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Abstract

State-of-the-art learning-based monocular 3D recon-

struction methods learn priors over object categories on

the training set, and as a result struggle to achieve rea-

sonable generalization to object categories unseen during

training. In this paper we study the inductive biases en-

coded in the model architecture that impact the generaliza-

tion of learning-based 3D reconstruction methods. We find

that 3 inductive biases impact performance: the spatial ex-

tent of the encoder, the use of the underlying geometry of

the scene to describe point features, and the mechanism to

aggregate information from multiple views. Additionally,

we propose mechanisms to enforce those inductive biases:

a point representation that is aware of camera position,

and a variance cost to aggregate information across views.

Our model achieves state-of-the-art results on the standard

ShapeNet 3D reconstruction benchmark in various settings.

1. Introduction

Reconstructing the 3D shape of an object from monoc-

ular input views is a fundamental problem in computer vi-

sion. When the number of input views is small, reconstruc-

tion methods rely on priors over object shapes. Learning-

based algorithms encode such priors from data. Recently

proposed approaches [8, 34, 19, ?, ?, ?, ?] have achieved

success in the single/multi view, seen category case when

generalizing to novel objects within the seen categories.

However, these approaches have difficulty generalizing to

object categories not seen during training (cf. Fig. 1).

We present progress learning priors that generalize to un-

seen categories by incorporating a geometry-aware spatial

feature map. Within this paradigm, we propose a point rep-

resentation aware of camera position, and a variance cost to

aggregate information across views.

A typical learning-based approach will take a single 2D

Figure 1. An example of reconstructing object categories unseen

during training. State-of-the-art methods for learning-based recon-

struction like OccNets [19] fail to generalize to categories unseen

during training, mapping objects to their closest category in the

training set (e.g. a chair). 3D43D improves generalization by us-

ing 3 inductive biases in the network design.

view of an object as input, and a model to generate a 3D re-

construction. What should happen to the 3D ground truth as

the viewpoint of the 2D input changes? An object-centric

coordinate system would keep the ground truth fixed to a

canonical coordinate system, regardless of the viewpoint of

the 2D input view. In contrast, a view-centric coordinate

system would rotate the ground truth coordinate frame in

conjunction with the input view. An example of the two

different coordinate systems 1 is shown in Fig. 2. Object-

centric coordinate systems align shapes of the same cate-

gory to an arbitrary, shared coordinate system. This in-

troduces stable spatial relationships during training (e.g.,

wheels of different car shapes generally occupy the same

absolute area of R
3). This makes the reconstruction task

easier to learn, but these relationships are not necessarily

1In the graphics community the object-centric coordinate system is of-

ten referred as world coordinates and the view-centric coordinate system

as camera coordinates.
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Figure 2. (a) View-centric coordinate system, where ground truth

3D objects are aligned to their respective input views. (b) Object-

centric coordinate system, where all input views share the same

ground-truth canonical 3D object orientation.

shared across categories. Similar to [26, 30], we show em-

pirically that adopting a view-centric coordinate system im-

proves generalization to unseen categories.

Another critical factor for achieving good generalization

to unseen categories is the capacity of a model to encode

geometrical features when processing the input view. Sim-

ilar to [34], our model uses feature maps with spatial ex-

tent, rather than pooling across spatial locations to obtain a

global representation. In [34] the motivation for using spa-

tial feature maps is to preserve fine grained details of geom-

etry (e.g. to better model categories in the training set). In

contrast, in this paper we analyze generalization to unseen

categories and how different encoding designs impact gen-

eralization capability. We argue that using a globally pooled

representation encourages the model to perform reconstruc-

tion at the object level (since the pooling operation is in-

variant to spatial arrangements of the feature map), which

makes it difficult to generalize to objects from unseen cat-

egories. By keeping the spatial extent of features, on the

other hand, we process and represent an object at the part

level. Critically, in contrast to [34], we model the scene ge-

ometry across different views by explicitly embedding in-

formation about camera poses in the spatial feature maps.

We show empirically that using these geometry-aware spa-

tial feature maps increases generalization performance.

Finally, we use multi-view aggregation to improve gen-

eralization performance. Traditional approaches to 3D re-

construction, such as multi-view stereo (MVS) [25] or

structure-from-motion (SfM) [32], exploit the geometry of

multiple views via cost volumes instead of priors learned

from data. These approaches fail in single-view cases.

