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Abstract

CNN visualization and interpretation methods, like

class-activation maps (CAMs), are typically used to high-

light the image regions linked to class predictions. These

models allow to simultaneously classify images and extract

class-dependent saliency maps, without the need for costly

pixel-level annotations. However, they typically yield seg-

mentations with high false-positive rates and, therefore,

coarse visualisations, more so when processing challenging

images, as encountered in histology. To mitigate this issue,

we propose an active learning (AL) framework, which pro-

gressively integrates pixel-level annotations during train-

ing. Given training data with global image-level labels, our

deep weakly-supervised learning model jointly performs su-

pervised image-level classification and active learning for

segmentation, integrating pixel annotations by an oracle.

Unlike standard AL methods that focus on sample selection,

we also leverage large numbers of unlabeled images via

pseudo-segmentations (i.e., self-learning at the pixel level),

and integrate them with the oracle-annotated samples dur-

ing training. We report extensive experiments over two

challenging benchmarks – high-resolution medical images

(histology GlaS data for colon cancer) and natural images

(CUB-200-2011 for bird species). Our results indicate that,

by simply using random sample selection, the proposed ap-

proach can significantly outperform state-of the-art CAMs

and AL methods, with an identical oracle-supervision bud-

get. Our code is publicly available1.

1. Introduction

Image classification and segmentation are fundamental

tasks in many visual recognition applications involving nat-

ural and medical images. Given a large image dataset an-

1https://github.com/sbelharbi/deep-active-learning-for-joint-

classification-and-segmentation-with-weak-annotator

Figure 1: Proposed AL framework with weak annotator.

notated with global image-level labels for classification or

with pixel-level labels for segmentation, deep learning (DL)

models achieve state-of-the-art performances for these tasks

[12, 20, 32, 37, 38, 48]. However, the impressive accu-

racy of such fully-supervised learning models comes at the

expense of a considerable cost for collecting and annotat-

ing large image data sets. While the acquisition of global

image-level annotation can be relatively inexpensive, pixel-

wise annotation involves a laborious process, a difficulty

further accrued by the requirement of domain expertise, as

in medical imaging, which increases the annotation costs.

Weakly-supervised learning (WSL) has recently

emerged as a paradigm that relaxes the need for dense

pixel-wise annotations [49, 69]. WSL techniques depend

on the type of application scenario and annotation, such

as global image-level labels [4, 28, 45, 55, 61], scribbles

[34, 54], points [2], bounding boxes [10, 27] or global im-

age statistics such as the target-region size [1, 24, 25, 26].

This paper focuses on learning using only image-level

labels, which enables to classify an image while yielding

pixel-wise scores (i.e., segmentations), thereby localizing

the regions of interest linked to the image-class predictions.

Several CNN visualization and interpretation methods

have recently been proposed, based on either perturba-

tion, propagation or activation approaches, and allowing
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to localize the salient image regions responsible for a

CNN’s predictions [17]. In particular, WSL techniques [49]

rely on activation-based methods like CAM and, more re-

cently, Gradient-weighted Class Activation Mapping (Grad-

CAM), Grad-CAM++, Ablation-CAM and Axiom-based

Grad-CAM [17, 36, 46]. Trained with only global image-

level annotations, these methods locate the regions of in-

terest (ROIs) of the corresponding class in a relatively in-

expensive and accurate way. However, while these WSL

techniques can provide satisfying results in natural images,

they typically yield poor segmentations in relatively more

challenging scenarios, for instance, histology data in med-

ical image analysis [49]. We note two limitations associ-

ated with CAMs: (1) they are obtained in an unsupervised

way (i.e. without pixel-level supervision under an ill-posed

learning problem [9]); and (2) they have low resolution. For

instance, CAMs obtained from ResNet models [22] have a

resolution of 1/32 of the input image. Interpolation is re-

quired to restore full image resolution. Both of these limi-

tation with CAM-based methods lead to high false-positive

rates, which may render them impractical [49].

Enhancing deep WSL models with pixel-wise annota-

tion, as supported by a recent study in weakly-supervised

object localization [9], can improve localization and seg-

mentation accuracy, which is the central goal of this paper.

To do so, we introduce a deep WSL model that allows su-

pervised learning for classification, and active learning for

segmentation, with the latter providing more accurate and

high-resolution masks. We assume that the images in the

training set are globally annotated with image-class labels.

