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Abstract

We present a novel approach for RANSAC-based compu-

tation of the fundamental matrix based on epipolar homog-

raphy decomposition. We analyze the geometrical meaning

of the decomposition-based representation and show that

it directly induces a consecutive sampling strategy of two

independent sets of correspondences. We show that our

method guarantees a minimal number of evaluated hypothe-

ses with respect to current minimal approaches, on the con-

dition that there are four correspondences on an image line.

We validate our approach on real-world image pairs, pro-

viding fast and accurate results.

1. Introduction

One of the basic building blocks in computer vision is

the computation of epipolar geometry given a set of puta-

tive image point correspondences. Often, such correspon-

dences include mismatches, therefore a robust estimation

method needs to be carried out. The most common method

used is RANSAC [9]. RANSAC-based computation of the

fundamental matrix iteratively samples a minimal set of pu-

tative correspondences and hypothesizes the fundamental

matrix parameters. The goodness-of-fit of each hypothe-

sis is evaluated with respect to the whole set of the puta-

tive correspondences. The number of evaluations at each

iteration is between one to three, depending on the number

of possible solutions. This process is repeated until a pre-

defined number of iterations is exceeded. One of its key

limitations is that in the presence of a considerable amount

of mismatched points’ correspondences, a large number of

hypotheses’ evaluations is needed in order to obtain a reli-

able model. The number of the required hypotheses is di-

rectly related to the number of points needed to be sampled

in order to hypothesize the fundamental matrix parameters.

From a geometrical point of view, the minimal sample size

is at least seven [11]. Minimal sample approaches have been

proposed requiring only six [28] or five points’ correspon-

dences [24, 1], with additional knowledge regarding the pa-

Figure 1. Our approach matches points on line segments in the

images without the need for the full computation of the funda-

mental matrix. Based on the matched points and line segments,

we use our reformulation to compute the epipolar homography

and reduce the required number of RANSAC iterations for the

full computation. The red points are the matched putative point

correspondences which are aligned on line segments (blue lines)

in the image planes. The green lines are epipolar lines which are

not known a-priori and do not take part in the matching process.

The matching process is based on the computation of the epipo-

lar homography which, unlike commonly used methods, does not

require the knowledge of epipolar line correspondences.

rameters or the scene.

We present a method that can reduce the minimal num-

ber of RANSAC hypotheses’ evaluations beyond the cur-

rent known minimum. Our approach, similar to approaches

that require less than seven correspondences, assumes addi-

tional knowledge. We require that a single line segment ex-

ists in the image with four correspondences and show exper-

imentally that such a configuration is common. Given such
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a configuration, we show that our approach guarantees a

minimal number of hypotheses’ evaluations. In cases where

such a configuration does not exist, standard RANSAC can

be applied with overall small overhead. Hereafter, when re-

ferring to RANSAC iterations, we will refer to the actual

number of hypotheses’ evaluations which depends upon the

number of solutions per hypothesis.

We compute the fundamental matrix in two steps. In the

first step, we sample three points on a line segment. We

compute the epipolar homography and validate its goodness

of fit using at least one additional point, without the full

computation of the fundamental matrix. In the second step,

the recovered matches are fixed and the remaining points’

matches are recovered by sampling, without any restriction.

Our approach is based on the computation of the epipolar

homography. Existing methods for the computation of the

epipolar homography [13, 23, 5, 10, 11] require the knowl-

edge of (at least) three corresponding epipolar lines and, as

a consequence, are rarely used in practice. We show how to

compute the epipolar homography without a-priori knowl-

edge of epipolar lines. Figure 1 shows the recovered four

matches in the first step of our approach and the extracted

epipolar lines based on our epipolar homography computa-

tion.

This paper therefore contributes by presenting: (a) a re-

formulation of the fundamental matrix based on epipolar

homography decomposition and an analysis of its geomet-

rical meaning, (b) a novel two steps RANSAC-based ap-

proach for the computation of the fundamental matrix that

can markedly reduce the required number of hypotheses’

evaluations and (c) an efficient implementation and a vali-

dation of our approach on real-world image pairs showing

that it is accurate and applicable.

