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Abstract

Super-resolution (SR) has achieved great success due

to the development of deep convolutional neural networks

(CNNs). However, as the depth and width of the networks

increase, CNN-based SR methods have been faced with the

challenge of computational complexity in practice. More-

over, most SR methods train a dedicated model for each

target resolution, losing generality and increasing memory

requirements. To address these limitations we introduce

OverNet, a deep but lightweight convolutional network to

solve SISR at arbitrary scale factors with a single model.

We make the following contributions: first, we introduce a

lightweight feature extractor that enforces efficient reuse of

information through a novel recursive structure of skip and

dense connections. Second, to maximize the performance of

the feature extractor, we propose a model agnostic recon-

struction module that generates accurate high-resolution

images from overscaled feature maps obtained from any SR

architecture. Third, we introduce a multi-scale loss func-

tion to achieve generalization across scales. Experiments

show that our proposal outperforms previous state-of-the-

art approaches in standard benchmarks, while maintaining

relatively low computation and memory requirements.

1. Introduction

Single image super-resolution (SISR) is the task of re-

constructing a high resolution image (HR) from its low-

resolution version (LR). As obtaining a HR image from LR

is an ill-posed problem, the model needs to learn the origi-

nal data distribution to produce the most likely solutions.

Convolutional neural networks (CNNs) have recently be-

come the main workhorse to tackle SISR [5]. Thanks to the

increase in capacity of CNNs in depth [23] and width [36],

their performance has greatly improved. Despite their re-

markable performance, most deep networks still have some

drawbacks. Firstly, increase in depth and width has also

raised computational demands and memory consumption.

This makes modern architectures less applicable in practice,

such as in mobile and embedded applications. Secondly, as

the network depth increases, low-level feature information

gradually disappears in the successive non-linear operations

to produce the output. However, these low-level features are

crucial for the network to reconstruct high quality images.

Aside from the aforementioned problems, another de-

sired ability is to upsample images to arbitrary scales using

a single model. Current state-of-the-art SISR models such

as RDN [41], ESPCNN [28] and EDSR [23], only consider

SR at certain integer scale factors (×2,×3,×4) and treat

each super-resolution scale as an independent task. They

then train a different specialized model for each, which is

not practical for mobile applications.

To address these problems, we propose Overscaling Net-

work (OverNet), a novel lightweight method for SISR.

OverNet consists of two main parts: a lightweight feature

extractor and an Overscaling module (OSM) for reconstruc-

tion. The feature extractor follows a novel recursive frame-

work of skip and dense connections to reduce low-level fea-

ture degradation. The OSM is a new inductive bias which

generates accurate SR image by internally constructing an

overscaled intermediate representation of the output fea-

tures. Finally, to solve the problem of reconstruction at arbi-

trary scale factors, we introduce a novel multi-scale loss by

downsampling the output at multiple super resolution fac-

tors and we minimize the reconstruction error in all of them.

Our main contributions can be summarized as follows:

• A lightweight recursive feature extractor, which results in

improved performance over state-of-the-art models, even

those having an order of magnitude more parameters.

2694



• An Overscaling Module (OSM) that generates overscaled

maps from which HR images can be accurately recovered

at arbitrary scales. This module boosts the reconstruction

accuracy efficiently with respect to its number of param-

eters. Additionally, we demonstrate that integrating this

module into existing state-of-the-art models improves on

their original performance.

• A novel multi-scale loss function for SISR, that allows

the simultaneous training of all scale factors using a sin-

gle model. As a result, the model is able to maintain

accurate reconstruction results across scales.

2. Related Work

Recently, deep learning models have dramatically im-

proved the SISR task. Dong et al. [5] first presented SR-

CNN, a CNN to predict super-resolved images. SRCNN

has a large number of operations compared to its depth,

since the network operates by initially upsampling LR im-

ages and subsequently refining them. In contrast to the SR-

CNN, FSCRNN [6] and ESPCN [28] only upsample images

at the output of the network, which leads to a reduction in

the number of operations compared to SRCNN.

Despite the higher capacity of deep neural networks, the

aforementioned methods have settled for shallow models

because of the difficulty in training. VDSR [15] and IR-

CNN [38] improved the performance by increasing the net-

work depth, using stacked convolutions with residual con-

nections. Lim et al. [23] further expanded the network

size and improved the residual block by removing batch

normalization layers. Ahn et al. [1] proposed a cascading

residual network using ResNet blocks [9] to learn the re-

lationship between LR input and HR output. Later, Ledig

et al. [20] introduced the SRResNet and further improved

in [34] and [33] by introducing dense connections. More

recently, Zhang et al. [41] and Liu et al. [24] also used

dense and residual connections in RDN and RFANet to

utilize information from all the feature hierarchy. DBPN

[8] and SRFBN [22] architectures comprise of a series of

up and down sampling layers densely connected with each

other. These methods achieved significant improvement

over conventional SR methods and indicate the effective-

ness of residual learning.

