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Abstract

This paper introduces a novel method for self-supervised

video representation learning via feature prediction. In con-

trast to the previous methods that focus on future feature

prediction, we argue that a supervisory signal arising from

unobserved past frames is complementary to one that orig-

inates from the future frames. The rationale behind our

method is to encourage the network to explore the tempo-

ral structure of videos by distinguishing between future and

past given present observations. We train our model in a

contrastive learning framework, where joint encoding of fu-

ture and past provides us with a comprehensive set of tem-

poral hard negatives via swapping. We empirically show

that utilizing both signals enriches the learned representa-

tions for the downstream task of action recognition. It out-

performs independent prediction of future and past.

1. Introduction

Videos provide a rich source of information for visual

understanding. They generously reveal to our machines

how objects interact with each other and the environment in

the real world. Nevertheless, the task of representing high-

level abstractions from videos is essential to address a large

and sophisticated set of downstream tasks tied to videos,

e.g. temporal segmentation [31].

Self-supervised learning (SSL) has recently established a

promising direction for this purpose. A well known motiva-

tion for SSL from a practical point of view is to alleviate the

cost and error of the labeling process. Moreover, learning

generalizable and optimal representations can not be taken

for granted in a supervised setting, especially when repre-

senting a complex source of information like videos. For

instance, it has been shown that action labels are predictable

from a single frame to an acceptable extent [8], providing

a relatively weak source of supervision signal for represen-

tation learning as the network is not forced to explore tem-

poral information of videos. In contrast to the image do-

main where the gap between self-supervised and supervised

representation learning has been shrunk remarkably [2, 5],

self-supervised video representation learning is still behind

supervised learning even regarding relatively simple tasks

such as action recognition.

In contrast to images, the temporal structure and multi-

modal nature of videos provide even more opportunities

to construct pretext tasks. While recent work on self-

supervised multi-modal video representation learning has

shown to be very effective [29], we are interested in RGB-

only self-supervised video representation learning. Besides

the scientific value of pure vision based models, a practical

motivation involves applications where the audio signal is

not accessible, e.g. autonomous driving.

We introduce a novel SSL task via feature prediction.

Previous approaches of learning from prediction have been

limited to future observations. They aim to train a model

that takes a segment of a video clip as input and predicts

some form of the contents of future frames [24]. Our

main idea involves incorporating unobserved past and fu-

ture jointly. Given a segment of a video as a present se-

quence, the question of what will happen in the future

frames is comparable to asking what has happened in the

past in terms of abstract factors of variation which the net-

work needs to encode.

Nonetheless, utilizing both signals is not trivial. The fea-

ture prediction task involves maximizing mutual informa-

tion approximated mostly via a contrastive loss that com-

pares joint and product of the marginals of present and fu-

ture/past distributions. The quality of learned representa-

tions is highly dependent on the set of negatives [35]. While

random sequences form the basis for negatives, they are
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Figure 1: Effect of Past and Future Prediction on the Feature Space. The proximity of the features depicted in the gray feature space

indicates their (dis)similarity. An ideal embedding space has two properties. I) Present, past, and future are similar II) Past and future

are distinguishable given present. We consider three approaches: The disjoint prediction of past and future (yellow circles) only satisfies

(I). Predicting past zp rather than future zf requires similar attributes and consequently does not enhance the representations. A naive

extension is to use past as negatives (red crosses), which only satisfies (II). However, this leads to a degenerate solution where past is

dissimilar from present and future. In the former we want the features of both future and past to be distinguishable from random, while in

the later we want to distinguish between future and past. Joint prediction (green ticks) allows us to exploit both supervisory signals. The

combination of past and future in the right order should be distinguishable from random as well as from the wrong order. In particular, zv
and zpf should be close, promoting the similarity of past, present and future (I), while the wrong order of future and past zfp should be

distinguishable (II), encouraging temporally structured representations.

easily distinguishable from the matching pair via shortcuts

such as low level statistics, edges, etc. To prevent these

shortcuts, the key for a comprehensively challenging pretext

task is to construct additional negatives that are hard to dis-

tinguish, encouraging the network to explore the structure

of the data more intensively. Disjoint prediction of past and

future does not introduce a new set of negatives compared

to individual prediction of future or past, see Figure 1.1

Instead, we propose to predict future and past jointly.