2. Related Work

The most common approaches for the computation of

the fundamental matrix are the seven or eight point algo-

rithms [11]. The eight-point algorithm [15] which was

adapted for the fundamental matrix, was made practical by

[12]. It is based on the normalization of the points’ corre-

spondences, and computes the parameters based on the Di-

rect Linear Transform (DLT) by enforcing the rank 2 con-

straint [17]. The seven points algorithm relaxes the eight

points requirement by an additional zero determinant con-

straint of the matrix, resulting in a cubic equation with one

or three real solutions.

Various minimal methods assume additional knowledge

in order to reduce the required number of correspondences.

If the camera parameters are known, the five-points algo-

rithm [18] can be used. Recently, Barath [1] proposed

an approach for the estimation of the fundamental matrix

based on five correspondences, in cases where three co-

planar point correspondences and the rotation of features

are known. Ben-Artzi et al. [4] showed that in case the in-

tensity of the epipolar lines are similar across views, two

corresponding points are sufficient for the computation of

matching epipolar lines, and can be used for recovery of the

fundamental matrix.

Methods attempting to empirically reduce the number of

RANSAC iterations have also been introduced [3, 6, 19].

Unlike such methods, our approach, as well as other mini-

mal methods, guarantees to reduce the number of required

samples and this number can be calculated in advance in

the same way as in standard RANSAC. In addition, our

approach has a true geometrical meaning (See Sec. 3),

whereas no geometrical analysis is possible in such meth-

ods.

The fundamental matrix can be computed based on the

epipolar homography [11, 8]. These methods require the

knowledge of epipolar line correspondences. Sinha [23] in-

troduced an approach for camera calibration based on the

computation of the epipolar homography and epipoles hy-

pothesizing. His approach was later improved by [5], who

directly recovered the epipolar lines required for the com-

putation of the epipolar homography by using the motion-

barcode descriptor. Similar approaches were introduced by

[13, 10] for the computation of the epipolar homography by

directly estimating the epipolar lines. However, all of the

above methods are only applicable to videos of dynamic

scenes. Wurfl et. al. [30] presented an approach for esti-

mating the fundamental matrix transmission imaging, based

on the epipolar homography formulation. They do not re-

quire explicit correspondences but rather sampling of all

edge pixels of the image. The computation of the relative

pose by general line homography based on line segments

was demonstrated by [20] but they required the matching

points to be the projection of existing 3D lines in the scene

and required at least two such lines.

3. Theoretical Background

Epipolar-Lines Based Parametrization. Let l, l′ be

corresponding epipolar lines, in the first and second image,

respectively. Let lp be a line that intersects l in the point p

and does not include the epipole. It follows that p = lp × l,

where × is the cross product. Since p is on l, it follows that

l
′

= Fp. Denote [·]x as the skew symmetric matrix associ-

ated with the cross product, we have the following mapping:

l
′

= F [lp]xl

where Hl = F [lp]x is the epipolar homography. The

seven degrees of freedom of the fundamental matrix is

constructed by the four degrees of freedom of the two

epipoles and the three degrees of freedom of the epipolar

homography [11]. The epipolar homography is obtained by

three corresponding epipolar lines.
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Figure 2. The pencil of epipolar planes. As the epipolar lines (red

lines) rotate around the epipoles (e,e’), their associated planes ro-

tate around the baseline.

Image-Points’ Based Parametrization. Consider the

set of epipolar lines passing through the epipole which is

denoted as the pencil of epipolar lines. As shown in Fig. 2,

the corresponding epipolar lines across images define a

plane which intersects the two retinal planes with its axis

as the baseline. When the corresponding epipolar lines ro-

tate around the epipoles, their corresponding planes rotate

around the baseline, defining the pencil of epipolar planes.