Another issue of deep learning-based SR is how to re-

duce the parameters and number of operations to make it

effective in mobile applications. For instance, DRCN [16]

was the first to apply recursive algorithm to SISR to re-

duce the number of parameters by reusing them multiple

times. Tai et al. [31] improved DRCN by combining the re-

cursive and residual network schemes in order to achieve

better performance with even fewer parameters. They also

introduced a deep memory network to solve the problem

of long-term dependencies [32]. On the other hand, Lap-

SRN [18] employs a pyramidal framework to increase the

image size gradually. By doing so, LapSRN effectively

performs SR on extremely low-resolution cases. More re-

cently, Muqeet et al. [25] proposed stacked multi-attention

blocks to further improve the performance. However, these

methods use very deep networks to compensate for the loss

of parameters and hence, they require heavy computing re-

sources. Therefore, we focus on developing a lightweight

model to maximize the performance of existing networks

as well as minimize their computational cost.

One of the most important stages of SISR is reconstruc-

tion, which consists of generating HR images based on

high-level features extracted from a low-dimensional space.

Interpolation is a commonly used method in SR networks,

such as SRCNN [5], VDSR [15] and DRRN [31], to re-

size the LR image to the target size as the input of a CNN

model for SR reconstruction. However, computational op-

erations are greatly increased due to the large input image

size. Thus, FSRCNN [6] and SRDenseNet [20] directly

adopted the LR image as input, in which a transposed con-

volution layer was added to implement the final upsampling

reconstruction [33]. This method greatly reduces unnec-

essary computational overhead. Furthermore, EPSCN [28]

proposed a method called pixelshuffle [2] to overcome the

problem of the checkerboard effect in transposed convolu-

tion. Pixelshuffle has been widely used in recent SR models,

such as EDSR [23], WDSR [36] and RCAN [40]. However,

these methods cannot manage multi-scale training.

Few works tackle SR at different scale factors, and those

that do treat the problem as independent tasks, i.e. a model

is trained for each scale. Lim et al. [23] proposed the first

multi-scale SR model, which has different image processing

blocks and upsampling modules for each integer scale fac-

tor. Later, Li et al. [21] proposed a multi-scale residual net-

work. They use multi-path convolution layers with differ-

ent kernel sizes to extract multi-scale spatial features. Grm

et al. [7] proposed to upsample the image progressively by

×2 using a series of so-called SR modules and compute the

loss of generated SR results by each module. Thus, these

methods require vast amounts of computational resources.

Recently, Meta-SR [12] introduced an upsampling module

based on meta-learning to solve SR at arbitrary scale fac-

tors with a single model through a weight prediction tech-

nique. However, this method must predict a large number

of convolution weights for each target pixel, the prediction

is inefficient, and the results may be unstable [35].

3. Proposed Overscaling Network

This section describes the main components of our ar-

chitecture as shown in Figure 1, and the novel loss function.

Problem formulation. Algorithm 1 formulates the main

pipeline steps. Given a set of HR images and their down-

scaled versions {IHR, ILR}, the goal of SISR is to find a
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Figure 1: Demonstration of our proposed overscaling network with short and long skip connections. As the maximum scale factor in this

particular example is set to N = 4, the required overscaling is ×5.

Algorithm 1 Overscaling network forward step. Given a LR

image and a set of output scales, OverNet produces an HR re-

construction for each scale. Learnable parameters are omitted to

improve readability.

function OVERNET(LR image ILR, target scales S)

# Compute features with the CNN

h = H(ILR)
# Overscaling module

ÎHR = O(h)
# Output

for s in S do

ÎHR
s = bicubic↓(Î

HR, scale = s)
end for

return {ÎHR
s , s ∈ S}

end function

function F : LR → HR that maps LR images to their orig-

inal HR version. The problem is ill-posed, since there are

multiple possible HR images corresponding to a single LR

image. However, it is possible to learn the most likely re-

construction by parametrizing F over a set of parameters θ,

and finding the most likely θ given some criterion L:

θ
∗ = argmin

θ

∑
L(F(ILR,θ), IHR) (1)

We chose L to be the L1 distance, since we empirically

obtained superior PSNR results compared to L2. In this

work F is composed of two parts: (i) a feature extractor H:

h = H(ILR,θh) (2)

with parameters θh, and (ii) the overscaling module O:

ÎHR = O(h,θo) (3)

with θo the parameters used in this operation, and ÎHR the

reconstructed image. These two parts are described next.

3.1. Feature Extractor

The feature extractor computes useful representations

of the LR patch in order to infer its HR version. Con-

cretely, we propose a recursive structure based on Residual

Blocks (RBs) assembled into Local Dense Groups (LDGs)

and LDGs into Global Dense Group (GDG), see Figure 1.

Residual blocks. We use a modified version of WDSR [36]

with wide low-rank convolutions instead of using standard

residual blocks [41]. These convolutions widen the acti-

vation space before the non-linearity to let more informa-

tion pass through it and lose less detail, while using the

same amount of computation as standard 3 × 3 residual

blocks. In order to make the network focus on more infor-

mative features, we exploit the inter-dependencies among

feature channels using squeeze-and-excitation (SE) opera-

tions [14] after these convolutions, see Figure 1.

Inspired by [29, 30], the model learns a scalar multi-

plier λ to balance the amount of information that should be

carried by the identity and activation operations within the

residual blocks (RBs) of the network. Let xi and xo be the

input and output vectors of the k-th RB, and WA the wide

activation operation [36]. Then, the RB proceeds as:

xo = λoSE(WA(xi)) + λixi (4)

Local and global dense groups. RBs are grouped into the

so-called Local Dense Groups (LDGs). The input of a RB

is concatenated with the output of the all the previous RBs

in the group and merged with a 1×1 convolution. This re-

cursion is repeated for all RBs within the LDG. In this way,

we gather all local information progressively by 1×1 con-

volution layers.