Relevant images are gradually labeled at the pixel level

through an oracle that respects a low annotation-budget con-

straint. Consequently, this leads us to an active learning

(AL) paradigm [51], where an oracle is requested to anno-

tate pixels in a subset of samples.

Different sample-acquisition techniques have been suc-

cessfully applied to deep AL for classification based on,

e.g., certainty [13, 18, 30] or representativeness [29, 52].

However, very few deep AL techniques were investigated

in the context of segmentation [19, 21, 40]. Most AL tech-

niques focus mainly on the sampling criterion (Fig.1, left)

to populate the labeled pool using an oracle. During train-

ing, only the labeled pool is used, while the unlabeled pool

is left dormant. Such an AL protocol may limit the accuracy

of DL models under constrained oracle-supervision budget

in real-world applications for multiple reasons:

(1) Standard AL protocols may be relevant to

small/shallow models that can learn and provide reliable

queries using a few training samples. Since training ac-

curate DL models typically depends on large training sets,

large numbers of queries may be needed to build reliable

DL models, which may incur a high annotation cost.

(2) In most AL work, the experimental protocol starts

with a large labeled pool, and acquires a large number of

queries for sufficient supervision, neglecting the workload

placed on the oracle. This typically reaches a plateau-

performance of a DL quickly, hampering a reliable study of

the impact of different AL selection techniques. Moreover,

model-based sampling techniques are inconsistent [19] in

the sense that the model is used to query samples while it is

still in an early learning stage.

(3) Segmentation and classification problems are asso-

ciated with different properties and challenges, such as de-

cision boundaries and uncertainty, which provide additional

challenges to AL. For instance, the class boundaries defined

by different classification methods [14, 51, 56] are not de-

fined in the context of segmentation, making such a branch

of methods inadequate for segmentation.

(4) In critical fields such as medical imaging, acquiring a

sample itself can be very expensive2. The time and cost as-

sociated with each sample makes them valuable items. Such

considerations may be overlooked for large-scale data sets

with almost-free samples, as in the case of natural images.

Given this high cost, keeping the unlabeled pool dormant

during learning may be ineffective.

Based on the aforementioned arguments, we advocate

that focusing solely on the sample acquisition and super-

vision pool may not be an efficient way to build high-

performing DL models in an AL framework for segmen-

tation. Therefore, we consider augmenting the labeled pool

using the model as a second source of annotation, in a self-

learning fashion [42] (Fig.1, right). This additional anno-

tation might be less accurate (i.e., weak3) compared to the

oracle that provides strong but expensive annotations. How-

ever, it is expected to fast-improve the model’s performance

[42], while using a few oracle-annotated samples, reducing

the annotation cost.

Our main contributions are the following. (1) Architec-

ture design: As an alternative to CAMs, we propose using

a segmentation mask trained with pixel-level annotations,

which yields more accurate and high-resolution ROIs. This

2For instance, prior to a diagnosis of breast cancer from a histolog-

ical sample, a patient undergoes a bilateral diagnostic mammogram and

breast ultrasound that are interpreted by a radiologist, one to several nee-

dle biopsies (with low risks under 1% of hematoma and wound infection)

to further assess areas of concern, surgical consultation and pre-operative

blood work, and surgical excision of the positive tissue for breast cancer

cells. The biopsy and surgical tissues are processed (fixation, embedding in

parraffin, H&E staining) and interpreted by a pathologist. Depending on

the cancer stage, the patient may undergo additional procedures. There-

fore, accounting for all the steps required for breast cancer diagnosis from

histological samples, a rough estimation of the final cost associated with

obtaining a Whole Slide Image (WSI) is about $400 (Canadian dollars, by

1999) [62]. Moreover, some cancer types are rare [62], adding to the val-

ues of these samples. All these procedures are conducted by highly trained

experts, with each procedure taking from a few minutes to an hour and

requiring expensive specialized medical equipment.
3Not to be confused with the weak annotation of data in weakly super-

vised learning frameworks.
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is achieved through a convolutional architecture capable of