Our method establishes a connection between present

frames with a pair of future and past frames. This allows

us to incorporate the wrong order of future and past as hard

negatives. Given present frames, the network should dis-

tinguish the corresponding pair of future and past from not

only randomly taken pairs but also the swapped future and

past of the same video. Our experiments show that joint pre-

diction of future and past outperforms disjoint prediction on

several transfer learning benchmarks.

Our contributions include: 1) We propose a novel bidi-

rectional feature prediction pretext task for video represen-

tation learning. 2) We extensively evaluate our proposed

method on several transfer learning benchmarks showing

its superiority to its future prediction counterpart.

1Note that past prediction fits to our terminology as we use the term

of prediction to associate an observed partition of data to the unobserved

ones.

2. Related Work

An important category of self-supervised learning meth-

ods involves dividing data into two segments, and training a

convolutional neural network (CNN) that predicts one part

given the other. The key ingredients for these approaches

are the design of a partitioning paradigm and the definition

of a loss function via quantifying prediction. For instance,

the task of image colorization [21, 45] proposes to divide

the input image into Lab channels and train a model that

predicts ab channels given L channel. In the video domain,

partitioning in temporal direction has been intensively ex-

plored [23, 24, 33, 38].

Future prediction. A straight forward approach to quan-

tify prediction is based on raw data, where the target distri-

bution is fixed as true data distribution. A naive approach

includes reconstruction losses, which are based on strong

assumptions and consequently do not achieve decent re-

sults.2 To eliminate these limitations, an adversarial loss has

been employed in [24, 28]. However, the supervisory sig-

nals arising from true data distributions suffer from ambi-

guity and require the network to devote substantial capacity

to model a data distribution, which is not necessarily the op-

2For instance, ℓ2 assumes the data follows a Gaussian distribution

while cross-entropy provides a discrete approximation of distribution.
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timal solution for representation learning. Addressing this

problem, Vondrick et al. [37] suggest to predict the repre-

sentation of future frames instead of pixel values, and use

a mixture model to handle the multi-modal distribution of

future representations. Recently, predicting features of the

future video blocks in a contrastive fashion has gotten great

attention [9, 10], achieving remarkably better performance.

The idea is to perform prediction in a learnable transforma-

tion of raw data trained jointly with the prediction quantifi-

cation. More specifically, Han et al. [9] train a 3D CNN

that takes a sequence of video blocks and predicts the fea-

tures of a future block. They apply the same backbone to

extract features from present and future blocks and quantify

prediction via the InfoNCE loss [36], which involves maxi-

mizing an estimate of mutual information [30] and has been

successfully applied in multiple domains [5]. In an exten-

sion of their work, Han et al. [10] very recently propose a

memory-augmented version and consider both optical flow

and RGB videos as input modalities. In contrast to these

methods based on unidirectional feature prediction, we pro-

pose bidirectionally predicting future and past features and

adopt the InfoNCE loss for prediction quantification.

InfoNCE loss. van den Oord et al. [36] propose con-

trastive predictive coding applied to images by sequentially

predicting representations of image patches. Bachman et al.

[3] and Tian et al. [34] maximize the mutual information of

different views of the same image via InfoNCE. Chen et al.

[5] improve the InfoNCE loss in several ways. First, they

show that applying a learnable nonlinear transformation be-

fore the contrastive loss is superior to a linear transforma-

tion. Furthermore, they demonstrate that normalizing the

representations, using a temperature parameter and a large

batch size, i.e. the number of negatives, are beneficial. He

et al. [11] decouple the number of negatives from the batch

size by introducing a method to effectively employ a mem-

ory bank for storing the negatives.

Pretext tasks for video representation learning. Differ-

ent approaches for video representation learning orthogonal

to future prediction have been explored. While image-level

pretext tasks can be extended to videos, e.g. [15, 17], the

temporal dimension of videos provides the opportunity of

a more comprehensive set of pretext tasks. These include

verification of the temporal order of frames [7, 22, 26, 42],

predicting the order of clips instead of frames [43], egomo-

tion [1, 13], temporal coherency in video [12, 14, 20, 40]

and predicting video speed [4, 6]. Vondrick et al. [39] show

that the temporal coherency of color enables the learning of

a tracking algorithm whereas Wang et al. [41] use the cycle-

consistency of time to learn correspondence.