To increase the network capacity, a similar recursion is

applied to the Global Dense Group (GDG), but this time

incorporating skip connections between LDGs. We repeat

this procedure while integrating the recursive concatena-

tions through the LDGs into a single output. The output
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of each LDG is concatenated to the input of the next one.

In order to facilitate access to local information, the final

output of the network receives the concatenation of the out-

puts of all the LDGs. Therefore, the model incorporates

features from multiple layers. This strategy makes informa-

tion propagation efficient due to the multi-level represen-

tation and many shortcut connections. Inspired by Mem-

Net [32], we then introduce a 1×1 convolutional layer to

adaptively merge the output information, as directly using

these concatenated features would greatly increase compu-

tational complexity. The output of these hierarchical fea-

tures can be formulated as

fD = conv1×1([f0, ..., fD−1]) (5)

where [f0, ..., fD−1] refers to the concatenation of feature

maps produced by LDGs.

To make sure that no information is lost before the recon-

struction step, we incorporate a long-range skip connection

to grant access to the original information, and encourage

back-propagation of gradients from the output of the fea-

ture extractor to the first 3 × 3 convolution layer. We also

include a global average pooling followed by a 1×1 convo-

lution, to fully capture channel-wise dependencies from the

aggregated information. The final output before the recon-

struction step is then,

h = λ0fD + λ1σ(conv1×1(GAP(conv3×3(I
LR)))) (6)

where σ denotes the ReLU activation, GAP denotes global

average pooling, and λ0 and λ1 are learned parameters.

3.2. Overscaling Module

In this work we introduce a new inductive bias in SISR

architectures so as to generate images that are more accurate

and present fewer artifacts. We hypothesize that, since over-

scaling produces multiple values for the same pixel, these

values act as an ensemble of predictions thus reducing noise

when combined to produce the final image.

Let us consider N the maximum scale factor addressed

by the network. We first generate an intermediate repre-

sentation of the final image consisting of overscaled maps

HOHR, with an overscale factor (N+1) times larger. Thus,

given the features h extracted from ILR, we use a 3×3 con-

volutional layer followed by the strided sub-pixel convolu-

tion proposed in [2] to upscale the features h to HOHR:

HOHR = pixelshuffle(conv3×3(h)) (7)

To obtain the final output of the overscaling module, we

further include a second long-range skip connection from

the original ILR image. The final HR image is obtained by

adjusting the overscaled maps and incorporating them into

the naı̈ve upscaling of the original LR image:

ÎHR = bicubic↓(conv3×3(H
OHR)) + bicubic↑(ILR)

(8)

Hence, we could think of the whole network as learn-

ing how to refine or correct a naı̈ve bicubic upscaling of the

low-resolution input, in order to bring it closer to the actual

high-resolution counterpart. Since the final ÎHR images are

obtained with an efficient non-parametric interpolation, we

are able to produce multiple scales with negligible compu-

tational cost, and only using differentiable operations.

3.3. Multi­Scale Loss

We propose the minimization of a multi-scale loss to op-

timize the network. We choose a finite set of scale factors

S = {s1 . . . sn}, all within the interval of scales targeted

by the network. Once the network has reconstructed the

HR image, images at the target scales are obtained through

a bank of bicubic interpolators, ÎHR
s = bicubic↓(Î

HR, s).
Then, we minimize the following loss function:

L =
∑

s∈S

|ÎHR

s − bicubic↓(I
HR, s)| (9)

Training with this multi-scale loss at different target

scales simultaneously provides additional supervision to the

model, compared to a single-scale training. As a result, the

model is enforced to learn how to generate highly represen-

tative overscaled maps, from which HR images at arbitrary

scales can be recovered accurately, hence enforcing the gen-

eralization capability of the network across scales.

4. Experimental Results

Datasets and metrics. We use the DIV2K dataset for train-

ing, a high-quality image dataset containing 800 images for

training, 100 for validation and 100 for testing. Several

benchmark datasets are used for testing, namely Set5 [4],

Set14 [37], B100 [3], and Urban100 [13]. SR results are

evaluated with two commonly used metrics: PSNR (peak-

to-peak signal-to-noise ratio) and SSIM (structural similar-

ity index), on the Y channel of the YCbCr space.

Degradation models. To comprehensively illustrate the ef-

ficacy of the proposed method, three degradation models

are used to simulate LR images, following [38, 39, 41].

The first one, denoted by BI, consists of generating LR

images by bicubic-downsampling ground truth HR images

with ×2, ×3, ×4. The second one, denoted by DB, first

performs bicubic downsampling on HR images with ×3,

and then blurs the images with a Gaussian kernel of size

7×7 and standard deviation 1.6. Finally, we further pro-

duce LR images in a third challenging way, denoted by DN,

by carrying out bicubic downsampling followed by additive

Gaussian noise, with noise level of 30.

Implementation details. We denote our original model as

OverNet and further introduce OverNet w/o OSM (Over-

Net without overscaling module). We used 64 × 64 RGB

input patches from the LR images for training. LR patches
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Table 1: Effects of skip connections (SCs) in local and global

dense groups (LDG, GDG) measured on Urban100 with ×3. The

best result is highlighted.