Single-view reconstruction models, though, must rely en-

tirely on priors for occluded regions. We propose a model

that combines learned priors with the complimentary infor-

mation gained from multiple views. We aggregate infor-

mation from multiple views by taking inspiration from cost

volumes used in MVS and compute a variance cost across

views. By refining its single-view estimates with additional

views, our model shows improved generalization perfor-

mance.

Individually, these factors are important as backed by lit-

erature and our empirical results and addressing them leads

to compounding effects on generalization. The view-centric

coordinate system has been shown to improve generaliza-

tion [26, 30]. However, the need to aggregate informa-

tion from multiple views is also paramount to reconstruct

categories not seen during training time, since the prior

learned over the training categories is not trustworthy in

this unseen category case. In order to maximally benefit

from aggregating information from multiple views, we re-

quire features that encode information about parts of objects

rather than encoding the object as a whole entity without

preserving spatial information. Otherwise, aggregation can

be counterproductive by reinforcing the wrong object prior.

We show empirically that by compounding these three fac-

tors, 3D43D outperforms state-of-the-art 3D reconstruction

algorithms when tested on both categories seen and un-

seen during training. Contrary to suggestions from previ-

ous work [36, 30], we achieve these gains in generalization

without a drop in performance when testing on categories

seen during training.

2. Related Work

Object Coordinate System. Careful and extensive ex-

perimental analysis in [26, 30] has revealed that the object

shape priors learned by most 3D reconstruction approaches

act in a categorization regime rather than in the expected 3D

dense reconstruction regime. In other words, reconstructing

the 3D object in these models happens by categorizing the

input into a blend of the known 3D objects in the training

set. This phenomenon has been mainly explained by the

choice of the object-centric coordinate system.

Results by [26, 30] showed that object-centric coordi-

nate systems perform better for reconstructing viewpoints

and categories seen during training, at the cost of sig-

nificantly hampering the capability to generalize to cate-

gories or viewpoints unseen at training time. The converse

result was also observed for view-centric coordinate sys-

tems, which generalized better to unseen objects and view-

points at the cost of degraded reconstruction performance

for known categories/viewpoints.

Feature Representation. Single-view 3D reconstruc-

tion approaches have recently obtained impressive results

[19, 24, 34, 31, 8, 18, 13] despite the ill-posed nature of the

problem. In order for these approaches to perform single-

view reconstruction successfully, priors are required to re-

solve ambiguities. Not surprisingly, recent works show that

using local features that retain spatial information [24, 34]

improve reconstruction accuracy. However, none of these

approaches analyze their performance on object categories

unseen during training time. A recent exception is [36]
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MV Consist. [31] Diff. PCs. [10] L-MVS [14] PiFU [24] DISN [34] OccNet [19] 3D43D

Geometry Voxel Point cloud Voxel/Depth Func. Func. Func. Func.

Coordinate Sys. Viewer Viewer Object Object Object Object Viewer

Features Global Global Spatial+Global Spatial+Global Spatial+Global Global Spatial+Geometric

Multi-view No No Yes Yes Yes No Yes

Generalization No No Yes No No No Yes

Table 1. Summary of design choices of different approaches. We describe each method in terms of their choice of: geometry representation

(Geometry), coordinate system (Coordinate Sys.), feature representation (Features), capacity to use multiple views (Multi-view) and if

they analyze generalization to unseen categories (Generalization).

where the authors propose a non fully differentiable ap-

proach for single view reconstruction that relies on depth

in-painting of spherical maps [6]. [36] also differs from

3D43D because 3D voxel grids are used as ground-truth,

and extra supervision at the level of depth maps is available

at training time.

View Aggregation. Multi-view 3D reconstruction has

been traditionally addressed by stereopsis approaches like

MVS [25, 16] or SfM [32]. Modern learning-based ap-

proaches to MVS [35, 16] have incorporated powerful con-

volutional networks to the MVS pipeline. These networks

focus on visible regions and do not make inferences about

the geometry of occluded object parts.

Another interesting trend has been to exploit the multi-

view consistency inductive bias from MVS to learn 3D

shape and pose from pairs of images [31, 10, 29]. How-

ever, these approaches either predict a very sparse set of

keypoints [29], a sparse point cloud [10], or a voxel grid

[31], limiting the approaches to fixed resolution representa-

tions.

Conceptually close to our approach is [14]. The au-

thors propose differentiable proxies to the operations in the

standard MVS pipeline, allowing end-to-end optimization.