simultaneously classifying and segmenting images, with the

segmentation task trained using annotations acquired using

an AL framework. As illustrated in Fig.3, the architecture

combines well-known DL models for classification (ResNet

[22]) and segmentation (U-Net [48]), although other archi-

tectures could also be used. (2) Active learning: We aug-

ment the size of the labeled pool by weak-annotating a large

number of unlabeled samples based on predictions of the

DL model itself, providing a second source of annotation

(Fig.1). This enables rapid improvements of the segmen-

tation accuracy, with less oracle-based annotation. More-

over, our method can be integrated on top of any sample-

acquisition method. (3) Experimental study: We con-

ducted comprehensive experiments over two challenging

benchmarks – high-resolution medical images (histology

GlaS data for colon cancer) and natural images (CUB-200-

2011 for bird species). Our results indicate that, by sim-

ply using random sample selection, the proposed approach

can significantly outperform state-of the-art CAMs and AL

methods, with an identical oracle-supervision budget.

2. Related work

Deep active learning: AL has been studied for a long time

in machine learning, mainly for classification and regres-

sion, using linear models in particular [51]. Recently, there

has been an effort to transfer such techniques to DL mod-

els for classification tasks by mimicking their intuition or

by adapting them, taking into consideration model speci-

ficity and complexity. Such methods include, for instance,

different mechanisms for uncertainty [5, 13, 14, 18, 29, 30,

33, 60, 65] and representativeness estimation [29, 50, 52].

However, most deep AL techniques are validated on syn-

thetic, simple or tiny data, which does not explore their full

potential in real applications.

While deep AL for classification is rapidly growing,

deep AL models for segmentation are uncommon in the

literature. In fact, the very few methods in the literature

mostly focused on the direct application of deep AL clas-

sification methods. The limited research in this area may

be explained by the fact that segmentation tasks bring chal-

lenges to AL, such as the additional spatial information and

the fact that a segmentation mask lies in a much larger di-

mension than a classification prediction. In classification,

AL often deals with one output that is used to drive queries

[23]. The spatial information in segmentation does not nat-

urally provide a direct scoring function that can indicate the

overall quality or certainty of the output. Most of deep AL

methods for segmentation consider pixels as classification

instances, and apply standard AL techniques to each pixel.

For instance, the authors of [19] exploit a variant of

entropy-based acquisition at the pixel level, combined with

a distribution-based term that encodes diversity using a

complex hierarchical clustering algorithm over sliding win-

dows, with application to microscopic membrane segmen-

tation. Similarly, [21, 40] apply Monte-Carlo dropout un-

certainty [18] at the pixel level, with application to myelin

segmentation using spinal cord and brain microscopic his-

tology images. In [47], the authors experiment with five

acquisition functions of classification for a segmentation

task, including entropy-based, core-set [50], k-mean and

Bayesian [18] sampling, with application to electron mi-

croscopy segmentation. Entropy-based methods seem to

be dominant over multiple datasets. In [64], the authors

combine two sampling terms for histology image segmen-

tation. The first employs bootstrapping over fully convolu-

tional networks (FCN) to estimate uncertainty, where a set

of FCNs are trained on different subsets of samples. The

second term is a representation-based term that selects the

most representative samples. This is achieved by solving an

optimization of a generalization version of the maximum

cover set problem [16] using sample description extracted

from an FCN. Despite the obtained promising results, this

approach remains complex and impractical due to the use

of bootstrapping over DL models and an optimization step.

Moreover, the authors of [64] do not provide a comparison

to other acquisition functions. The work in [8] considers a

specific case of AL using reinforcement learning for region-

based AL for segmentation, where only a selected region

of the image is labeled. This method is adequate for data

sets with large and unbalanced classes, such as street-view

images. While the method in [8] outperforms random and

Bayesian [18] selection, surprisingly, it performs close to

entropy-based selection.

Weak annotators: The AL paradigm does not prohibit the

use of unlabelled data for training [51], but it mainly con-

strains the oracle-labeling budget. The standard AL experi-

mental protocol (Fig.1, left) was inherited from AL of sim-

ple/linear ML models, and adopted in subsequent works.

Budget-constrained oracle annotation may not be sufficient

to build effective DL models, due to the lack of labeled sam-

ples. Furthermore, several studies in AL for classification

have successfully leveraged the unlabelled data to provide

additional supervision [35, 39, 58, 60, 68, 71].