Config 1 2 3 4

SCs in LDGs × X × X

SCs in GDG × × X X

#Params 695K 806K 732K 943K

PSNR 28.23 28.21 28.29 28.37

were sampled randomly and augmented with random hor-

izontal flips and 90◦ rotation. The number of LDGs and

RBs was set to 3 in all experiments. We trained our models

with the ADAM optimizer [17]. The mini-batch size was

set to 64, and the learning rate to the maximum convergent

value 10−3, applying weight normalization in all convolu-

tional layers [36]. The learning rate was decreased by half

every 2×105 back-propagation iterations. We implemented

our networks using the PyTorch framework [26] and trained

them on NVIDIA 1080 Ti GPUs.

4.1. Ablation Studies

To investigate the performance behaviour of the pro-

posed methods we first show how skip connections inside

the proposed local and global dense groups affect the per-

formance of OverNet. Next, we analyze the effect of OSM

and the multi-scale loss.

Feature extractor ablation. Table 1 presents the ablation

study on the effect of skip connections (SCs) inside the lo-

cal and global dense groups (LDG, GDG). In this work, SCs

contain concatenation and 1×1 convolutions. The small

changes in number of parameters between columns is due

to the removal of SCs with 1×1 convolutions.

It can be observed that the model which used SCs only in

GDG attains better performance than the one without SCs

(config 1 which is ResNet+OSM) because the short connec-

tions inside the GDG effectively carry the information from

intermediate to higher layers. Furthermore, by gathering all

features before the upscaling module, the model can better

leverage multi-level representations.

On the other hand, as discussed in [10], multiplicative

manipulations such as 1×1 convolutions on the shortcut

connection can hamper information propagation, and com-

plicate optimization. Similarly, SCs in LDGs behave as

shortcut connections inside the residual blocks. Thus, it is

natural to expect performance degradation when the global

SCs are deactivated. This is because the global SCs ease

the information propagation while the local connections are

being learned. Therefore, when OverNet uses SCs in both

LDGs and GDG, it outperforms all three models.

In detail, information propagates globally via SCs used

in GDG, and information flows in the LDGs are fused with

the ones that come through global connections. By doing

so, information is transmitted by multiple shortcuts and thus

mitigates the vanishing gradient problem: the advantage of

multi-level representation is leveraged by the SCs in GDG,

which help the information to propagate to higher layers.

Effect of the OSM across scales. Here we analyze the

benefits of incoporating the OSM module, and also explore

the influence of different interpolation methods on the re-

construction. We run the following experiments: (i) di-

rectly using pixelshuffle to generate the images without

overscaling feature maps, followed by bicubic interpolation

to downscale to arbitrary scales; (ii) downscaling with bi-

linear interpolation the overscaled feature maps produced

by pixelshuffle and (iii) doing the same as (ii) with bicu-

bic interpolation. As shown in Table 2, superior results are

achieved by a large margin when the proposed overscaling

method is applied. These experiments suggest that, contrary

to common practice in the field, the addition of overscaling

strongly increases reconstruction accuracy. Best results are

achieved using OSM with bicubic interpolation, which in

turn yields better results than bilinear.

In addition, we compare our results with Meta-

RDN [12], the only method in the literature (to our knowl-

edge) able to carry out SISR at non-integer scales. Meta-

RDN is a heavier state-of-the-art model with 22M param-

eters. For fair comparison, we trained Meta-RDN by re-

placing its meta-upscale module with OSM (RDN-OSM),

while applying their original training settings. RDN-OSM

achieves better or comparable performance.

OSM across architectures. The aim of this section is to

demonstrate that the benefits of our OSM hold across archi-

tectures. To this end, we use state-of-the-art networks in-

cluding CARN [1], EDSR[23], RDN[41], Meta-RDN [12]

and RCAN[40] as references. We replaced their typical

upsample modules with our overscaling module (CARN-

OSM, EDSR-OSM, RDN-OSM and RCAN-OSM in Ta-

ble 3 and trained them on DIV2K for all scale factors while

applying their original training settings.

It can be observed that all the methods with OSM have

higher PSNR than the corresponding baselines at all scale

factors. This shows that OSM is robust and orthogonal to

the feature extractor chosen, and it increases PSNR.

Generalization across scales. By construction, the over-

scaling factor in our architecture is always (N+1) when tar-

geting a maximum scale of N , c.f. Section 3.2. The follow-

ing experiments investigate the generalization capability of

models that target a maximum scale N across lower scales

M ≤ N . To this end, we trained models for N ∈ {2, 3, 4}
and evaluated them across scales. Table 4 illustrates the ex-

perimental results. It can be observed that models trained

to target larger scales yield better PSNR scores for all scale

factors. This demonstrates the generalization capabilities of

the proposed architecture across scales, as it is not necessary

to train a dedicated model for each scale. Instead, training a

larger scale seems to be always beneficial for lower scales.
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Table 2: PSNR results of different OSM upscaling methods trained for arbitrary scales. The test dataset is B100. Best results are high-

lighted, second best underlined.