The two corresponding pencils of epipolar lines are related

by the epipolar homography based on the pencil of epipo-

lar planes [8]. Let (li, l
′

i) be corresponding epipolar lines in

the first and second image respectively. Let l̄, l̄′ be arbitrary

lines in the first and second image, such that the epipoles

e, e′ are not on the lines. The 2 × 2 epipolar homography

He maps between (li, l
′

i) based on their intersection points

with l̄, l̄′ as follows. Let x1, x2 ∈ l̄ and x′

1
, x′

2
∈ l̄′, denoted

as control points. The intersection points of (li, l
′

i) with l̄, l̄′

are xp = (x1 × x2)× li and xp′ = (x′

1
× x′

2
)× l′i, where ×

is the cross product and using homogeneous coordinates of

the control points from now on. Using the following iden-

tity

v × (u × w) = (vTw)u+ (−vTu)w

for u, v, w ∈ R
3×1, the intersection points can be written

as a linear combination of the control points as xp = αx1+
βx2 and xp′ = α′x′

1
+ β′x′

2
, where

α = lTi x2, β = −lTi x1, α′ = l′Ti x′

2
, β′ = −l′Ti x′

1
,

α, β, α′, β′ ∈ R. The 2 × 2 epipolar homography is

given by:

[
α′

β′

]

=

[
a b

c d

]

︸ ︷︷ ︸

He

[
α

β

]

(1)

Rewriting the corresponding epipolar lines as the cross

product of the epipoles and points on the epipolar lines, and

expanding the intersection points’ coefficients, we have the

following parametrization of the fundamental matrix:

Figure 3. The epipolar homography has three degrees of free-

doms. Existing methods compute the epipolar homography based

on epipolar lines. The points-based parametrization enables the

epipolar homography’s computation regardless of the epipole po-

sitions. On the left image, various epipole positions are valid for

the same epipolar homography. The parametrization of the inter-

section point xp of the epipolar line li is based on a linear combi-

nation α, β of selected fixed points on the lines, marked by the

striped points, intersecting the boundaries of the image. x′

p is

the corresponding intersection point of xp and is parametrized by

l̄′, α′, β′. See text for details.

F ≈
[
e2
]

x

[
x′

1
, x′

2

]
[
a b

c d

] [
xT
2

−xT
1

]
[
e1
]

x
(2)

Observation 1. The epipolar homography He maps

between the corresponding points xp, x
′

p based on their

representation as a linear combination of their respective

control points. It can be computed without knowledge of

the corresponding epipolar lines. Given the line segments

of the points, we select (fixed) control points on the lines

and represent the points as their linear combination. The

points-based parametrization of the pencil of epipolar lines

by their intersection with the lines l̄, l̄′ is shown in Fig. 3.

Observation 2. The required number of RANSAC

iterations for the full computation of the fundamental

matrix can be greatly reduced. First, we recover He

which is a three parameters model without the need for

the full computation of the fundamental matrix. We can

then recover four additional arbitrary correspondences

by relying on the recovered He. Let F (k, r) be the

required number of RANSAC iterations for a model with

k parameters, outlier rate r and success probability of

0.99. The required number of RANSAC iterations is now

F (3, r) + F (4, r) instead of F (7, r). Fig. 4 shows the

required number of RANSAC iterations for the compu-

tation of the fundamental matrix by our approach and

existing minimal methods, as a function of the outlier

rate. Our approach can be implemented based on the

seven-point or eight-point algorithm; both are presented in

the figure. The number of RANSAC iterations is computed

assuming one solution per sample and no additional

overhead for any of the methods. In Sec. 6, we present
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Figure 4. The theoretical number of RANSAC iterations for

the computation of the fundamental matrix by minimal methods.

7pts represents the seven-point algorithm and 5pts represents a

RANSAC-based approach requiring a sample size of five (e.g.

[1]). Ours-7pts represents our approach based on the seven-point

algorithm and Ours-8pts represents our approach based on the

eight-point algorithm.

Figure 5. The mapping of a point on the left image to the corre-

sponding epipolar line on the right image by the fundamental ma-

trix, parametrized by points-based epipolar homography He: (a)

from a point x to epipolar line l based on the known epipole e1,

(b) from the epipolar line l to the intersection point xp with a fixed

arbitrary image line l̄, (c) from the intersection point xp to the cor-

responding intersection point x′

p with a fixed arbitrary line l̄′ and

(d) from the point of intersection x′

p to the epipolar line l
′

based

on the known epipole e2.

the expected number of RANSAC iterations based on the

actual number of solutions per sample in the tested datasets.

Observation 3. The lines l̄, l̄′ with the corresponding

points are arbitrary line segments in the images. Figure 5 il-

lustrates the mapping of points in the first image to lines in

the second image, based on the parametrization of the fun-

damental matrix using the points-based epipolar homogra-

phy (Eq. 2), given l̄, l̄′.