Although [14] addresses multi-view aggregation, there are

critical design choices in other aspects of the method that

limit the performance. First, the geometry representation

produced is a voxel grid, making the estimation of high res-

olution geometry unfeasible. Second, the cost-volume op-

timization happens via a large 3D auto-encoder which has

a non trivial geometric interpretation. Third, view aggrega-

tion is performed in a recurrent fashion, making the model

sensitive to permutation of the views.

Properly extending the previously discussed single-view

works [19, 24, 34, 31, 8, 18, 13] to the multi-view case is

not trivial, although simple extensions to aggregate multi-

ple views are briefly outlined in [24, 34]. Inspired by cost

volume computation used in MVS [35] we aggregate infor-

mation from different views by computing a variance cost

(Sect. 3.3.)

Geometry Representation. The choice of representa-

tion scheme for 3D objects has been at the core of 3D

reconstruction research from the early beginning. Vox-

els [31, 14] have been used as a natural extension of 2D

image representation, showing great results in low resolu-

tion regimes. However, memory and computation require-

ments to scale voxel representations to higher resolution

prevent them from being widely used. Circumventing this

problem, point clouds are a more frequently used repre-

sentation [10, 29]. Point clouds deal with the computa-

tional cost problem of voxels by sparsifying the represen-

tation and eliminating the neighbouring structure informa-

tion. Meshes [13, 15, 18] add the neighboring structure

back into point cloud representations. However, to make

mesh estimation efficient, neighbouring structure has to be

predefined (usually in the form of connectivity of a convex

polyhedron with a variable number of faces) and only de-

formations of that structure can be modelled. Finally, func-

tional/implicit representations have recently gained interest

[19, 34, 22, 20, 4, 12]. This representation encodes geome-

try as the level set of a function that can be evaluated for any

point in R
3. Such a function can generate geometry at ar-

bitrary resolutions by evaluating as many points as desired.

As a summary, Tab. 1 shows the contributions of the most

relevant and related literature in comparison to 3D43D.

3. Model

We now describe our approach in terms of the choice of

geometry representation, the use of geometry-aware feature

maps, and the multi-view aggregation strategy. Our model

is shown in Fig. 3.

3.1. Functional Geometry Representation

3D43D takes the form of a functional estimator of ge-

ometry [19, 34, 8, 22]. Given a view of an object, our

goal is to predict the object occupancy function indicating

whether a given point p ∈ R
3 lies inside the mesh of the

object. In order to do so, we learn a parametric scalar field

fθ : R3 ×V −→ [0, 1] where V ∈ R
H×W×3 is an monoc-

ular (RGB) view of the object. In the remainder of the text

the parameter subscript θ is dropped for ease of notation.

This scalar field f is implemented by a fully connected deep

neural network with residual blocks 2.

3.2. Encoding Geometry­aware Features

Our goal is to learn a prior over occupancy functions

that generalizes well to unseen categories, which we ad-

dress by giving our model the capacity to reason about local

2Details of the implementation can be found in the supplementary ma-

terial
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object cues and scene geometry. In order to do so, we pro-

cess input views with a convolutional U-Net[23] encoder

with skip connections (refer to the supplementary material

for implementation details). This results in a feature map

C ∈ R
H×W×C for a given RGB view. This is in contrast to

the approach taken in [19, 8] where a view is represented by

a global feature which pools across the spatial dimensions

of the feature map. Our hypothesis is that preserving the

spatial dimensions in the latent representation is crucial to

retain local object cues which greatly improve generaliza-

tion to unseen views and categories, as demonstrated in the

experiments. To predict the occupancy value for a 3D point

p in world coordinates we project this point into its loca-

tion (u, v) in C by using the extrinsic camera parameters

T = [R|t] ∈ R
3×4 and intrinsic parameters K ∈ R

3×3 3

(cf. Eq. (1)), and sample the corresponding feature vector

c ∈ R
C . We use bi-linear sampling as in [11] to make the

sampling operation differentiable.

(u′, v′, w′) = KTp, u = u′/w′, v = v′/w′. (1)

The feature vector c encodes localized appearance infor-

mation but lacks any notion of the structural geometry of

the underlying scene. This causes ambiguities in the repre-

sentation since, for example, all points in a ray shot from

the camera origin get projected to the same location in the

image plane. Thus, the sampled feature vector c cannot

uniquely characterize the points in the ray (e.g., to predict

occupancy). Recent works [24, 34] mitigate this issue by

augmenting c to explicitly encode coordinates of 3D points

p. This is often done by concatenating p (or a latent rep-

resentation of p [34]) and c, and further processing it via

additional fully connected blocks.

