corresponding to every output state. Such attention enabled

Seq2Seq networks to achieve SOTA performance for the

task of machine translation. However, generating motion

is a different task from machine translation as we aim to

predict the future poses looking at the previous ones, while

modeling the long-term global dependency in far away

poses. Therefore, in our method, instead of giving only the

last state, we share the outputs of all states from the encoder

to decoder LSTM units and predict the future poses.

GloGen Embedding Subspace: In order to visualize

the behavior of feature embeddings, we concatenate the

pose embeddings of GloGen-encoder over a sequence and

project it as a point into 2D space using t-SNE. Figure 6

shows the t-SNE plot of embedding subspace along with

the skeleton representation of selected motion trajectories

where multiple samples for different classes are represented

as color-coded 2D points. We can clearly infer from this

figure that proposed GloGen projects these sequences into

a discriminative subspace that enables it to handle the syn-

thesis of different classes better. Interestingly, we can also

see that some sequences from a few activities are scattered

across two clusters as they can be performed while both sit-

ting or standing, e.g., Wear glasses and Drink. Nevertheless,

apart from a few outlier points due to the noisy samples

present in the NTU RGB+D(3D) dataset, this plot clearly

indicates the subspace’s class discriminative nature.

6. Conclusion

In this paper, we propose a novel two-stage method for

synthesizing long-term human-motion trajectories across a

large variety of activity types. The proposed method can

also generate new motion trajectories as a combination of

multiple activity types as well as allows us to control the

pace of generated activities. We demonstrate the superi-

ority of the proposed method over SOTA methods using

various quantitative evaluation metrics on publicly available

datasets.
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