Figure 6. We match points on line segments without the need to

explicitly compare between lines across images. In each image,

Hough transform is carried out and a shared accumulator of size

N ×K1 ×K2 is updated independently, where N is the number

of correspondences, K1 is the number of lines in the first image

and K2 is the number of lines in the second image.

4. Line Segments with Corresponding Points

In this section we describe how to find the lines l̄, l̄′

across images with the maximum number of putative cor-

respondences. For each image, our approach does not re-

quire knowledge of the points and lines in the other image,

which allows parallel implementation. The key idea is to

use Hough transform [7] to detect the lines independently

in each image and update a joint accumulator which can be

queried only after the process is completed. Fig. 6 illustrates

the matching process of corresponding lines across images.

Let I1, I2 denote a pair of images. Let X =
{(xi, x

′

i)}i=1..N denote the set of ordered pairs of unique

putative corresponding image points where xi, x
′

i ∈ R
2

are image points in I1, I2, respectively. Let X̄ = {xi}
N
i=1

,

X̄ ′ = {x′

i}
N
i=1

. We create binary images B1, B2 such that

for each pixel yi in I1, B1(yi) = 1 if yi ∈ X̄ otherwise

B1(yi) = 0, and similarly for B
′

2
. We use Hough transform

[7] to extract the ordered set of lines L1 = {li}
K1

i=1
, L2 =

{l′i}
K2

i=1
in B1, B2, respectively. We consider only lines with

at least four correspondences. This requirement is due to the

robust estimation process of the homography (See Sec. 5),

where we sample three points and need at least one addi-

tional point to estimate the quality of the hypothesized ho-

mography.

We define a multidimensional array, an accumulator A

of size N ×K1 ×K2, where K1 and K2 are the number of

lines in L1 and L2, respectively, and N is the number of pu-

tative corresponding points. The accumulator is initialized

to zero. Let D1(j) ⊂ {1...K1} be the indices of nearby

lines in L1 for a point xj in image I1,

D1(j) =
{
i|li ∈ L1, xj ∈ X̄, d(xj , li) < C

}
, (3)

where d is the point to line distance and C is the con-

stant representing the required distance between the lines

and points. For each point xj in the first image, we in-

crement the accumulator according to its nearby lines in
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the first image and all existing lines in the second image,

A(j,m, n)+ = 1 s.t.

{
(j,m, n)|m ∈ D1(j), n ∈ {1...K2}

}
, (4)

For each point x′

j in the second image, D2(j) ⊂
{1...K2} is defined similarly and the accumulator entries

(j,m, n) are incremented according to

{
(j,m, n)|m ∈ {1...K1}, n ∈ D2(j)

}
, (5)

The pair of matching lines with the maximum number of

putative correspondences are given by (lm∗ , l′
n

∗) where

(m∗,n∗) = argmax
m,n

∑

j

A(j,m, n), (6)

In case there is more than a single line we randomly se-

lect one.

5. Separable Four Points Fundamental Matrix

Given a set of putative correspondences

{(xi, x
′

i)}i=1..N , we compute the fundamental matrix

by two steps. Our computation is based on RANSAC. We

assume inlier ratio R, epipolar homography inlier threshold

T1 and fundamental matrix inlier threshold T2.

Step One. Based on Sec. 4 , we recover (lm∗ , ln∗),
which are the corresponding image lines with the maximum

number of K putative corresponding points (xi, x
′

i)1..K .

We select fixed control points for each line lm∗ and ln∗ .

The points are selected on the intersection of the lines and

the boundaries of the images. For each pair of putative

corresponding points on the lines, we compute their

representation by the control points with the two possible

orientations and use the second one only if the first fails.

We use RANSAC to recover the epipolar homography.

We iteratively sample three putative corresponding points,

compute the epipolar homography, transfer each point on

the line to the corresponding line, and count the number of

inliers based on the Euclidean distance and the threshold

T1. The number of required iterations for the three param-

eter model is often small. For example, for an outlier rate

of 60%, we need only 71 iterations to recover the correct

model with a confidence of 99%. Note that although we

sample three points, we require at least four corresponding

points on line segment; the additional points are used for

validation of the hypothesized epipolar homography.

