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Abstract

The performance of DNNs trained on clean images has

been shown to decrease when the test images have common

corruptions. In this work, we interpret corruption robust-

ness as a domain shift and propose to rectify batch normal-

ization (BN) statistics for improving model robustness. This

is motivated by perceiving the shift from the clean domain to

the corruption domain as a style shift that is represented by

the BN statistics. We find that simply estimating and adapt-

ing the BN statistics on a few (32 for instance) represen-

tation samples, without retraining the model, improves the

corruption robustness by a large margin on several bench-

mark datasets with a wide range of model architectures. For

example, on ImageNet-C, statistics adaptation improves the

top1 accuracy of ResNet50 from 39.2% to 48.7%. More-

over, we find that this technique can further improve state-

of-the-art robust models from 58.1% to 63.3%.

1. Introduction

In the past few years, deep learning has shown unprece-

dented performance in various vision tasks [22, 28, 20, 44,

37, 60, 59, 14, 32, 43, 33, 56, 34]. However, models are

still widely known to be vulnerable to adversarial examples

[48, 21], leading to significant attention on adversarial ro-

bustness [6, 57, 58, 7, 4, 8]. In practice, common corrup-

tions [24], such as Gaussian noise, have also shown to de-

crease the performance non-trivially, causing critical con-

cerns for the need to improve corruption robustness.

In a parallel line of research on domain adaptation [5, 12,

15, 16, 49], an unlabeled target domain dataset is exploited

to improve the model generalization capability to a target

domain. Roughly speaking, the clean images and corrupted

images can be seen as coming from different domains:

clean (source) domain and corruption (target) domain, re-

spectively. Despite this conceptual similarity between do-

main adaptation and corruption robustness, the community

Figure 1. Improving corruption robustness by rectifying the BN

statistics. An image under corruption changes the prediction from

“German Shepherd” to “Beaver”. After rectifying the BN statis-

tics, the corrupted image is classified correctly.

tends to treat them as two distinct issues: Domain adapta-

tion usually has a predefined target domain with unlabeled

dataset [15, 16], while corruption robustness normally does

not assume such a predefined corruption type [25]. One

straightforward solution to improve the corruption robust-

ness is performing data-augmentation with corrupted im-

ages during training. The limitation of this solution is that a

model trained on images of a certain corruption type might

be vulnerable to another type of corruption. For exam-

ple, it has been shown that a model trained with Gaussian

noise augmentation increases the robustness against Gaus-

sian noise, which is expected while decreasing the robust-

ness against contrast and fog corruptions [19, 55].

Given the constraint that the corruption type is unknown

during the training stage, we can still exploit the corruption

type during the inference stage. It is reasonable to assume

that the corruption variant will not change for a short pe-

riod during inference. For example, in autonomous driving,

the weather condition is highly likely to be stable at least

in a short period in most cases, thus, the system can cap-
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ture a stream of unlabeled images to represent the current

weather condition. With a few representation samples, it

is meaningless as well as impractical to directly apply the

general domain adaptation techniques for retraining to im-

prove robustness. In domain adaptation, there is a line of

work adapting the feature statistics instead of adapting fea-

tures [47, 10, 36, 45]. Among them, what is most applicable

in the context of corruption robustness is adaptive batch nor-

malization (AdaBN) which simply adapts the batch normal-

ization statistics without the need to retrain the model [36].

BN [30] has been widely adopted in modern DNNs, for

example, most (if not all) seminal classification models,

such as ResNet [22], DenseNet [28], ResNeXt [54], use

BN by default. Moving average is often applied over the

training dataset to estimate the population statistics for in-

ference [30]. This inevitably causes a shift in the statistics if

the test sample is from a corruption domain different from

the domain where the statistics were estimated. As indi-

cated in Figure 1, we investigate and find that such influence

on the model performance can be at least partially mitigated

by estimating and adapting the statistics with a few repre-

sentation samples from the corruption domain. Our inves-

tigation suggests that the model robustness against corrup-

tions can be significantly improved by applying this simple

yet effective technique.

Our contributions are summarized as follows:

• We interpret corruption robustness as a domain adap-

tation problem, inspired by which we investigate the

effectiveness of adapting BN statistics on model cor-

ruption robustness.

• On several benchmark datasets, including CIFAR10-

C, CIAR100-C, ImageNet-C, we demonstrate that

simply adapting BN statistics can significantly im-

prove the model corruption robustness.

• We show that the technique is also orthogonal to cur-

rent SOTA methods that improve the corruption ro-

bustness. For example, the accuracy of the SOTA

method “DeepAugment + AugMix” can be improved

from 58.1% to 63.3%.