3. Method

Our method involves predicting unseen past and future

features of a video sequence. We employ a variant of Noise

Contrastive Estimation, InfoNCE, in which the network is

asked to distinguish the positive pair from a set of nega-

tives. More precisely, given a video clip we divide the video

frames into three partitions, X = (P, V, F ), each element

refers to past, present, and future respectively. We then con-

struct the positive and negative pairs to train InfoNCE by

exploiting the joint representations of (P, F ).

Past and future feature prediction. First, we explore

how the two complementary supervision signals can be in-

corporated into a comprehensively challenging pretext task.

This seemingly easy objective proves to be non-trivial and

deserves an in-depth discussion. A naive approach to com-

bine past and future prediction will be in a disjoint fashion.

That is, to view the task of past and future prediction in-

dependently in a unidirectional manner by simply adding

the respective losses. This is equivalent to encouraging dis-

tinguishable features of both future and past from random

given present. Unfortunately, this straightforward approach

does not achieve decent results, see Table 1. We conjecture

that representations which are able to predict the future are

sufficient to predict the past and thus the added losses do

not stimulate the network to enhance the representations.

Instead, to encourage the model to explore the temporal

structure further, we construct a pretext task that involves

distinguishing between future and past, given present. We

did not achieve reasonable results by explicitly classifying

future, past, and random pairs. Alternatively, we use the In-

foNCE loss and implicitly exploit this signal.3 An apparent

choice is to include past features as negative pairs, while

future features form the positive pairs. However, this is not

an appropriate approach. Essentially, past features should

encode similar high level abstractions as those of the fu-

ture, e.g. underlying action. Having past as negatives en-

tails dissimilarity between representations of the past and

present/future, see Figure 1, resulting in a degenerate solu-

tion that removes such high level abstractions shared across

past, present, and future from the representations. Our

experiment termed Past as negatives in Table 1 confirms

the poor quality of the resulting representations of this ap-

proach. A desired solution favors distinguishable features

of future and past given present. To this end, we propose

joint prediction of future and past. Our model takes a pair of

past/future as input, which allows temporal hard negatives

of the wrong order of future/past. Distinguishing between

past/future and future/past requires the network to encode

3One reason could be that the network cooperates with the classifier to

embed some shortcuts in the feature space. The InfoNCE does not include

the classifier and puts more load on the feature extraction network, and

yields higher performance.
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Figure 2: Bidirectional Feature Prediction. First we apply spatial transformations T to past, present and future independently, these can

include random crop, horizontal flip and rotation. Then a 3D CNN φ is applied to the non-overlapping blocks of frames. To obtain a video

representation zv an aggregation function ψ is applied to the sequence of features. We randomly sample a past and a future block, which

is indicated by the black and gray arrows, and apply an aggregation function ϕ to acquire a merged representation zpf of past and future.

A temporal hard negative zfp is obtained by applying ϕ to the swapped features of future and past. To maximize the agreement of zv and

zpf we employ the InfoNCE loss where we incorporate zfp as temporal hard negative in the denominator.

temporal structure shared across the video such that match-

ing temporal orders can be detected. Our approach encour-

ages the features of future and past to be distinguishable

from random as well as each other given present.

Network architecture. For fair comparisons, we use a

2D3D version of ResNet18 as in [9] that consists of 3D con-

volutions only in the last two layers. The video sequence

is divided into non-overlapping blocks of frames. We ex-

tract convolutional features from the blocks via a shared

2D3D-ResNet18, φ. To create the final features, we aggre-

gate the extracted convolutional features via one-layer Con-

volutional Gated Recurrent Units (ConvGRU) with kernel

size 1. We found that using a separate aggregation func-

tion for past/future blocks achieves slightly better results,

see supplementary material. Consequently, we construct

the final feature of present blocks as zv = (ψ ◦ φ) (V ), and

past/future blocks as zpf = (ϕ ◦ φ) (P, F ), where ψ, ϕ de-

note aggregation functions of present and past/future blocks

respectively. As ϕ is non-symmetric, we can apply it to the

reverse order of future/past to obtain a temporal hard nega-

tive zfp = (ϕ ◦ φ) (F, P ), which will be discussed below.