Experiment
Scale

×1.1 ×1.2 ×1.3 ×1.4 ×1.5 ×1.6 ×1.7 ×1.8 ×1.9 ×2.0

Pixelshuffle 42.40 39.71 38.10 36.75 35.60 34.70 33.96 33.30 33.65 32.22

OSM-bilinear 42.63 39.89 38.15 36.83 35.70 34.78 34.05 33.37 32.76 32.31

OSM-bicubic 42.74 39.95 38.19 36.87 35.74 34.80 34.10 33.42 32.81 32.34

Meta-RDN 42.82 40.40 38.28 36.95 35.86 34.90 34.13 33.45 32.86 32.35

OSM-RDN 42.93 40.48 38.42 37.06 36.01 35.02 34.25 35.53 32.95 32.46

×2.1 ×2.2 ×2.3 ×2.4 ×2.5 ×2.6 ×2.7 ×2.8 ×2.9 ×3.0

Pixelshuffle 31.60 31.22 30.75 30.50 30.27 29.95 29.73 29.42 29.17 29.14

OSM-bilinear 31.71 31.29 30.84 30.55 30.37 30.02 29.77 29.52 29.30 29.26

OSM-bicubic 31.75 31.34 30.86 30.65 30.42 30.11 29.83 29.64 29.36 29.30

Meta-RDN 31.82 31.41 31.06 30.62 30.45 30.13 29.82 29.67 29.40 29.30

RDN-OSM 31.75 31.46 31.10 30.60 30.48 30.15 29.79 29.71 29.35 29.38

×3.1 ×3.2 ×3.3 ×3.4 ×3.5 ×3.6 ×3.7 ×3.8 ×3.9 ×4.0

Pixelshuffle 28.78 28.70 28.50 28.30 28.14 28.10 28.72 27.74 27.60 27.65

OSM-bilinear 28.81 28.77 28.62 28.49 28.23 28.22 28.90 27.82 27.79 27.75

OSM-bicubic 28.90 28.81 28.66 28.51 28.26 28.25 28.96 27.84 27.83 27.80

Meta-RDN 28.87 28.79 28.68 28.54 28.32 28.27 28.04 27.92 27.82 27.75

RDN-OSM 28.96 28.70 28.80 28.64 28.41 28.23 28.00 27.97 27.89 27.83

Table 3: Average PSNR of SoA methods using OSM instead of their typical upsampling module. The best results are highlighted.

Dataset Scale CARN[1] CARN-OSM EDSR[23] EDSR-OSM RDN[41] Meta-RDN[12] RDN-OSM RCAN[40] RCAN-OSM

Set5

×2

×3

×4

37.76

34.29

32.13

37.90

34.35

32.15

38.20

34.76

32.62

38.28

34.80

32.66

38.24

34.71

32.47

-

-

-

38.31

34.77

32.58

38.27

34.74

32.63

38.36

34.81

32.70

Set14

×2

×3

×4

33.52

30.29

28.60

33.60

30.36

28.68

34.02

30.66

28.94

34.08

30.71

29.01

34.01

30.57

28.81

34.04

30.55

28.84

34.11

30.63

28.91

34.12

30.65

28.87

34.19

30.74

28.93

Urban100

×2

×3

×4

31.92

28.06

26.07

32.01

28.12

26.13

33.10

29.02

26.86

33.15

29.09

26.91

32.89

28.80

26.61

-

-

-

32.96

28.91

26.70

33.34

29.09

26.82

33.40

29.15

26.90

Table 4: Average PSNR to show the performance of OverNet

across scales. The test dataset is Set5. Best results are highlighted.

Overscaling

factor
Parameters

Scales

×2 ×3 ×4

×3 927K 38.11 – –

×4 943K 38.12 34.49 –

×5 1079K 38.14 34.54 32.32

×8 955K 38.15 34.56 32.36

Table 5: Effect of multi-scale loss. OverNet-S uses single-scale

loss, OverNet-M multi-scale loss. Best results are highlighted.

Dataset
OverNet-S OverNet-M

×2 ×3 ×4 ×2 ×3 ×4

Set5 38.11 34.49 32.32 38.23 34.60 32.45

B100 32.24 29.17 27.67 32.34 29.30 27.80

Urban100 32.44 28.37 26.31 32.59 28.45 26.42

Moreover, the cost to pay in terms of additional parameters

is low. Note that ×4 and ×8 are composed of multiple con-

secutive ×2 operations, thus introducing less parameters.

Overscaling to higher scales slightly improves the PSNR at

the expense of more computation. For the rest of experi-

ments, we overscale to N + 1 since it still provides signifi-

cant improvement at slightly higher computational cost.

Effect of multi-scale loss. Multi-scale learning can pro-

cess multiple scales with a single trained model, while most

of the state-of-the-art algorithms require to train separate

models for each supported scale. This property targets real-

world applications, where the output size is usually fixed

but the input LR scale can vary. Moreover, the multi-scale

loss acts as a regularizer, enforcing the generalization of the

network across scales and improving performance. As a re-

sult, the model is able to maintain accurate reconstruction

results across scales. Table 5 shows experimental results,

where the model trained with multi-scale loss achieves bet-

ter performance with a large margin.

4.2. Comparison with State­of­the­art Methods

4.2.1 Results with BI degradation models

We compare the proposed OverNet with nine lightweight

state-of-the-art SISR methods [1, 11, 15, 16, 19, 22, 25, 31,
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Table 6: Average PSNR/SSIM values for models with the same order of magnitude of parameters. Performance is shown for scale factors

×2, ×3 and ×4 with BI degradation. The number of parameters and multi-adds of each method are indicated under their name. The best

performance is shown highlighted and the second best underlined.