2. Related works

2.1. Batch Normalization

BN was originally introduced to reduce the covariate

shift for faster convergence [30]. It has been found in [46]

that BN leads to fast convergence due to the smoothed opti-

mization landscape. One recent work [1] revisits the inter-

nal covariate shift and argues that it is crucial to understand

how BN works. The success of BN has also been found to

be connected to the decoupling of length and direction [35].

Even though the mechanism of how BN helps training re-

mains not fully clear, the phenomenon that BN boosts the

performance and convergence is empirically proven in a

wide range of works [22, 28]. BN also has a regulariza-

tion effect due to the mini-batch stochasticity and increases

the model generalization capability [38]. Recently, BN has

also been explored for its impact on adversarial robust-

ness [9, 53, 2]. For example, BN has been found to in-

crease standad accuracy while at the cost of adversarial ro-

bustness [9] and the reason is attributed to BN shifting the

models to rely more on non-robust features.

A large batch size is required for BN, which limits its

applications. Layer normalization [3] addresses this issue

by exploiting the channel dimension instead of the batch di-

mension. For the purpose of style transfer, instance normal-

ization (IN) [50], which only performs normalization on the

individual feature channel, has also been explored. Inspired

by the interpretation in [29] that IN performs a form of style

normalization, Batch-Instance normalization has been pro-

posed in [42] for automatically learning to normalize only

disturbing styles while preserving useful styles. More re-

cently, Group normalization (GN) has been proposed to per-

form normalization with groups of channels [52].

2.2. From domain shift to corruption robustness

In practice, the distribution shift occurs as a major con-

cern [15, 19]. To address this concern, numerous works

assume having access to unlabeled samples from the tar-

get domain and bridge the gap between the source domain

and target domain by applying the techniques of domain

adaptation [15, 16, 49, 26, 27]. Another line of work fo-

cuses on the model robustness to common corruptions [24],

which can also be seen as domain shift, i.e. gap between

clean domain and corruption domain. Hendrycks et al. es-

tablished rigorous benchmarks for image classifier robust-

ness by introducing ImageNet-C which is a variant of Im-

ageNet with common corruptions [24]. Benchmarking ro-

bustness on other applications [41, 31] has also been pro-

posed, demonstrating the community’s interest in corrup-

tion robustness. To improve corruption robustness, data

augmentation can be one straightforward solution, however,

the augmented model can not be generalized to other cor-

ruptions. For example, [19] has shown that augmentation

with Gaussian noise improves the model robustness against

Gaussian noise while reducing the robustness against con-

trast and fog corruptions [19]. Training on images with

transformed style has been found to improve the corrup-

tion robustness [18]. AugMix has been proposed in [25] as

a simple prepossessing method combining consistency loss

for improving robustness to unseen corruptions. Recently,

DeepAugment has been proposed [23] and combined with

AugMix achieves SOTA corruption robustness.

2.3. Aligning or Adapting feature statistics

The above methods of improving robustness to common

corruptions often require training the model on a special
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dataset or adopting a specially designed augmentation tech-

nique. In domain adaptation, aligning or adapting feature

normalization statistics, i.e. mean and variance, has been

found beneficial for bridging the gap between the source

domain and target domain [47, 10]. Adaptive Batch Nor-

malization (AdaBN), has been proposed in [36] showing

that adapting the statistics with target domain images im-

proves the performance on the target domain. In this work,

we explore the effectiveness of adapting BN statistic with

a few representation corruption samples to improve the cor-

ruption robustness. Somewhat surprisingly, we find that this

simple technique can improve the corruption robustness by

a significant margin.

3. Background and motivation

3.1. Revisiting classical batch normalization

We briefly summarize how BN works in practice. For a

certain layer in the DNN, the feature layers of a mini-batch

are represented by B = {x1, ..., xm}. During training, BN

performs normalization on this mini-batch as follows,

x̂i =
xi − µB

σB

· γ + β (1)

where γ and β denote the learnable parameters scale and

shift, respectively. In the remainder of this paper, we ignore

γ and β for simplicity. For 2D images, the mean µB and

variance σ2

B
for a feature layer xi of spatial width W and

height H , are calculated as:

µB =
1

M

1

W

1

H

M∑

i=1

W∑

j=1

H∑

q=1

xjq
i ,

σ2

B =
1

M

1

W

1

H

M∑

i=1

W∑

j=1

H∑

q=1

(xjq
i − µB)

2.

(2)

where j and q indicate the spatial position of the feature

layer. BN works in different modes during training and test

stage. During the training stage, the normalization depends

on the mini-batch statistics to ensure stable training, while

this dependency becomes unnecessary during the test stage.