For instance, the authors of [35, 60] propose to pseudo-

label a part of the unlabeled pool. The latter is selected

using dynamic thresholding based on confidence, through

the model itself, so as to learn a better embedding. Fur-

thermore, a theoretical framework for AL using strong and

weak annotators for classification task is introduced in [66].

Their results suggest that using multiple annotators can re-

duce the cost of oracle annotation, in comparison to one

annotator. Multiple sources of annotations that include

both strong and weak annotators were used in AL, crowd-

sourcing, self-paced learning and other interactive learning

scenarios for classification to help reducing the number of
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requests for the strong annotator [31, 41, 43, 44, 57, 63, 66].

Using the model itself for pseudo-annotation is motivated

mainly by the success of deep self-supervised learning [42].

Label Propagation (LP): Our approach is also related to

LP methods [6, 67, 70] for classification, which aim to la-

bel unlabeled samples using knowledge from the labeled

ones (Fig.2). However, while LP propagates labels to un-

labeled samples through an iterative process, our approach

bypasses this using the model itself. In our case, the propa-

gation is limited to the neighbors of labeled samples defined

through k-nearest neighbors (k-nn) (Fig.2). Using k-nn has

been also studied to combine AL and domain adaptation [7],

where the goal is to query samples from the target domain.

Such an approach is connected to the recently developed

core-set method for deep AL [50]. Our method intersects

with [7] only in the sense of predicting the labels to query

samples using their labeled neighbors.

In contrast to state-of-the-art DL models for AL segmen-

tation, we consider increasing the unlabeled pool through

pseudo-annotated samples (Fig.1, right). To this end, the

model is used for pseudo-labeling samples within the neigh-

borhood of samples with strong supervision (Fig.2). From

a self-learning perspective, the works in [35, 60] on face

recognition are the closest to ours. While both rely on

pseudo-labeling, they mainly differ in the sample selection

for pseudo-annotation. In [35, 60], the authors considered

model confidence, where samples with high confidence are

pseudo-labeled, while low-confidence samples are queried.

While this yields good results, it makes the overall method

strongly dependent on model confidence. As we consider

segmentation tasks, model-confidence is not well-defined.

Moreover, using the expected pixel-wise values can be less

representative for model confidence.

Our approach relies on the spatial assumption in Fig.2,

where the samples to pseudo-label are selected to be near

the labeled samples, and expected to have good pseudo-

segmentations. This makes the oracle-querying technique

independent from the pseudo-labeling method, giving more

flexibility to the user. Our pseudo-labeled samples are

added to the labeled pool, along with the samples annotated

by the oracle. The underlying assumption is that, given a

sample labeled by an oracle, the model is more likely to

produce good segmentations of images located nearby that

sample. Our assumption is verified empirically in the ex-

perimental section of this paper. This simple procedure en-

ables to rapidly increase the number of pseudo-labeled sam-

ples, and helps improving segmentation performance under

a limited amount of oracle-based supervision.

3. Proposed approach

We consider an AL framework for training deep WSL

models, where all the training images have class-level an-

notations, but no pixel-level annotations. Due to their high

cost, pixel annotations are gradually acquired for training

through oracle queries. It propagate pixel-wise knowledge

encoded in the model though the labeled images.

Active learning training consists of sequential training

rounds. At each round r, the total training set D that con-

tains n samples with unlabeled and labeled subsets (Fig.1).

(1) Unlabeled subset: contains samples without pixel-wise

annotation (unlabeled samples) U = {xi, yi,−}ui=1
where

x ∈ X is the input image, y is its global label; and the pixel

label is missing. (2) Labeled subset: contains samples with

full supervision L = {xi, yi,mi}
l
i=1

where m is the pixel-

wise annotation of the sample. L is initially empty. It is

gradually populated from U by querying the oracle using an

acquisition function. Let f(· : θ) denotes a DL model that

is able to classify and segment an image x (Fig.3). For clar-

ity, and since we focus on the segmentation task, we omit

the notation for the classification task (to simplify the pre-

sentation). Therefore, f(x) refers to the predicted segmen-

tation mask. Let U′ ⊆ U and U
′′ ⊆ U denote two subsets

(Fig.1), with U
′ ∩ U

′′ = ∅. In our method, we introduce

P as a subset holder for pseudo-labeled samples, which is

initially empty and gradually replenished (Fig.1, right). To

express the dependency of each subset on round r, we in-

troduce the following notations: Ur,Lr,Pr,U
′

r,U
′′

r . The

samples in Pr are denoted as {xi, yi, m̂i}. The following

holds: ∀r : D = Lr ∪ Ur ∪ Pr.