Dataset Scale
VDSR[15]

0.7M / 0.6T

DRCN[16]

1.7M / 18T

LapSRN[19]

0.8M / 30G

DRNN[31]

0.3M / 6.8T

MemNet[32]

0.7M / 2.6T

SRFBN S[22]

0.3M / 50G

OISR LF s[11]

1.4M / 0.26T

CARN[1]

1.6M / 0.2T

MAFFSRN-L[25]

0.8M / 0.1T

OverNet w/o OSM

0.9M / 0.2T

OverNet

0.9M / 0.2T

Set5

×2

×3

×4

37.53/0.9587

33.66/0.9213

31.35/0.8838

37.63/0.9588

33.82/0.9226

31.53/0.8838

37.52/0.9591

33.82/0.9227

31.54/0.886

37.74/0.9591

34.03/0.9244

31.68/0.8888

33.78/0.9597

34.09/0.9245

31.74/0.8893

37.78/0.9156

34.20/0.9255

31.98/0.8923

38.02/0.9605

34.39/0.9272

32.14/0.8947

37.76/0.9590

34.29/0.9255

32.13/0.8932

38.07/0.9607

34.45/0.9267

32.20/0.8953

38.08/0.9609

34.43/0.9265

32.23/0.8954

38.11/0.9610

34.49/0.9267

32.32//0.8956

Set14

×2

×3

×4

33.05/0.9127

29.78/0.8318

28.02/0.7678

33.06/0.9121

29.77/0.8314

28.03/0.7673

32.99/0.9124

29.79/0.8320

28.09/0.7994

33.23/0.9136

29.96/0.8349

28.21/0.7720

33.28/0.9142

30.00/0.8350

28.26/0.7723

33.35/0.9156

30.10/0.8372

28.45/0.7779

33.62/0.9178

30.35/0.8426

28.63/0.7819

33.52/0.9166

30.29/0.8407

28.60/0.7806

33.59/0.9177

30.40/0.8432

28.62/0.7822

33.64/0.9176

30.41/0.8433

28.64/0.7823

33.71/0.9179

30.47/0.8436

28.71/0.7826

B100

×2

×3

×4

31.90/0.8960

28.83/0.7976

27.29/0.7252

31.85/0.8942

28.80/0.7963

27.24/0.7233

31.80/0.8949

28.82/0.7973

27.32/0.7264

32.05/0.8973

28.95/0.8004

37.38/0.7284

32.00/0.8970

28.96/0.8010

27.44/0.7313

32.20/0.9000

29.11/0.8085

27.60/0.7369

32.08/0.8984

28.97/0.8025

27.44/0.7325

32.09/0.8978

29.06/0.8034

27.58/0.7349

32.23/0.9005

29.13/0.8061

27.59/0.7370

32.18/0.8988

29.09/0.8033

27.60/0.7371

32.24/0.9007

29.17/0.8063

27.67/0.7373

Urban100

×2

×3

×4

30.77/0.9141

27.14/0.8279

25.18/0.7525

30.76/0.9133

27.15/0.8277

25.14/0.7511

30.41/0.9101

27.07/0.8271

25.21/0.7553

31.23/0.9188

27.53/0.8377

25.44/0.7638

31.31/0.9195

27.56/0.8376

25.50/0.7630

31.41/0.9207

26.41/0.8064

24.60/0.7258

32.21/0.9290

28.24/0.8544

26.17/0.7888

31.92/0.9256

28.06/0.8493

26.07/0.7837

32.38/0.9308

28.26/0.8552

26.16/0.7887

32.35/0.9305

28.27/0.8553

26.22/0.7920

32.44/0.9311

28.37/0.8572

26.31/0.7923

Table 7: Average PSNR/SSIM for models with the same order of magnitude of parameters (RDN included as a high-capacity reference

model). Scores shown for scale factor ×3 using BD and DN degradation models. Best performance is highlighted, second best underlined.

DB Degrad. Bicubic SPMSR[27] SRCNN[5] FSRCNN[6] VDSR[15] IRCNN G[38] IRCNN C[38] SRMD(NF)[33] OverNet w/o OSM OverNet RDN[41]

Set5
BD

DN

28.34/0.8161

24.14/0.5445

32.21/0.9001

-/-

31.75/0.8988

28.10/0.7783

26.25/0.8130

24.24/0.6992

33.78/0.9198

27.81/0.7901

33.38/0.9182

24.85/0.7205

29.55/0.8246

26.18/0.7430

34.09/0.9242

27.74/0.8026

34.50/0.9270

28.37/0.8166

34.59/0.9287

28.49/0.8200

34.58/0.9280

28.47/0.8151

Set14
BD

DN

26.12/0.7106

23.14/0.4828

28.97/0.8205

-/-

28.72/0.8024

25.55/0.6610

25.63/0.7312

23.10/0.5869

29.90/0.8369

25.92/0.6786

29.73/0.8292

23.84/0.6091

27.33/0.7135

24.68/0.6300

30.11/0.8304

26.13/0.6974

30.35/0.8307

26.56/0.7088

30.46/0.8310

26.62/0.7116

30.53/0.8447

26.60/0.7101

B100
BD

DN

26.02/0.6733

22.94/0.4461

28.13/0.7740

-/-

27.97/0.7921

25.31/0.6351

24.88/0.6850

23.70/0.5856

28.70/0.8003

25.60/0.6455

28.65/0.7922

23.89/0.5688

26.46/0.6572

24.52/0.5850

28.98/0.8009

25.64/0.6495

29.06/0.8043

25.89/0.6566

29.13/0.8060

25.95/0.6602

29.23/0.8079

25.93/0.6573

Urban100
BD

DN

23.20/0.6661

21.63/0.4701

25.84/0.7856

-/-

25.50/0.7812

23.40/0.6590

22.14/0.6815

21.15/0.5682

26.80/0.8191

24.01/0.6802

26.81/0.8189

21.96/0.6018

24.89/0.7172

22.63/0.6205

27.50/0.8370

24.28/0.7092

28.16/0.8471

24.84/0.7321

28.24/0.8485

24.93/0.7365

28.46/0.8582

24.92/0.7364

32]. We also train OverNet by replacing its OSM with the

typical pixelshuffle upsampling (OverNet w/o OSM). For

fair comparison, we train our models individually for each

scale factor, including ×2, ×3 and ×4. We test our models

on different benchmarks with PSNR and SSIM.