However, p (or its representation) is sensitive to the

choice of coordinate system [26]. Recent approaches

[19, 34] use a canonical object-centric coordinate system

for each object category, which has been shown to gen-

eralize poorly to categories not seen during training [30].

On the other hand, expressing p in a view-centric coordi-

nate system4 improves generalization to unseen categories

[26, 30, 36]. Note that if p is expressed in the view-centric

coordinate system the characterization of the scene is in-

complete since it lacks information about the points where

the rays passing through p originated in the image capturing

process (e.g. the representation is not aware of the origin of

the view-centric coordinate system w.r.t. the scene).

To tackle this issue we represent p using the camera co-

ordinate system (denoted as p′), and give the representation

access to the origin of the camera coordinate system t ∈ R
3

with respect to the world (e.g. the camera position with re-

spect to the world coordinate system). Therefore, after sam-

3We assume camera intrinsics to be constant.
4Also known as camera coordinate system

pling c we concatenate it with p′ and t, and process it with

an MLP gθ : Rn → R
n with residual blocks, resulting in

feature representation g that is aware of the scene geome-

try g = gθ([c,p
′, t]) . This feature representation g is then

input to the occupancy field f . Note that this does not re-

quire additional camera information compared to [34, 24]

since the camera position is already used to project p into

the image plane to sample the feature map. In our model

we explicitly condition the representation using the camera

position instead of only implicitly using the camera position

to sample feature maps. Fig. 3 shows our model.

3.3. Multi­View Aggregation

We now turn to the task of aggregating information from

multiple views to estimate occupancy. Traditionally, view

aggregation approaches for geometry estimation require the

explicit computation of a 3D cost volume which is either

refined using graph optimization techniques in traditional

MVS approaches [25] or processed by 3D convolutional

auto-encoders with a large number of parameters in learned

models [14, 35, 16]. Here we do not explicitly construct a

cost volume for the whole scene, instead, we compute point-

wise estimates of that cost volume. One key observation

is that our model is able to estimate geometry for parts of

the object that are occluded in the input views, as opposed

to MVS approaches that only predict geometry for visible

parts of a scene (e.g. depth). As a result our approach inte-

grates reconstruction of visible geometry and generation of

unseen geometry under the same framework.

Our task is to predict the ground truth occupancy values

o ∈ {0, 1}p of points P = {pj}
p
j=0

, given a set of posed

RGB views {Vi,Ti}
n
i=0

. In order to do so, we indepen-

dently compute geometry aware representations gi across

views for each point pj as show in Sect. 3.2. In order

for our model to deal with a variable number of views a

pooling operation over gi is required. Modern approaches

to estimate the complete geometry of a scene (visible and

occluded) from multiple views rely on element-wise pool-

ing operators like mean or max [34, 24]. These element-

wise operators can be suitable for categories seen at training

time. However, in order to better generalize to unseen cat-

egories it is oftentimes beneficial to rely on the alignment

cost between features as done in purely geometric (e.g. non

learning-based) approaches [25]. Inspired by traditional ge-

ometric approaches we propose to use an approximation to

the alignment cost between local features {gi}
n
i=0

. We ap-

proximate the alignment cost on the set of local features

{gi}
n
i=0

by computing the variance ĝ as follows,

ĝ = V({gi}
n
i=0

) =

n∑
i=0

‖ḡ − gi‖2

n
, (2)

where ḡ is the average of {gi}
n
i=0

. A key design choice
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Figure 3. Overview of our model. Input views Vi are processed by our UNet encoder producing feature maps Ci that are sampled at spatial

locations corresponding to a 3D point pj . Those features are then concatenated with the point pj and the location of the camera origin

of the corresponding input view and process through an MLP gθ that produces geometry-aware point representations (one for each view).

Those representations are used to compute a mean and variance cost across views that is used by another MLP fθ to predict occupancy.

is that we do not use the variance ĝ as the sole input to our

functional occupancy decoder f since the variance will be

zero everywhere and uninformative when only a single view

is available. Instead, we add a conditional input branch to

our decoder f , which takes as input ḡ conditioned on ĝ.