Alg.1 describes the overall AL process with our pseudo-

annotation method. First, U′

r is queried, then labeled by the

oracle, and added to Lr. Using k-nn, U′′

r is selected based

on their proximity to Lr (Fig.2); and pseudo-labeled by the

Figure 2: The k-nn method for selecting U
′′ subset to be

speudo-labeled. Assumption to select U′′: since U
′′ lives

nearby supervised samples, it is more likely to be assigned

good segmentation by the model. We consider measuring

k-nn for each unlabeled sample. In this example, using

k = 4 allows |U′′| = 14. If k-nn is considered for each

labeled sample: |U′′| = 8. |·| is the set cardinal. Note that

k-nn is only considered between samples of the same class.
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Figure 3: Out proposed DL architecture for classification

and segmentation composed of: (1) a shared backbone for

feature extraction; (2) a classification head for the classifi-

cation task; (3) and a segmentation head for the segmen-

tation task with a U-Net style [48]. The latter merges rep-

resentations from the backbone, while gradually upscaling

the feature maps to reach the full image resolution for the

predicted mask, similarly to the U-Net model.

model, then added to Pr. To fast-increase the size of Lr,

Pr is protected from being queried for the oracle until it is

inevitable. In the latter case, queried samples from Pr are

used to fill U′; and they are no longer considered pseudo-

labeled since they will be assigned the oracle annotation.

To measure image similarity for the k-nn method, we

used the color distribution to describe image content. This

can be a flexible descriptor for highly unstructured images

such as histology images. Note that the k-nn method is con-

sidered only for pairs of samples of the same class. The un-

derlying assumption is that samples of the same class, with

similar color distributions, are likely to contain relatively

similar objects. Consequently, labeling representative sam-

ples could be a proxy for supervised learning based on the

underlying data distribution. This can increase the likeli-

hood of the model to provide relatively good segmentations

of the other samples. The proximity between two images

(xi,xj) is measured using the Jensen-Shannon divergence

between their respective color distributions (measured as

normalized histograms). For an image with multiple color

planes, the similarity is formulated as the sum of similari-

ties, one for each plane.

At round r, the queried and pseudo-labeled samples are

both used in training by optimizing the following loss func-

tion:

min
θ

∑

xi∈Lr−1

L(f(xi),mi) + λ
∑

xi∈Pr−1

L(f(xi), m̂i),

(1)

where L(·, ·) is a segmentation loss, and λ a positive scalar.

Eq.(1) corresponds to training the model (Fig.3) solely for

the segmentation task. Simultaneous training for classifi-

cation and segmentation in this AL setup is avoided due

to the unbalance between the number of samples that are

labeled globally and at the pixel level. Therefore, we con-

sider training the model for classification first. Then, we

freeze the classifier parameters. Training for the segmenta-

tion tasks is resumed later. This yields the best classification

performance, and allows a better study of the impact of the

queried samples on the segmentation task.

Considering the relation of our method and label prop-

agation algorithm [6, 67, 70], we refer to our proposal as

Label prop.

Algorithm 1: Standard AL procedure and our proposal.

The extra instructions associated with our method are

indicated with a blue background .

Input: P0 = L0 = ∅

θ
0: Initial parameters of f trained on the

classification task.

maxr : Maximum number of AL rounds.

1 Select U′

0 randomly and label them by an oracle.

2 L0 ← U
′

0.

3 for r ∈ 1 · · ·maxr do

4 θ ← θ
0.

5 Train f using Lr−1 ∪ Pr−1 and the loss in Eq. (1).

6 Select U′

r
and label them by an oracle.

7 Lr ← Lr−1 ∪ U
′

r
.

8 Select U′′

r
.

9 Pr ← Pr−1 ∪ U
′′

r
.