Thus, the population statistics are adopted to make the in-

ference depend on the individual input in a deterministic

manner. Empirically, this population statistics µP and σ2

P

are estimated over the whole training dataset through mov-

ing average. It is worth mentioning that µB and σ2

B
are al-

most the same as µP and σ2

P
, thus, in general, there is no

mismatch in the BN statistics during training and testing.

3.2. BN statistics: Style instead of content

The information of an image can be described through

content and style information [17]. Instance Normalization

(IN) [51] was introduced to discard instance-specific con-

trast information from an image during style transfer. For a

feature layer its individual mean and variance can be com-

puted as:

µi =
1

W

1

H

W∑

j=1

H∑

q=1

xjq
i , σ2

i =
1

W

1

H

W∑

j=1

H∑

q=1

(xjq
i −µi)

2.

(3)

According to [29], FCi =
xi−µi

σi

indicate the feature con-

tent inherent to the sample by performing a form of style

normalization, namely µi and σ2

i . It has been shown in [29]

that simply adjusting the mean and variance of a genera-

tor network can control the style of the generated images.

BN normalizes feature statistics for a batch of samples in-

stead of a single sample. Thus, BN can be intuitively under-

stood as normalizing a batch of samples with different con-

tents to be centred around a single style. With this under-

standing, the population statistics µP and σ2

P
represent the

style information instead of the content information in xi.

To verify this hypothesis, we measure the absolute differ-

ence for BN statistics under different network inputs. The

BN statistics are calculated for a randomly selected layer.

The statistics are either calculated for samples from the Im-

ageNet test dataset (indicated by µ, σ2), or its corruption

variants corrupted through Gaussian noise (indicated by µc,

σ2

c ). We averaged the results over 100 batches and present

them in Figure 2. Comparing different batches coming from

the same distribution (either corrupted or uncorrupted) we

observe that the BN statistics are very similar and do not de-

viate much, indicating that these batches indeed have sim-

ilar styles despite different content. Comparing batches of

clean samples and corrupted samples, a relatively greater

difference can be observed in the BN statistics for the same

or different content. Overall, these results suggest that BN

statistics are mainly determined by the mini-batch style in-

stead of their content.

3.3. Motivation for rectifying batch normalization

To motivate our approach, we first showcase the influ-

ence of input corruptions on the BN statistics. To measure

the shift caused by corruptions, we treat each feature out-

put as a vector [58] and adopt the cosine similarity cos be-

tween the feature output of a clean batch and a corrupted

one and finally average over the batch size. The more simi-

lar two feature layer outputs, the more close the cos value is

to 1 [58]. A value of 0 indicates that the two feature outputs

are maximally dissimilar.

In Figure 3, we visualize the cosine similarity for a stan-

dard model over 5 severity levels of Gaussian noise corrup-

tion (blue line). With increasing severity the cosine similar-

ity decreases indicating a greater deviation of the two fea-

ture layer outputs. To demonstrate that this degradation can

be mitigated by rectification of the BN statistics, we com-
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Figure 2. Absolute distance between the mean (top) and variance

(bottom) for either the same or different batches of clean or cor-

rupted samples. The results are averaged over 100 measurements.

The statistics were calculated for a randomly selected layer of

ResNet50 pretrained on ImageNet.

pute the cosine similarity between the feature layer output

of the original model and a rectified model for corrupted

input samples (see Figure 3 orange line). We observe that

rectifying the BN statistics improves the cosine similarity

values over all severity values. The results support our hy-

pothesis that the performance degradation caused by cor-

ruptions can be attributed to the shifted style information in-

duced through the corruptions. This observation motivates

us to rectify the BN statistic with a small number of samples

to improve model robustness under corruptions.

Figure 3. Cosine similarity between different feature outputs for a

ResNet50 (ImageNet). The blue line indicates the cosine similar-

ity between feature outputs of clean and corrupted images evalu-

ated on the not yet rectified model. The orange line shows the sim-

ilarity between feature outputs of clean images and feature output

of corrupted images evaluated on the rectified model.

In practice, it is not challenging to obtain a reasonably

small number of representation samples. For example, in

the scenario of autonomous driving, weather conditions can

change from day to day but tend to be consistent over a

shorter time-frame. Thus a system can capture a few images

(without labels) after a significant change in the conditions.

4. Experimental Setup

ImageNet-C was proposed by [24] to benchmark

neural network robustness against common corruptions.

ImageNet-C has the same image content as that of the Im-

ageNet validation dataset (1000 classes and 50 images for

each class) but perturbed with various corruptions. Specifi-

cally, there are 15 test corruptions and another four hold-out

corruptions. Similar to [25], we evaluate on the 15 test cor-

ruptions. Each corruption type has 5 different severities.