We also give the model access to a global object represen-

tation by introducing a residual path that performs additive

conditioning on ḡ. We perform average pooling on feature

maps Ci both spatially and across views to obtain c̄ that

is added to ḡ. Conditioning in f is implemented via con-

ditional batch normalization5 layers [3]. This formulation

naturally handles the single view case, where ĝ = 0. Fi-

nally, our objective function is shown in Eq. 3.

L({Vi,Ti}
n
i=0

,P,o) = −

p∑

j=1

oj log f(ḡ + c̄, ĝ) (3)

4. Experiments

We present empirical results that show how 3D43D per-

forms in two experimental setups: reconstruction of cate-

gories seen during training and generalization to categories

unseen during training. In the first setup our goal is to show

that 3D43D is competitive with state-of-the-art 3D recon-

struction approaches. In the second setup we show that

3D43D generalizes better to categories unseen at training

time. Finally, we conduct ablation experiments to show how

the proposed contributions impact the reconstruction accu-

racy.

4.1. Settings

Dataset: For all of our experiments, we use the

ShapeNet [1] subset of Choy et al. [2], together with their

renderings. For a fair comparison with different methods we

5Implementation details in the supplementary material

use the same train/test splits and occupancy ground truth as

[19], which provides an in depth comparison with several

approaches 6.

Metrics: We report the following metrics, following

[19]: volumetric IoU, Chamfer-L1 distance, and normal

consistency score. In addition, as recently suggested by

[30] we report the F-score. Volumetric IoU is defined as the

intersection over union of the volume of two meshes. An

estimate of the volumetric IoU is computed by randomly

sampling 100k points and determining whether points re-

side in the meshes [19]. The Chamfer-L1 is a relaxation

of the symmetric Hausdorff distance measuring the average

of reconstruction accuracy and completeness. The normal

consistency score is the mean absolute dot product of the

normals in one mesh and the normals at the correspond-

ing nearest neighbors in the other mesh [19]. Finally, the

F-score can be understood as the percentage of correctly re-

constructed surface [30].

Implementation: We resize our input images to

(224, 224) pixels. For our encoder, we choose a U-Net

with a ResNet-50[9] encoder, the final feature maps C have

256 channels and are of the same spatial size as the in-

put. The function gθ that computes geometric features

is an MLP with 3 ResNet blocks and that takes a vector

of 262 = 256 + 3 + 3 dimensions and outputs a 256-

dimensional representation g. Our occupancy function f
is an MLP with 5 ResNet blocks where all layers have 256
hidden units except the output layer. To train the occupancy

function we sample 2048 points with their respective oc-

cupancy value from a pool of 100k points and use 4 in-

put views 7. Details of different sampling strategies can be

found in [19]. We train our network with batches of 128

6Readers interested in the ground-truth generation process are referred

to [19, 28].
7This was due to memory limitations. Nonetheless, the method gener-

alizes to an arbitrary number of input views during inference
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samples and use Adam[17] with default Pytorch parameters

as our optimizer. We use a learning rate of 10−4 and train

our network for 2000 epochs. To obtain meshes at inference

time from the occupancy function we follow the process in

[19].

4.2. Categories seen during training

In this section, we compare our method to various base-

lines on single-view and multi-view 3D reconstruction ex-

periments. For the single-view setup we report our results

on standard experiments for reconstructing unseen objects

of categories seen during training (cf. Tab. 2). We com-

pare 3D43D with 3D-R2N2[2], Pix2Mesh[33], PSGN[7],

AtlasNet[8] and OccNets[19]. Encouragingly, 3D43D per-

forms on par with the state-of-the-art OccNets[19] ap-

proach, which uses global features that are able to encode

semantics of the objects in the training set. In addition,

OccNets make use of an object-centric coordinate system,

which aligns all shapes to the same canonical orientation,

making the reconstruction problem simpler. Our results in-

dicate that spatial feature maps are able to encode useful

information for reconstruction despite being spatially lo-

calized. This result backs up our initial hypothesis and is

critical to establish a good baseline performance. From

this baseline, we explore the performance of our model

when generalizing to unseen categories in different scenar-

ios (Sect. 4.3).