10 Pseudo-label Pr .

4. Results and discussion

4.1. Experimental methodology:

a) Datasets. For evaluation, datasets should have global

and pixel-wise annotation. We consider two public datasets

Figure 4: Top row: GlaS dataset [53]. Bottom row: CUB

dataset [59]. (Best visualized in color.)
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Table 1: Number of samples selected for the oracle per

round.

Dataset
#selected samples

per-class (r = 1)

#selected samples

per-class (r > 1)

Max AL rounds

(maxr in Alg.1)

GlaS 4 1 25

CUB 1 1 20

including both medical (histology) and natural images

(Fig.4). (1) GlaS dataset: This dataset contains histol-

ogy images for colon cancer diagnosis4 [53]. It includes

165 images derived from 16 Hematoxylin and Eosin (H&E)

histology sections of two grades (classes): benign and ma-

lignant. It is divided into 84 samples for training and 80

samples for testing. The ROIs to be segmented are the glan-

des. (2) CUB-200-2011 dataset (CUB)5 [59] is a dataset

for bird species with 11, 788 samples (5, 994 for training

and 5, 794 for testing) and 200 species. The ROIs to be

segmented are the birds. In GlaS and CUB datasets, we

randomly select 80% of the training samples for effective

training, and 20% for validation (with full supervision) to

perform early stopping. The splits are identical to the ones

used in [3, 49] (split 0, fold 0), and are publicly available.

b) Active learning setup. To assess the performance of dif-

ferent AL acquisition methods, we consider a realistic sce-

nario with respect to the number of samples to be labeled

at each AL round, accounting for the load imposed on the

oracle. Therefore, only a few samples are selected at each

round for oracle annotation, and L is slowly replenished.

This allows better comparison between AL selection tech-

niques since we spend more time in a phase where L holds

a few samples. Such a phase allows to better measure the

impact of the selected samples. Filling L quickly brings the

model’s performance to a plateau that hides the impact of

newly selected samples. The initial replenishment (r = 1)

is achieved by randomly selecting a few samples. The same

samples are used for all AL techniques at round r = 1 for

a fair comparison. To avoid any bias from selecting unbal-

anced classes that can directly affect the segmentation per-

formance, and hinder AL evaluation, the same number of

samples is selected from each class (since the global annota-

tion is known beforehand for all the samples). Note that the

oracle is used only to provide pixel-wise annotation. Tab.1

provides the selection details.

c) Evaluation. We report the classification accuracy ob-

tained by the classification head (Fig.3). Average Dice in-

dex is used to measure the segmentation quality at each AL

round forming a Dice index curve over all the rounds. To

better assess the dominance of each method [51], the Area

Under the Dice index Curve is used (AUC). This provides

a fair indicator of the dominant curve, but contrasts with

4GlaS: warwick.ac.uk/fac/sci/dcs/research/tia/glascontest.
5CUB: www.vision.caltech.edu/visipedia/CUB-200-2011.html

Table 2: Classification accuracy over of the proposed deep

WSL model on GlaS and CUB test datasets.

Dataset GlaS CUB

Classification

accuracy (%)
99.50± 0.61 73.22± 0.19

Table 3: Readings of Dice index (mean ± standard devia-

tion) from Fig.5 over test set for the first 5 queries formed

by each method. We start from the second query since the

first query is random but identical for all methods.

Queries q2 q3 q4 q5 q6

GlaS

WSL 66.44± 0.20

Random 70.26± 3.02 71.58± 3.14 71.43± 1.83 74.05± 3.14 75.36± 3.45

Entropy 72.75± 2.96 70.93± 3.58 72.60± 1.44 73.44± 1.38 75.15± 1.63

MC Dropout 68.44± 2.89 69.70± 1.96 69.97± 1.95 72.71± 2.21 73.00± 1.04

Label prop (ours) 71.02± 4.19 74.07± 3.93 76.52± 3.49 77.63± 2.73 78.41± 1.23

Full sup 86.53± 0.31

CUB

WSL 39.22± 0.18

Random 56.86± 2.07 61.39± 1.85 62.97± 1.13 63.56± 4.02 66.56± 2.50

Entropy 53.37± 2.06 59.11± 2.50 60.48± 3.56 63.81± 2.75 63.59± 2.34

MC Dropout 57.13± 0.83 59.98± 2.06 63.52± 2.26 63.02± 2.68 64.68± 1.41

Label prop (ours) 62.58± 2.15 66.32± 2.34 67.01± 2.85 69.40± 3.40 68.28± 1.60

Full sup 75.29± 1.50

standard AL works, where one or multiple specific operat-

ing points in the curve are selected (leading to a biased and

less accurate protocol). The average and standard deviation

of Dice index curve and AUC metric are reported based on

5 replications of a complete AL session, using a different

seed for each session. An AL session across different meth-

ods uses the same seed.