Step Two. Given the three points selected, we iteratively

sample four additional points and compute the fundamental

matrix based on the seven points algorithm. The number

of iterations is computed based on R with respect to four

parameters. We count the number of inliers based on T2

Pairs Ground truth

Strecha 569 Given

Flickr 2000 COLMAP

Tanks and Temples 2000 COLMAP

Table 1. The datasets. For both Flickr and Tanks and Tem-

ples we obtained the ground truth fundamental matrices based on

COLMAP reconstruction.

with respect to the symmetric epipolar distance [11]. For

the same case as above of an outlier rate of 60%, for the

four parameters’ model we need only 178 iterations.

The above refers to the implementation of our approach

based on the seven points algorithm. For implementation

based on the eight points algorithm, we sample five points

instead of four in the second step.

6. Experiments

6.1. Datasets

We conduct experiments on the following real world

datasets: (1) The Strecha datasets [25] which include

ground truth cameras and reconstruction, (2) The Tower of

London sequence from the Flickr dataset [29], where the

images were downloaded from Flickr based on geotag. It

includes images captured by the community at random cam-

era positions with a large variety of urban outdoor scenes,

and (3) The Family sequence from the Tanks and Temples

dataset [14], which includes wide baseline camera poses,

with medium sized images captured by a hand-held camera

in an urban yard scene.

For the last two datasets, we sampled 2000 image pairs

with at least 20 matches with a symmetric epipolar distance

of less than or equal to 1 pixel with respect to the ground

truth, and used them for the evaluation. We show that our

approach is able to successfully compute the fundamental

matrices for these real-world diverse sets of image pairs,

leading to an efficient estimation process. Table 1 shows

the properties of the datasets.

6.2. Matching Co­Linear Points

In this subsection, we discuss the matching process of

corresponding lines with at least four points, based on the

Strecha dataset.

How Many Lines? On average, the Hough transform

recovers 286.4 independent lines in each image. Out of

all possible pairs of matched lines, the average number of

lines with corresponding points across a pair of images is

3354.91, including lines with outliers. 45.8% (1538.84)

of the matched lines are lines with at least four correspon-

dences, where a corresponding point might be either inlier

or outlier.
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Figure 7. The probability for a given number of inliers in matched

lines. The x-axis is the number of inliers and the y-axis is the

probability. The average number of inliers is 5.83.

Figure 8. The cumulative distribution function (CDF) of the line

homography error in matched lines. The x-axis is the error in pix-

els and the y-axis is the probability. 99% of the inliers are with a

homography error of equal to or less than 0.5.

Quality of Lines. Overall, we would like to match lines

with a high number of inliers and a low homography er-

ror. The average number of points, including outliers, on

matched lines is 7.62. The average number of inliers on

corresponding lines is 5.83, for a homography threshold of

1. Fig. 7 shows the probability of having a given number of

inliers in matched lines, for such a homography error. Fig. 8

presents the probability for a given homography error on the

matched lines. The homography error of 97% of the inliers

is below 0.4 and 99% are below 0.5, which is used as our

default threshold.

Scene Structure. Our approach often successfully

matches lines in both near and far scenes and low and high

inlier rates. Fig. 9 shows examples from Tower of London

dataset of matched lines and corresponding points recov-

ered by our approach, with inlier ratios of 0.18, 0.28 and

Figure 9. Examples of matched lines recovered by our approach

for various scenes from Tower of London dataset. The red cir-

cles are the matched points on the corresponding lines and the

cyan dots are the putative correspondences. The inliers ratio are

0.18, 0.28 and 0.85 from top to bottom.

0.85, for various scenes. For the first and second row from

the top, there are 27 and 25 inliers out of 148 and 89 pu-

tative correspondences, respectively. For the last row, there

are 498 inliers out of 582 putative correspondences.

Missing Inliers Relative to RANSAC, our approach

failed to recover at least 20 inliers across images in 4.9%

of the cases. Qualitatively, these cases occur when there is

only a small number of inliers, both in the images and on the

recovered lines. For the failure cases, the average number of

inliers is 26.8 and the maximum is 34. Quantitative analy-

sis indicates that in such cases the best possible matching of

corresponding lines across images contains wrong or inac-

curate matches and the homography could not be recovered.