In order to further validate our contribution, we provide

results on multi-view reconstruction. We randomly sam-

ple 5 views of the object and compare our method with

OccNets[19] (the top performer for single-view reconstruc-

tion method). To provide a fair comparison, we extend the

trained model provided by OccNets (the best runner up) to

the multiple view case by average pooling their conditional

features across views at inference time. Since our method

uses spatial features that are aware of scene geometry, we

expect our aggregation mechanism to obtain more accurate

reconstruction. Results shown in Tab. 3 and qualitative re-

sults in Fig. 4 consistently agree with this observation.

4.3. Generalization to unseen categories

We now turn to our second experimental setup were we

evaluate the ability of 3D43D to generalize to categories not

seen during training. In order to do so, we restrict the train-

ing set to the top-3 most frequent categories in ShapeNet

(e.g. Car, Chair and Airplane) following [36], and test on the

remaining categories. Tab. 4 compares the performance of

3D43D with two strong baselines: OccNets [19] and Occ-

Nets trained with a view-centric coordinate system ([19]-v).

We extend OccNets to use view-centric coordinates in or-

der to validate observations in recent papers [26, 30] report-

ing that using a view-centric coordinate system improves

generalization to unseen categories. We find empirically

that this observation holds for models that do not aggre-

gate information from multiple views. As discussed in Sec.

3.3, [19]-v suffers from systematic drawbacks due to the

use of global features, and this results in degraded perfor-

mance. Additionally, using a view-centric coordinate sys-

tem only partially tackles the generalization problem, and

further improvements can be obtained from the geometry

aware features, and the mean and variance aggregation used

by 3D43D.

We show sample reconstructions from this experiment

in Fig. 5. The visualizations reveal that OccNets tend to

work in a categorization regime, often mapping unseen cat-

egories to their closest counterparts in the training set. This

is clearly visible in Fig. 5. This problem is not solved solely

by using multiple views, which can be counterproductive by

giving OccNets more confidence to reconstruct the wrong

object.

4.4. Ablation

We perform an ablation study to show how the main de-

sign choices of our approach affect performance (ie. a point

representation that is aware of camera position and a vari-

ance cost to aggregate information across views). We take

as our baseline a model equivalent to DISN [34] but with a

view-centric coordinate frame. We have already shown that

spatial feature maps provide substantial improvements over

1D features (e.g. improvements over OccNet [19] shown in

Tab. (2)(3)) for seen categories. Note that DISN [34] also

reports similar results. However, in this paper we focus on

analyzing the generalization of the model to categories un-

seen during training and show in our ablation that spatial

feature maps are not the only critical design choice and our

novel contributions improve reconstruction accuracy for un-

seen categories.

For all our model ablations our encoder (ie. a UNet with

a ResNet50 encoder) outputs spatial feature maps for each

view that are sampled at locations corresponding to a par-

ticular point p ∈ R
3 for which occupancy is predicted. Our

ablation is divided in three models: (i) Point model (P):

Here we take the sampled features across views (e.g. the

ci) and concatenate them with p before feeding through our

MLP gθ, so that gi = gθ(ci, p). We take these feature repre-

sentations gi across views and aggregate them using average

pooling, where the resulting vector is used as input to fθ.

(ii) Point+Camera model (P+C): In this version we con-

catenate also the camera location ti before processing the

vector with gθ, so that gi = gθ(ci, p, ti). We then average

pool the resulting features and use them as input to fθ. (iii)

Point+Camera+Variance model (P+C+V): In this model

we take the same encoding as in P+C (gi = gθ(ci, p, ti)).
However, we now compute the mean and variance of gi and

use them as input and conditioning, respectively, for fθ.

This is our full 3D43D model. These models are trained
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IoU ↓Chamfer-L1 Normal Consistency

Seen category [2] [33] [19] 3D43D [2] [7] [33] [8] [19] 3D43D [2] [33] [8] [19] 3D43D

airplane 0.426 0.420 0.591 0.571 0.227 0.137 0.187 0.104 0.134 0.096 0.629 0.759 0.836 0.845 0.825

bench 0.373 0.323 0.492 0.502 0.194 0.181 0.201 0.138 0.150 0.112 0.678 0.732 0.779 0.814 0.809

cabinet 0.667 0.664 0.750 0.761 0.217 0.215 0.196 0.175 0.153 0.119 0.782 0.834 0.850 0.884 0.886

car 0.661 0.552 0.746 0.741 0.213 0.169 0.180 0.141 0.149 0.122 0.714 0.756 0.836 0.852 0.844