While our approach, referred to as (Label prop), can op-

erate on top of any AL selection criterion, we demonstrate

its efficiency using simple random selection, which is of-

ten a baseline for AL experiments. Note that our pseudo-

annotations are obtained from the segmentation head shown

in Fig.3. Our method is compared to three different AL

selection approaches for segmentation: (1) random se-

lection (Random): the samples are randomly selected;

(2) entropy-based selection (Entropy): the scoring func-

tion per sample is the average entropy at the pixel level

[19]. Samples with high entropy are selected; and (3)

Monte-Carlo dropout uncertainty (MC Dropout): we

use Monte-Carlo dropout [21, 40] at the pixel level to com-

pute the uncertainty score per sample. Samples are for-

warded 50 times in the model, where dropout is set to 0.2
[21, 40]. Then, the pixel-wise variance is estimated. Sam-

ples with high mean variance are selected.

Lower bound performance (WSL): We consider the seg-

mentation performance obtained by WSL method as a lower

bound. It is trained using only global annotation. CAMs are

used to extract the segmentation mask. WILDCAT method

3343



is considered [15] (Fig.3) at the classification head to ob-

tain the CAMs. For WSL method, a pre-trained model over

ImageNet [11] is used to initialize the weights of the back-

bone, which is then fined-tuned. The model is trained over

the entire dataset, where samples are labeled globally only.

The obtained classifier using seed=0 is frozen and used as a

backbone for all the other methods.

Upper bound performance (Full sup): Fully supervised

segmentation is considered as an upper bound on perfor-

mance. The model in Fig.3 is trained for segmentation only

using the entire dataset, where samples are labeled at the

pixel level.

For a fair comparison, all the methods are trained us-

ing the same hyper-parameters over the same dataset. WSL

and Full sup methods have minor differences. Due to space

limitation, all the hyper-parameters are presented in the sup-

plementary material. In Alg.1, notice that for our method,

Pr is not used at the current round r but until the next round

r + 1. To take advantage of Pr at round r, instructions from

line-4 to line-10 are repeated twice in the provided results.

4.2. Results

We report the classification and segmentation perfor-

mances following the training the proposed deep WSL

model in Fig.3. Tab.2 reports the Classification accuracy

of the classification head using WSL, which is close to the

results reported in [4, 49]. The results of GlaS suggest that

it is an easy dataset for classification.

The segmentation results are reported in Tabs. 3 and 4,

and in Fig 5.

Fig. 5a compares Dice accuracy on the GlaS dataset.

On the latter, we observe that adding more labels increases

Dice index for all AL methods, yielding, as expected, better

performance than the WSL method. Reading from Tab.3,

randomly labeling only 4 samples per class enables to eas-

ily outperform WSL. This means that using our approach

in Fig.3, with limited supervision, can lead to more accu-

rate masks compared to using CAMs in the WSL method.

From Fig.5a, one can also observe that Random, Entropy,

and MC Dropout methods grow relatively in the same way,

leading to the same overall performance, with the Entropy

method slightly ahead. Considering the overall behavior of

the curves, one may conclude that using advanced selection

techniques such as MC Dropout and Entropy provides an

accuracy similar to simple random selection. On the one

hand, since both methods have shown substantial improve-

ments in AL for classification, and based on the results in

Fig.5a, one may conclude that all samples are equivalently

informative for the model. Therefore, there is no better

order to acquire them. On the other hand, using simply

random selection and pseudo-labeled samples allowed our

method to substantially improve the overall performance,

demonstrating the benefits of self-learning.

(a)

(b)

Figure 5: Average Dice index of the proposed and baseline

methods over test sets. (a) GlaS. (b) CUB.