Table 6 shows quantitative evaluation results, including

the number of parameters and the number of multiplications

and additions (multi-adds), for a more informative compar-

ison (under the method name). Multi-adds were calculated

with 1280×720 SR images at all scales. Note that, in this

table we only compare models that have a roughly similar

number of parameters as ours1. OverNet exceeds all the pre-

vious methods on numerous benchmark dataset. OverNet

w/o OSM also achieves comparable or better results. Re-

sults show that both OSM and the proposed feature extrac-

tor independently increase PSNR when compared to other

SR methods. Finally, combining the proposed feature ex-

tractor and OSM together further increases performance.

In addition, we present qualitative results in Figure 2.

Our proposal produces high-quality image structures. For

image Img 073, we observe that, unlike OverNet, most

of the compared methods fail to recover the definition and

orientation of the lines of the blue building. For image

Img 076, the texture of the predicted SR images for all

compared methods contains blur or aliasing. In contrast,

our proposal partially recovers the brick pattern, resulting

in a more faithful SR image.

1Additional analyses and qualitative results can be found as supplemen-

tary material.

HR Bicubic VDSR MemNet

Img 073 Urban100 DRCN SRFB CARN Ours

HR Bicubic VDSR MemNet

img 076 Urban100 DRCN SRFBN CARN Ours

Figure 2: Visual results of BI degradation model for ×4.

4.2.2 Results with BD and DN degradation models

Following [41], we show the results obtained after applying

BD and DN degradation models, and compare to seven SR

methods [5, 6, 15, 27, 33, 38], see Table 7. We included

the RDN [41] high-capacity model for reference. Because

of the mismatch of degradation setups, SRCNN [5], FS-

RCNN [6], and VDSR [15] have been re-trained for both

BD and DN. Our models achieve the best PSNR and SSIM

scores over other SR methods with similar capacity. It can

be observed that RDN performs slightly better in some BD
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HR Bicubic SRCNN VDSR

Img 063 B100 (BD) IRCNN SRMD RDN Ours

HR Bicubic SRCNN FSCRNN

Img 095 B100 (DN) VDSR IRCNN G SRMD ours

Figure 3: Visual results of BD and DN degradation models for ×3.

OISR (CVPR19)

0 10M 20M 30M 40M

27.3

27.4

27.5

27.6

27.7

27.8

27.9

VDSR (CVPR16)

LapSRN (CVPR17)

DRRN (CVPR17)
MemNet (ICCV17)

SRFBN_S (CVPR19)

DRCN (CVPR16)

SeINet (CVPRW17)

RDN (CVPR18)

RCAN (ECCV2018)

Meta_RDN (CVPR19)

MSRN (ECCV18)

EDSR (CVPR17)

D-DBPN (CVPR18)

RFANet (CVPR2020)
OSM_RDN

OSM_EDSR

OSM_RCAN

P
S
N

R

Number of Parameters

OverNet SRFB (CVPR19)

CARN (ECCV18)

MAFFSRN-L(ECCVW20)

Figure 4: Comparative capacity and performance of state-of-the-

art SISR models. The red stars represents our methods.

datasets but not in DN datasets. Thanks to OSM, OverNet

is able to reduce the DN degradation to obtain better results

when compared to RDN. It is worth noting that while RDN

has 22M parameters, OverNet only has 0.9M parameters.

In Figure 3 we show two sets of visual results with the

BD and DN degradation models from the standard bench-

mark datasets. For BD degradation, other methods were

unable to remove blurring artifacts. In contrast, OverNet

could alleviate distortions and generate more accurate de-

tails in the SR images. Regarding DN degradation, we ob-

serve that it is difficult to recover the details with the other

methods. However, our method can deliver good results by

removing more noise and enhancing details.

4.2.3 Memory complexity and running time analysis

In Figure 4, we compare OverNet against various bench-

mark algorithms in terms of network parameters and re-

Table 8: Average running time comparison on Urban100 for ×4.

Model Parameters Running Time (s) PSNR

MemNet 0.6M 0.481 25.54

EDSR 43M 1.218 26.64

SRFBN S 0.4M 0.006 25.71

D-DBPN 10M 0.015 26.38

RDN 22M 1.268 26.61

Meta-RDN 22M 1.350 26.65

Ours 0.9M 0.004 26.31

construction PSNR, using the B100 dataset with a scale of

×4. OverNet achieves the best SR results among all the

lightweight SR networks with fewer parameters. In com-

parison with the networks with a large number of parame-

ters, our proposed OverNet achieves better or competitive

results. This demonstrates our method can well balance the

number of parameters and the reconstruction performance.