chair 0.439 0.396 0.530 0.564 0.270 0.247 0.265 0.209 0.206 0.193 0.663 0.746 0.791 0.829 0.832

display 0.440 0.490 0.518 0.548 0.605 0.284 0.239 0.198 0.258 0.166 0.720 0.830 0.858 0.857 0.883

lamp 0.281 0.323 0.400 0.453 0.778 0.314 0.308 0.305 0.368 0.561 0.560 0.666 0.694 0.751 0.766

loudspeaker 0.611 0.599 0.677 0.729 0.318 0.316 0.285 0.245 0.266 0.229 0.711 0.782 0.825 0.848 0.868

rifle 0.375 0.402 0.480 0.529 0.183 0.134 0.164 0.115 0.143 0.248 0.670 0.718 0.725 0.783 0.798

sofa 0.626 0.613 0.693 0.718 0.229 0.224 0.212 0.177 0.181 0.125 0.731 0.820 0.840 0.867 0.875

table 0.420 0.395 0.542 0.574 0.239 0.222 0.218 0.190 0.182 0.146 0.732 0.784 0.832 0.860 0.864

telephone 0.611 0.661 0.746 0.740 0.195 0.161 0.149 0.128 0.127 0.107 0.817 0.907 0.923 0.939 0.935

vessel 0.482 0.397 0.547 0.588 0.238 0.188 0.212 0.151 0.201 0.175 0.629 0.699 0.756 0.797 0.799

mean 0.493 0.480 0.593 0.621 0.278 0.215 0.216 0.175 0.194 0.184 0.695 0.772 0.810 0.840 0.845

Table 2. Performance of different approaches on the test set of categories seen during training, trained with single views. Our results show

that 3D43D is comparable with state-of-the-art models trained on a object-centric coordinate system in the single view setting. Compared

models are: 3D-R2N2[2], Pix2Mesh[33], PSGN[7], AtlasNet[8] and OccNets[19].

IoU ↓ Chamfer-L1 Normal Consistency F-score

Seen category [19] 3D43D [19] 3D43D [19] 3D43D [19] 3D43D

airplane 0.600 0.736 0.096 0.021 0.853 0.899 0.735 0.841

bench 0.547 0.663 0.176 0.027 0.834 0.881 0.691 0.789

cabinet 0.770 0.831 0.125 0.073 0.893 0.925 0.853 0.898

car 0.759 0.797 0.109 0.090 0.861 0.873 0.852 0.878

chair 0.568 0.716 0.187 0.063 0.846 0.911 0.704 0.824

display 0.593 0.752 0.168 0.089 0.884 0.935 0.723 0.851

lamp 0.415 0.625 1.083 0.256 0.764 0.858 0.546 0.752

loudspeaker 0.699 0.807 0.360 0.143 0.856 0.912 0.801 0.883

rifle 0.466 0.745 0.112 0.012 0.789 0.903 0.625 0.851

sofa 0.731 0.809 0.171 0.054 0.886 0.927 0.831 0.886

table 0.569 0.689 0.588 0.058 0.873 0.921 0.703 0.805

telephone 0.785 0.861 0.103 0.017 0.948 0.971 0.866 0.922

vessel 0.592 0.708 0.163 0.053 0.818 0.868 0.730 0.821

mean 0.621 0.749 0.265 0.073 0.854 0.906 0.743 0.846

Table 3. Performance metrics for multi-view reconstruction using 5 random views of objects from categories seen at training time, where

we see that 3D43D achieves consistently better reconstruction.

Figure 4. Reconstructions from categories seen during training time using 5 input views. For each object: (Top row) Input views. (Middle

row) OccNets [19] prediction (orbit of 5 views of the predicted mesh). (Bottom row) 3D43D prediction (orbit of 5 views of the predicted

mesh). We can qualitatively see that 3D43D produces better results than OccNets [19] in terms of high-frequency geometry. Note that

input views and reconstructions are not presented from the shown viewpoint.

on 3 ShapeNet categories: plane, chair and car. We then

report results on the test set of 10 unseen categories. We

train and evaluate our model with 4 views and report the

average IoU across the unseen classes in Tab. 5, where we

show that our novel contributions contribute to improve the

reconstruction accuracy.
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Figure 5. Reconstruction of objects from unseen categories when training OccNets[19] and 3D43D on Cars, Chairs and Airplanes. For

each object: (Top row) Input views. (Middle row) OccNets [19] prediction (orbit of 5 views of the predicted mesh). (Bottom row)

3D43D prediction (orbit of 5 views of the predicted mesh). OccNets [19] commonly map unseen categories to categories seen at training

time. In comparison, 3D43D reconstructions are more accurate and less biased towards training categories. Note that input views and

reconstructions are not shown from the same viewpoint.