Figure 2 shows all components of our method.

3.1. Contrastive Loss

For a given video, we build a set P consisting of positive

future and past pairs. For each positive pair (P, F ) ∈ P

we consider a set D(P,F ) containing the positive pair itself

and all its negatives, including zfp. As suggested in [5], we

use a small MLP head f to map the representations to the

space in which the contrastive loss is applied, denoted by

fv = f(zv) and fpf = f(zpf ), respectively. We use the

cosine similarity sim(u, v) = uT v
‖u‖‖v‖ ·

1
τ

with a temperature

parameter τ to compare present features with those obtained

from future and past,

L =
∑

(P,F )∈P

−log

(

exp(sim(fv, fpf ))
∑

(P̂ ,F̂ )∈D(P,F )
exp(sim(fv, fpf ))

)

.

(1)

We discuss the process of constructing positive and negative

pairs in the following.

Positives. P denotes a set of positive past/future blocks.

We obtain multiple positive pairs per video by selecting a

random block from past and future blocks respectively. If

there are m past and future blocks per video, we build m2

positive pairs per video, see Figure 2.

Easy negatives. We obtain easy negatives by sampling

all possible combinations of past/future and future/past
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blocks from other videos in a batch. If there are m past

and future blocks per video, a batch size of n provides us

with 2m2(n− 1) easy negatives.

Temporal hard negatives. Temporal hard negatives are

obtained via swapping the order of past and future. Conse-

quently, we obtain the same number of temporal hard nega-

tives per video as the number of positives. Each set D(P,F )

contains all temporal negatives.

Independent augmentation vs. spatial negatives. Han

et al. [9] use spatial negatives in their method where they

decompose the 4×4×256 convolutional feature map along

the depth direction into 16 feature vectors, and treat all of

those that do not match the corresponding spatial location

as negatives. We propose to simply apply independent aug-

mentations to P, V, F , obtaining a single 256 dimensional

feature vector via global average pooling. Our experiments

show that simple independent augmentations achieve higher

performance than complex spatial negatives. This is inline

with recent observations made by [25]. Spatial negatives

aim to learn features variant to the spatial location. That

is while independent augmentations aims to learn features

invariant to the spatial location. Moreover, the major draw-

back of spatial negatives is the following: They encourage

the feature vectors to represent local descriptors. The fea-

ture vectors should be distinguishable across spatial loca-

tions of the feature map since they are injected as negatives

in the loss function. This assumption might be useful in the

early layers where the receptive fields of neurons are small.

However, in the later layers where the receptive field grows,

a global feature is favorable. Our experiments in Table 2

shows that indeed the features learned via spatial negatives

transfer poorly to the downstream task in the later layers.

3.2. Connection to Mutual Information Maximiza­
tion

The InfoNCE loss has been shown to be a lower bound

of mutual information [30]. From this point of view, our

loss in Eq. 1 can be interpreted as mutual information max-

imization of the features extracted by φ:

max
φ

I(φ(V ), φ(P, F )). (2)

A correct lower bound is obtained when the nega-

tive pairs are built via sampling from the product of the

marginals. Our temporal hard negatives are not sampled in-

dependently from the present blocks, imposing an incorrect

approximation of the mutual information. However, this is

not counterproductive. As it has been recently shown [35],

the effectiveness of the InfoNCE loss for learning represen-

tation is not necessarily tied to the accuracy of mutual in-

formation estimation. Structured hard negatives which are

not sampled from the product of the marginals contribute

to the quality of the learned representations more than an

accurate estimation of mutual information. We could not

achieve decent results without temporal hard negatives, see

supplementary material, confirming the same argument.