Fig. 10 shows such an example. The overall percentages of

failure cases over all datasets are presented in Table 5.

6.3. Evaluation

Methods. We compared RANSAC-based [9] and

LMEDS-based [21] computations of the fundamental ma-

trix based on the following minimal solvers’ methods:
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Figure 10. An example of a failure case. The the best possible

corresponding lines are with wrong matches and the homography

could not be recovered.

• RANSAC with the standard eight points algorithm, de-

noted as RANSAC.

• LMEDS with the standard eight points algorithm, de-

noted as LMEDS.

• State-of-the-art minimal solver of [1] combined with

GC-RANSAC [2], which is based on homography and

rotation information of five points, denoted as Hom-

Rot-5.

• RANSAC with our minimal sampling solver, using the

seven points algorithm based on two samples of three

and four points, denoted as Ours-RANSAC-4.

• RANSAC with our minimal sampling solver, using the

eight points algorithm based on two samples of three

and five points, denoted as Ours-RANSAC-5.

• LMEDS with our minimal sampling solver, using the

seven points algorithm based on two samples of three

and four points, denoted as Ours-LMEDS-4.

• LMEDS with our minimal sampling solver, using the

eight points algorithm based on two samples of three

and five points, denoted as Ours-LMEDS-5.

Methodology. For the baseline methods we performed

a grid-search over hyperparameters. For sequences with no

ground truth fundamental matrices, we reconstructed the se-

quences using COLMAP [22]. COLMAP is a general pur-

pose Structure-from-Motion (SfM) pipeline which globally

infers the 3D structure, leading to accurate results. We ob-

tained the camera poses and fundamental matrices, and used

them as the ground truth.

For all sequences, we used the SIFT [16] descriptor

to extract and match putative correspondences between all

pairs of images. We used the ground truth fundamental ma-

trices to evaluate the symmetric epipolar distance of the pu-

tative matching. Each image pair with less than 20 matches

within a symmetric epipolar distance of one is discarded.

Metrics. We report the average symmetric epipolar dis-

tance resulting from our approach and the baselines. Un-

less otherwise stated, we used a threshold of 3 pixels in

% inliers F-Score Mean

RANSAC 71.2 0.91 ± 0.05 0.61

LMEDS 71.1 0.88 ± 0.08 0.57

Hom-Rot-5 71.5 0.90 ± 0.06 0.60

Ours-LMEDS-4 62.4 0.81 ± 0.06 0.72

Ours-LMEDS-5 72.1 0.90 ± 0.05 0.59

Ours-RANSAC-4 61.7 0.82 ± 0.06 0.71

Ours-RANSAC-5 72.2 0.91 ± 0.05 0.58

Table 2. Results of the Strecha dataset, based on the ground truth

camera poses.

% inliers F-Score Mean

RANSAC 43.7 0.52 ± 0.08 0.63

LMEDS 43.2 0.53 ± 0.09 0.69

Hom-Rot-5 44.5 0.58 ± 0.08 0.61

Ours-LMEDS-4 41.6 0.51 ± 0.1 0.74

Ours-LMEDS-5 46.5 0.60 ± 0.09 0.57

Ours-RANSAC-4 42.9 0.51 ± 0.1 0.78

Ours-RANSAC-5 49.3 0.62 ± 0.09 0.54

Table 3. Results of Tower of London sequence from the Flickr

dataset.

% inliers F-Score Mean

RANSAC 45.4 0.72 ± 0.07 0.69

LMEDS 44.2 0.71 ± 0.08 0.68

Hom-Rot-5 45.5 0.78 ± 0.07 0.61

Ours-LMEDS-4 43.8 0.61 ± 0.09 0.71

Ours-LMEDS-5 45.7 0.71 ± 0.07 0.66

Ours-RANSAC-4 44 0.62 ± 0.08 0.69

Ours-RANSAC-5 48.1 0.73 ± 0.07 0.63

Table 4. Results of the Family sequence from the Tanks and Tem-

ples dataset.

our approach as the inlier threshold and 0.5 as the epipo-

lar homography threshold. We use a fixed homography’s

threshold over all the datasets, demonstrating its robustness.