We also replace the original upsample modules from dif-

ferent SR methods with OSM: RDN, EDSR and RCAN

(RDN+OSM, EDSR+OSM and RCAN+OSM). It can be

observed that all the methods with OSM have higher PSNR

than the corresponding baselines.

We compare the running time of OverNet on Urban100

with five other state-of-the-art networks, namely Mem-

Net [32], EDSR [23], SRFBN [22], D-DBPN [8], and Meta-

RDN [12], using a scale factor ×4. The running time of

each network is evaluated using its official code, on the

same machine with a NVIDIA 1080 Ti GPU. OverNet is

the fastest (see Table 8), reflecting its efficiency.

5. Conclusion

We introduced OverNet, a novel efficient architecture

for image super-resolution at arbitrary scales using a sin-

gle model. OverNet outperforms state-of-the-art algorithms

with a reduced number of parameters and low computa-

tional requirements. The main contributions are: (i) a

lightweight feature extractor that enhances the flow of in-

formation to preserve details; (ii) an Overscaling Module

that helps to generate accurate SR images at different scal-

ing factors, and (iii) a multi-scale loss that improves training

compared to dedicated single-scale models. Thanks to the

OSM, we can train a single model for super-resolution at

arbitrary scale factors. We proved that the overscaling head

can be flexibly applied to other SR models by simply re-

placing their upsampling module, thus improving their orig-

inal performance. The provided evidence suggests that the

proposed overscaling method may help with other low-level

image restoration tasks, such as denoising and dehazing.
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using cascaded super-resolution and identity priors. IEEE

Transactions on Image Processing, 29(1):2150–2165, 2019.

[8] M. Haris, G. Shakhnarovich, and N. Ukita. Deep back-

projection networks for super-resolution. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 1664–1673, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European conference on com-

puter vision, pages 630–645. Springer, 2016.

[11] X. He, Z. Mo, P. Wang, Y. Liu, M. Yang, and J. Cheng. Ode-

inspired network design for single image super-resolution.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1732–1741, 2019.

[12] X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, and J. Sun. Meta-

sr: A magnification-arbitrary network for super-resolution.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1575–1584, 2019.

[13] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5197–5206, 2015.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016.

[15] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 1646–1654, 2016.

[16] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive con-

volutional network for image super-resolution. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 1637–1645, 2016.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. ICLR, 2014.

[18] W. Lai, J. Huang, N. Ahuja, and M. Yang. Fast

and accurate image super-resolution with deep laplacian

pyramid networks. corr abs/1710.01992. arXiv preprint

arXiv:1710.01992, 2017.

[19] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep

laplacian pyramid networks for fast and accurate super-

resolution. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 624–632, 2017.

[20] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,

A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.

Photo-realistic single image super-resolution using a gener-

ative adversarial network. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

4681–4690, 2017.

[21] J. Li, F. Fang, K. Mei, and G. Zhang. Multi-scale residual

network for image super-resolution. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

517–532, 2018.

[22] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu. Feed-

back network for image super-resolution. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3867–3876, 2019.

[23] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced

deep residual networks for single image super-resolution. In

Proceedings of the IEEE conference on computer vision and

pattern recognition workshops, pages 136–144, 2017.

[24] J. Liu, W. Zhang, Y. Tang, J. Tang, and G. Wu. Residual

feature aggregation network for image super-resolution. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 2359–2368, 2020.

[25] A. Muqeet, J. Hwang, S. Yang, J. H. Kang, Y. Kim, and S.-

H. Bae. Ultra lightweight image super-resolution with multi-

attention layers. arXiv preprint arXiv:2008.12912, 2020.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

2702



[27] T. Peleg and M. Elad. A statistical prediction model based

on sparse representations for single image super-resolution.

IEEE transactions on image processing, 23(6):2569–2582,

2014.

[28] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single

image and video super-resolution using an efficient sub-

pixel convolutional neural network. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1874–1883, 2016.

[29] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway

networks. arXiv preprint arXiv:1505.00387, 2015.

[30] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

[31] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep

recursive residual network. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

3147–3155, 2017.

[32] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent

memory network for image restoration. In Proceedings of

the IEEE international conference on computer vision, pages

4539–4547, 2017.

[33] T. Tong, G. Li, X. Liu, and Q. Gao. Image super-resolution

using dense skip connections. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4799–

4807, 2017.

[34] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and

C. Change Loy. Esrgan: Enhanced super-resolution gener-

ative adversarial networks. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 0–0, 2018.

[35] Z. Wang, J. Chen, and S. C. Hoi. Deep learning

for image super-resolution: A survey. arXiv preprint

arXiv:1902.06068, 2019.

[36] J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and

T. Huang. Wide activation for efficient and accurate image

super-resolution. arXiv preprint arXiv:1808.08718, 2018.

[37] R. Zeyde, M. Elad, and M. Protter. On single image scale-up

using sparse-representations. In International conference on

curves and surfaces, pages 711–730. Springer, 2010.

[38] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn

denoiser prior for image restoration. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3929–3938, 2017.

[39] K. Zhang, W. Zuo, and L. Zhang. Learning a single convo-

lutional super-resolution network for multiple degradations.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3262–3271, 2018.

[40] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image

super-resolution using very deep residual channel attention

networks. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 286–301, 2018.

[41] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Resid-

ual dense network for image super-resolution. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2472–2481, 2018.

2703