4. Experiments

Following the common practice in self-supervised video

representation learning, we evaluate our approach on the

downstream task of action recognition. During the self-

supervised pretraining stage we discard the labels of the

dataset and train a model using Eq. 1. Note that although

we drop the class labels, a supervision bias remains in

the dataset, e.g. the videos in Kinetics-400 are temporally

trimmed and carefully selected. However, this is a widely

adopted approach and we follow previous works in order to

do fair comparisons. To evaluate the learned representation,

we transfer the pretrained network, including the 2D3D-

Resnet18 backbone φ and aggregation function ψ. We add

a linear layer on top of the resulting feature vector and eval-

uate our network for action recognition on labeled data. We

follow two paradigms: 1) We finetune the entire network

with randomly initialized linear classification layer for the

task of action recognition, using a reduced learning rate for

pretrained layers. 2) Additionally, we evaluate the quality

of the representations layer-wise by freezing the pretrained

network up to some layer, and training the remaining from

scratch. This evaluation was primarily proposed by [27] in

the image domain. Our experiment on Kinetics-400 allows

a more comprehensive evaluation of the quality of learned

representations as it gives a better insight into the learned

representations. It is well known that the early layers of

CNNs extract general and local features whereas later lay-

ers are more specific to the training task and dataset [44]. A

better performance on the downstream task of the later lay-

ers indicates higher correlation of pretext and downstream

task.

Implementation details. We use similar self-supervised

learning and evaluation settings to [9], our most important

baseline. We extract 8 blocks of 5 frames from a video se-

quence and split them in the following way. The 4 middle

blocks are used as present video sequence, while we sample

single past and future blocks at different temporal distances

to the present from the remaining blocks. In this case, we

have 4 positive pairs per video and 4 corresponding nega-

tive pairs. During self-supervised learning we apply ran-

dom crop and horizontal flip, as well as frame-wise color

jittering and random downsampling of the frame rate, where

we sample video frames with a random stride of at most 3.

For finetuning we keep the random crop and horizontal flip,

but apply consistent color jittering at the video-level and

sample frames with a constant stride of 3. In the case of

spatial negatives, the spatial transformations crop and hor-

izontal flip are applied consistently to the entire video. As
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Self-Supervised Methods top1 Accuracy

Method Architecture Pretraining Dataset Spatial Negatives Ref UCF101 HMDB51

Random Initialization 2D3D-Resnet18 - - 54.4 31.9
Random Initialization R3D - [43] 54.4 21.5
Random Initialization S3D-G - [4] 73.8 46.4

Shuffle&Learn [26] CaffeNet UCF101/HMDB51 [9] 50.2 18.1
OPN [22] VGG-M-2048 UCF101/HMDB51 [9] 59.8 23.8
VCOP [43] R3D UCF101 [43] 64.9 29.5
3DRot [15] 3D-Resnet18 Kinetics-600 [9] 62.9 33.7
3D-ST-Puzzle [17] 3D-Resnet18 Kinetics-400 [9] 65.8 33.7
DPC [9] 2D3D-Resnet34 Kinetics-400 [9] 75.7 35.7
SpeedNet [4] S3D-G Kinetics-400 [4] 81.1 48.8

Future prediction 2D3D-Resnet18 UCF101 ✓ - 61.3 -

Past prediction 2D3D-Resnet18 UCF101 ✓ - 60.1 -

Disjoint prediction 2D3D-Resnet18 UCF101 ✓ - 60.1 -

Past as negatives 2D3D-Resnet18 UCF101 ✓ - 57.6 -

Ours 2D3D-Resnet18 UCF101 ✓ - 63.6 -

Future prediction 2D3D-Resnet18 Kinetics-400 ✓ - 65.9 35.3
Ours 2D3D-Resnet18 Kinetics-400 ✗ - 66.4 45.3

Table 1: Finetuning on UCF101 and HMDB51. The second block shows methods with different architectures. The third and fourth

blocks are pretrained on UCF101 and Kinetics-400 respectively. For comparison we report results with random initialization in the first

block. The Ref column indicates the source the values were taken from. Values without a reference were generated by us. Future prediction

refers to the DPC method trained with our implementation details, while Past prediction denotes the DPC method applied to predicting

past features. Disjoint prediction constitutes the added losses of past and future prediction and Past as negatives refers to InfoNCE trained

with future features as positives and past features as negatives. While we observe moderate improvements of our method on UCF101, it

significantly boots the performance on HMDB51.