We report the percentage of inliers found by each method,

and report the F-measure, where corresponding points with

symmetric epipolar distance less than 1 pixel with respect to

the ground truth fundamental matrix is considered as posi-

tive.

6.4. Accuracy

Strecha. The dataset contains eight multi-view collec-

tions of high-resolution images (3072 × 2048), provided

with ground truth camera poses. For the computation of

matching lines with putative corresponding points across

images, we sampled 150 putative correspondences, and

used these lines with respect to all existing points’ corre-

spondences. We used SIFT ratio-test of 0.75. The binary

images used for matching the lines (Sec. 4) are of a lower

resolution, as suggested in [26, 27], and the points coor-

dinates are resized accordingly. Unless noted otherwise,

the width resolution of 512 was used for the line matching

phase with the original aspect ratio. The reported results are

with respect to the original resolutions. The sequences are
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Figure 11. The expected number of RANSAC iterations based on

the actual number of solutions per sample in the 7-point algo-

rithm and the additional preprocessing iterations required by our

approach.

RANSAC Iterations %Failure

RANSAC 2931 -

Hom-Rot-5 671 4.3

Ours-RANSAC-4 627 7.2

Ours-RANSAC-5 643 5.1

Table 5. The number of RANSAC iterations and failure cases rel-

ative to RANSAC for all three datasets.

of images with varying distances between focal points with

a total of 569 valid image pairs. As suggested in [1], we

used the five-points’ solver of [1] within the GC-RANSAC

[2] estimator. Table. 2 presents our results.

Flickr. The dataset obtained by downloading images of

specific scenes from Flickr represents the most challeng-

ing case. The images captured random scenes at different

times, with various cameras from very different positions.

We use the Tower of London sequence for comparison. We

reconstruct the sequence using COLMAP[22] and use the

reconstruction as ground truth. The results are presented in

Table 3, where it can be seen that our RANSAC-based eight

points approach clearly outperforms all other methods.

Tanks and Temples. The dataset includes medium-

resolution images (1920 × 1080). For comparison, we

used the Family sequence. As ground truth, we use the

COLMAP Reconstruction. As shown in Table 4, our

RANSAC-based eight points approach recovered the

highest number of inliers, with mean error similar to [1].

Both outperform the baselines.

6.5. Efficiency

We measured the number of RANSAC iterations re-

quired by each method and the number of failure cases. For

the total number of RANSAC iterations, we also consider

all validation iterations. For methods which are based on

the seven points algorithm, both ours and the baseline, there

might be more iterations than the theoretical number of re-

quired samples. A failure is considered if the solver has not

been able to accurately recover at least 20 matches, in case

there are indeed such ground truth matches.

The solver of [1] is combined within another robust esti-

mator framework, the GC-RANSAC [2]. We execute only

the solver itself with the optimal number of iterations as

an initialization. Our approach starts by finding the match-

ing lines with the maximum number of putative correspon-

dences (Sec. 5). Based on our experiments the runtime of

our lines’ matching step is equivalent to 71 RANSAC it-

erations and the number of solutions per sample for the 7-

point algorithm is 2.43. To reduce the additional overhead

associated with our matching step we use instead the stan-

dard eight points’ RANSAC for inlier ratio less than 0.3.

For such inlier ratio the 8-point algorithm requires only one

hypothesis’ evaluation per sample, with overall 9-78 itera-

tions instead of 20-132 for the 7-point algorithm. Fig. 11

presents the required number of iterations by the different

approaches based on the actual number of solutions per

sample including the additional iterations required by our

matching lines phase.

Table 5 shows the percentage of cases that failed for each

approach and the average number of iterations, over all the

three datasets, the Strecha, Flickr and Tanks and Temples.

Our approach significanly reduces the required number of

hypotheses’ evaluations.

7. Conclusion

We presented a novel approach for the computation of

the fundamental matrix based on epipolar homography de-

composition. Our approach can reduce, both theoretically

and practically, the number of required iterations to a new

minimal number. The standard RANSAC procedure can be

incorporated into our approach, providing an overall robust

and efficient solution which is well suited for Structure from

Motion (SfM) pipelines.
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