IoU ↓Chamfer-L1 Normal Consistency F-score

Unseen category [19] [19]-v 3D43D [19] [19]-v 3D43D [19] [19]-v 3D43D [19] [19]-v 3D43D

(1 view)

bench 0.251 0.291 0.302 0.752 0.323 0.357 0.714 0.733 0.706 0.374 0.426 0.447

cabinet 0.282 0.404 0.502 1.102 0.621 0.529 0.662 0.739 0.759 0.418 0.551 0.647

display 0.117 0.162 0.243 3.213 1.836 1.389 0.546 0.612 0.638 0.197 0.260 0.364

lamp 0.100 0.150 0.223 3.482 2.276 1.997 0.582 0.625 0.618 0.166 0.241 0.340

loudspeaker 0.311 0.405 0.507 1.649 0.860 0.744 0.655 0.731 0.749 0.452 0.552 0.649

rifle 0.155 0.150 0.236 2.465 2.206 0.707 0.539 0.527 0.588 0.255 0.252 0.3737

sofa 0.493 0.552 0.559 0.915 0.399 0.421 0.761 0.799 0.784 0.625 0.688 0.699

table 0.172 0.214 0.313 1.304 0.861 0.583 0.686 0.722 0.731 0.275 0.331 0.461

telephone 0.052 0.155 0.271 1.673 1.062 0.996 0.654 0.682 0.700 0.096 0.256 0.403

vessel 0.324 0.378 0.401 0.849 0.592 0.521 0.648 0.691 0.690 0.463 0.525 0.553

mean 0.226 0.286 0.356 1.740 1.104 0.824 0.645 0.686 0.696 0.332 0.408 0.494

(5 views)

bench 0.288 0.147 0.463 0.508 1.960 0.113 0.729 0.625 0.800 0.421 0.242 0.617

cabinet 0.295 0.312 0.629 0.917 1.273 0.250 0.674 0.655 0.844 0.430 0.458 0.756

display 0.120 0.127 0.409 2.868 3.179 0.428 0.560 0.534 0.770 0.200 0.213 0.558

lamp 0.100 0.138 0.369 3.365 2.653 2.057 0.586 0.623 0.738 0.167 0.224 0.513

loudspeaker 0.315 0.333 0.627 1.460 1.344 0.392 0.660 0.677 0.829 0.457 0.480 0.753

rifle 0.180 0.095 0.498 1.866 2.610 0.115 0.567 0.444 0.760 0.290 0.169 0.655

sofa 0.525 0.356 0.679 0.732 1.445 0.147 0.776 0.663 0.858 0.656 0.508 0.795

table 0.186 0.177 0.455 1.122 1.771 0.255 0.694 0.700 0.827 0.295 0.285 0.609

telephone 0.036 0.131 0.549 1.588 1.457 0.184 0.689 0.592 0.861 0.066 0.226 0.691

vessel 0.347 0.256 0.521 0.683 1.524 0.145 0.661 0.603 0.776 0.489 0.390 0.669

mean 0.239 0.207 0.520 1.511 1.922 0.409 0.660 0.612 0.806 0.347 0.319 0.662

Table 4. Performance metrics for single and multi-view reconstruction when generalizing to unseen object categories after training only on

the car, chair and plane categories.

P P+C P+C+V (3D43D)

IoU 0.453 0.476 0.491

Table 5. Results of our ablation experiments.

5. Conclusions

In this paper, we studied factors that impact the general-

ization of learning-based 3D reconstruction models to un-

seen categories during training. We argued that to general-

ize successfully to unseen classes all these factors need to

be addressed together. We empirically showed that by tak-

ing this into when designing our model, we obtain large im-

provements over state-of-the-art methods when reconstruct-

ing objects of on unseen categories. These improvements in

generalization are a step forward for learned 3D reconstruc-

tion methods, which will enable recent Neural Rendering

approaches [21, 27, 5] to go beyond the constrained sce-

nario of training category-specific models. We believe that

having a clear understanding of these factors and their com-

pound effects will enrich this promising avenue of research.
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