discussed above, we propose to augment past, present, and

future video sequences independently, resulting in more ro-

bust representations. We conduct experiments with both

settings. Note that spatial negatives can not be combined

with independent spatial transformations since they require

correspondence. During self-supervised training, we map

the features to the contrastive space using a small MLP

head, consisting of 256 hidden units and ReLU activation

function. After self-supervised training, the MLP is dis-

carded and only the backbone and aggregation function are

transferred to the downstream task. For the downstream

task, we use the same input structure of video blocks as

during SSL training. For both self-supervised training and

finetuning, we use a batchsize of 64 and the Adam opti-

mizer [18] with a learning rate of 10−3 and weight decay

10−5. We reduce the learning rate by a factor of 10 when

the validation loss plateaus. For the layer-wise evaluations

we use SGD with an initial learning rate of 0.1, a weight de-

cay of 10−3, a momentum of 0.9 and a learning rate sched-

uler. For SSL training, we train the network for 100 and

470 epochs on Kinetics-400 and UCF101, respectively. For

finetuning, we follow [9] and fix the number of epochs to

300 and reduce the learning rate to 10−4 for the pretrained

weights. During inference, we divide videos from the vali-

dation set into blocks of 5 frames and construct half-length

overlapping sequences of blocks that are fed to the model.

We remove augmentations and only use center crop. We

average the softmax probabilities to obtain the final classi-

fication scores.

4.1. Finetuning on UCF and HMDB

A most widely used framework of self-supervised learn-

ing involves obtaining an initialization from a large scale

unlabeled dataset, and finetuning on a small annotated tar-

get dataset. We consider UCF101 [32] and HMDB51 [19]

as the standard benchmarks in this domain. We report num-

bers on split 1 for both datasets.

Pretraining on UCF. The main motivation of self-

supervised learning is to take advantage of large scale un-

labeled datasets. Therefore, pretraining on a small dataset

such as UCF101 does not establish a plausible framework.

Following the community, we aim to quickly validate the

design choices of our bidirectional feature prediction task

in the following experiments. We show the results in the

third block of Table 1. First, we compare our method to
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past and future prediction. The future prediction corre-

sponds to the DPC method using our implementation de-

tails, which improves slightly over the original implemen-

tation [9]. The past prediction is the same task but the

unobserved past frames are used instead of future frames.

While both future prediction and past prediction learn rep-

resentations that prove to be useful for action recognition,

simply adding the two losses (Disjoint prediction) does not

improve the quality of the representations. Another naive

approach of incorporating both supervisory signals is to use

past features as negatives in the InfoNCE loss, while only

the future features are treated as positives, which implicitly

requires the network to distinguish between past and future.

However, this leads to weaker representations by remov-

ing high level abstractions shared across the blocks, shown

as Past as negatives in Table 1. In contrast, our method

based on bidirectional feature prediction improves the per-

formance on the downstream task of action recognition and

consequently validates our design choices. While we out-

perform unidirectional prediction, our method is slightly in-

ferior to VCOP [43]. However, note that VCOP employs the

R3D architecture that includes 3D convolutions in all layers

whereas our 2D3D-Resnet18 uses 3D convolutions only in

the last two layers. Their network consumes more memory

and computations compared to ours.

Pretraining on Kinetics. Next, we investigate the bene-

fit of large-scale datasets. We pretrain our model on the

Kinetics-400 dataset [16], and evaluate the learned repre-

sentations by finetuning on UCF101 and HMDB51. The

last block of Table 1 summarizes the results. We outperform

future prediction on both UCF101 and HMDB51, a dataset

known to be notoriously difficult for action recognition. We

achieve 45.3% top1 accuracy on HMDB51 surpassing many

previous self-supervised RGB-only methods by a signifi-

cant margin. In the second block of Table 1, we compare

to various different methods using different network archi-

tectures and pretraining datasets. Note that 2D3D-Resnet34

and S3D-G are significantly deeper and computationally

more expensive than 2D3D-Resnet18.