Fig.5b and Tab.3 compare Dice accuracy on the CUB

dataset, where labeling only one sample per class yielded

a large improvement in Dice index, in comparison to

WSL. Adding more samples increases the performance of

all the methods. One can observe similar pattern as for

GlaS: Random, Entropy and MC Dropout methods yield

similar curves, while the AUC performances of Random

and Entropy methods are similar, and slightly ahead of

MC Dropout. Similar to GlaS analysis, and based on the

results of these three methods, one can conclude that none

of the methods for ordering the samples is better than sim-

ple random selection. Using self-labeled samples in our

method shows again its benefits. Simple random selection

combined with self-annotation yields an overall best per-

formance. Using two datasets, our empirical results sug-

gest that self-learning, under limited oracle-annotation, has
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the potential to provide a reliable second source of anno-

tation, which can efficiently enhance model performance,

while using simple sample acquisition techniques.

Pseudo-annotation performance. Furthermore, the pro-

posed approach is assessed on the pseudo-labeled samples

at each AL round. Fig.6 shows that the model provides good

segmentations at the initial rounds. Then, the more super-

vision, the more accurate the pseudo-segmentation, as ex-

pected. This figure shows the interest and potential of self-

learning in segmentation, and confirms our assumption that

samples near the labeled ones are likely to achieve accurate

pseudo-segmentation by the model.

Hyper-parameters. Our approach requires two main

hyper-parameters: k and λ. We conducted an ablation study

over k on GlaS dataset, and over λ on both datasets. Results,

which are presented in the supplementary material, suggest

that our method is less sensitive to k. λ plays an important

role, and based on our study, we recommend using small

values of this weighting parameter. In our experiments, we

used λ = 0.1 for Glas and λ = 0.001 for CUB. We set

k = 40. We note that hyper-parameter tuning in AL is chal-

lenging due to the change of the size of the data set, which in

turn changes the training dynamics. In all the experiments,

we used fixed hyper-parameters across the AL rounds. Fig.6

suggests that a dynamic λ(r) that is increased through AL

rounds could be more beneficial. However, this requires a

principled update protocol for λ, which was not explored in

this work. Nonetheless, using a fixed value seems to yield

promising results overall.

Supplementary material. Due to space limitation, we de-

ferred the hyper-parameters used in the experiments, results

of the ablation study, visual results for the similarity mea-

sure and examples of predicted masks to the supplementary

materials.

Figure 6: Average Dice index over the pseudo-labeled sam-

ples of our method in each AL round.

Table 4: Average AUC and standard deviation (Fig.5) for

Dice index performance over GlaS and CUB test sets.

Dataset GlaS CUB

WSL 66.44± 0.20 39.22± 0.19

Random 78.57± 0.93 68.15± 0.61

Entropy 79.13± 0.26 68.25± 0.29

MC Dropout 77.92± 0.49 67.69± 0.27

Label prop (ours) 81.48± 1.03 71.73± 0.67

Full sup 86.53± 0.31 75.29± 1.50

5. Conclusion

Deep WSL models trained with global image-level an-

notations can play an important role in CNN visualization

and interpretability. However, they are prone to high false-

positive rates, especially for challenging images, leading to

poor segmentations. To alleviate this issue, we considered

using pixel-wise supervision provided gradually through an

AL framework. This annotation is integrated into training

using an adequate deep convolutional model that allows su-

pervised learning for both tasks: classification and segmen-

tation. Through a few pixel-supervised samples, such a de-

sign is intended to provide full-resolution and more accu-

rate masks compared to standard CAMs, which are trained

without pixel supervision and often provide coarse resolu-

tion. Therefore, it enables a better CNN visualization and

interpretation of CNN predictions. Furthermore, and unlike

standard deep AL methods that focus solely on the acquisi-

tion function, we considered using self-learning as a second

source of supervision to fast-improve the model segmen-

tation. Evaluating our method using a realistic AL proto-

col over two challenging benchmarks, our results indicate

that: (1) using a few supervised samples, the proposed ar-

chitecture yielded more accurate segmentations compared

to CAMs, with a large margin using different AL methods.

Thus, it provides a solution to enhance pixel-wise predic-

tions in real-world visual recognition applications. (2) us-

ing self-learning with random selection yielded substantial

improvements. Self-learning under a limited oracle-budget

can, therefore, provide a cost-effective alternative to stan-

dard AL protocols, where most of the effort is spent on the

acquisition function.
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