4.2. Layer­wise evaluation on Kinetics

Finetuning is a well justified approach in practice. How-

ever, being prone to overfitting on the small target dataset, it

does not necessarily establish a solid evaluation of the rep-

resentations. To evaluate the learned representations more

elaborately, we transfer the features of a pretrained model

for action recognition on the Kinetics-400 dataset. We ini-

tialize multiple networks up to different layers with pre-

trained weights, and train only the remaining layers from

scratch while the initialized layers are frozen. Provided

enough training data, a better performance indicates higher

quality representations of the initialized layers. Table 2
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Figure 3: Layer-wise evaluations on Kinetics-400. The corre-

sponding results are shown in Table 2. The pretrained networks are

frozen up to some layer, the remaining are trained from scratch.

and Figure 3 show the results when the initialized network

is frozen up to the first convolutional (conv), 4 residual

(res) layers, and in the extreme case the aggregation func-

tion (agg). Moreover, this evaluation allows us to investi-

gate the effect of spatial negatives versus independent aug-

mentations. The later layers with larger receptive fields rep-

resent global attributes of videos, e.g. action class, whereas

the earlier layers represent local attributes. We obtain re-

markably better performance in the later layers when the

network is trained via independent transformations (our ap-

proach) compared with spatial negatives (Future predic-

tion). The performance in early layers of both approaches

is comparable. This observation confirms our argument in

Section 3. Spatial negatives result in a representation that is

variant with respect to the spatial region of the input and

therefore encourage local feature descriptors, which may

be useful in early layers where the receptive field is lim-

ited. Independent augmentations on the other hand lead to

representations that are invariant to spatial transformations,

allowing global feature descriptors that are more useful in

later layers.

4.3. Ablation studies

Table 3 shows the impact of different data partitioning

paradigms into past, present, and future blocks. We pretrain

different methods on split 1 of UCF101 and report the top1

accuracy obtained via finetuning on the same dataset. We

follow the same set up as in the third block of Table 1. We

1676



Model
spatial top1 Accuracy on Kinetics-400

negatives conv 1 res 1 res 2 res 3 res 4 agg

random - 31.1 26.6 16.9 8.4 2.9 1.8

DPC [9] ✓ 38.1 37.8 27.0 19.3 4.6 3.6

Future prediction ✓ 41.2 40.5 32.8 19.8 4.3 2.4
Ours sobel+crop+rot ✗ 41.6 40.5 34.4 26.2 9.8 7.7

Table 2: Layer-wise evaluations on Kinetics-400. Pretrained models are frozen up to a convolutional/residual layer conv/res or com-

pletely agg, remaining layers are trained from scratch. The augmentations involve random crop applied independently to each partition.

Random sobel filtering and rotation with multiplicands of 90◦ are independently applied to past and future blocks only. Methods with

independent augmentations instead of spatial negatives are superior in later layers.

# of (P , V , F )
top1 Accuracy

on UCF101

(2, 4, 2) 63.6
(3, 2, 3) 61.9
(2, 2, 2) 63.8

(1, 2, 1) 62.9
(2, 1, 2) 62.5

Table 3: Ablation of the number of blocks. Each triplet indicates

the number of past, present, and future blocks per video in a batch.

All present blocks are used to extract the present features. A pair of

randomly taken single past and future blocks are used to construct

past/future or future/past features.

show each partition with a triplet referring to the number

of blocks used to construct past, present, and future blocks

respectively. We use all present blocks to construct present

features, and randomly select a single block of past and fu-

ture to build positive pairs of past/future and temporal neg-

atives of future/past. The larger number of future and past

blocks allows us to provide the InfoNCE loss with a larger

set of positive and negative pairs. For instance, (2, 4, 2) pro-

vides 4 positive and negatives pairs per video in a batch.

(3, 2, 3) increases the difficulty of the task as more temporal

hard negatives will be included in the loss function while the

temporal receptive field of the present sequence is reduced.

Reducing the number of present blocks while keeping the

past and future blocks fixed does not change the quality of

the representations significantly. However, further reduc-

ing the number of future and past blocks in (1, 2, 1) or the

number of present blocks in (2, 1, 2) weakens the represen-

tations. The former reduces the number of temporal hard

negatives which leads to a simpler task, while the later lim-

its temporal information. This result indicates the effective-

ness of temporal hard negatives as well as capability of our

model to exploit temporal information.

5. Conclusion

In this paper we proposed a novel method for self-

supervised video representation learning based on bidirec-

tional feature prediction. We showed how past and fu-

ture prediction can be jointly incorporated in a contrastive

learning framework and validated our design choices em-

pirically. We extensively evaluated our method via fine-

tuning and layer-wise evaluations, outperforming unidirec-

tional feature prediction methods on the downstream task of

action recognition.
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