The same authors proposed similar datasets for CIFAR10

and CIFAR100, termed CIFAR10-C and CIFAR100-C re-

spectively.

To rectify the BN statistics we randomly select a batch

of 32 representation samples from the corruption dataset of

the respective severity. We calculate µB and σ2

B
according

to Eq. 2 and update the population statistics with them.

We evaluate the performance of rectifying the BN statis-

tics on various models trained on the corresponding clean

dataset. A wide range of state-of-the-art models is adopted

for evaluation. Following Hendrycks et al. we adapt the

corruption error (CE) as a metric

CEf
c =

∑
5

s=1
Ef

s,c∑
5

s=1
EAlexNet

s,c

, (4)

where Ef
s,c indicates the error for model f evaluated under

corruption c for severity s. The mean over the different cor-

ruption types results in the mean CE indicated by mCE from

here on. Additionally, we report the top1 accuracy (Acc),

also averaged over the different corruption types. We indi-

cate the metrics after adaptation with an asterisk, i.e. mCE*,

and Acc* to differentiate from that before rectification. For

the Acc metric the higher the better, while for the mCE the

lower the better.

5. Experimental Results

5.1. Evaluation on CIFAR10­C and CIFAR100­C

First, we provide evidence for the effectiveness of our

proposed method rectifying the BN statistics to increase

corruption robustness on the CIFAR10-C and CIFAR100-

C benchmark datasets. To showcase the general applicabil-

ity of our approach we rectify the BN statistics on a vari-

ety of models. The results for CIFAR10-C and CIFAR100-

C are reported in Table 1 and Table 2, respectively. For

both datasets rectifying the BN statistics improves the ro-

bustness by a significant margin across all tested models.

For CIFAR10-C, the accuracy of most models is improved

by around 10% points. The lowest performance increase

is observed on ResNet-20, which is still around 5% points.
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Notably, ResNet-20 also exhibits the lowest initial robust-

ness with an mCE of 106.4% indicating being less robust to

corruptions than AlexNet, but with an mCE of 90.7% after

rectification.

In the case of CIFAR100-C, a trend can be observed that

the models with higher capacity exhibit a higher initial ac-

curacy and also show a higher performance increase after

rectification of the BN statistics. In particular, WRN-28-

10, ResNeXt-29, and DenseNet all enjoy a robust perfor-

mance increase of more than 12% points while the rela-

tively smaller ResNet-20, ResNet-56, and VGG-19 increase

by around 5% points.

Overall, the CIFAR-C results suggest that rectifying the

BN statistics results in a minimum accuracy increase of 5%
points but more often 10% and higher. This suggests that

rectification of BN statistics is a simple yet effective tech-

nique to boost model robustness against common corrup-

tions.

Table 1. Evaluation results on CIFAR10-C.
Model Acc Acc* mCE mCE*

ResNet-20 68.2 73.0 106.4 90.7

ResNet-56 70.7 81.4 98.5 63.0

ResNet-18 73.9 84.3 87.9 53.0

ResNet-50 74.0 83.1 87.4 57.6

VGG-19 72.9 81.0 90.1 63.7

WRN-28-10 78.4 86.8 73.1 44.5

ResNeXt-29 75.0 85.5 85.1 49.9

DenseNet 76.7 87.6 80.3 42.4

Table 2. Evaluation results on CIFAR100-C
Model Acc Acc* mCE mCE*

ResNet-20 38.9 44.5 96.1 87.4

ResNet-56 43.8 48.0 88.5 81.9

VGG-19 45.3 51.4 86.1 76.6

WRN-28-10 53.0 65.3 74.1 54.8

ResNeXt-29 52.7 66.0 74.6 53.7

DenseNet 52.9 65.8 74.5 54.2

5.2. Evaluation on ImageNet­C

Besides CIFAR, ImageNet is another commonly used

benchmark-dataset to evaluate classification accuracy. As

above, we adopt its corrupted version ImageNet-C to eval-

uate the performance of different benchmark models ob-

tained from the torchvision repository. The results

are presented in Table 3. The results show that a change

in the BN statistics can also result in significant perfor-

mance improvements of up to 10% points. Similar to the

trend observed on CIFAR100-C, we note a trend that mod-

els of relatively higher-capacity (Wide Resnet, ResNeXt,

and DenseNet) exhibit a higher initial accuracy (higher than

46%) compared to the relatively smaller models. How-

ever, opposed to the trend on CIFAR100-C, the performance

improvement on the relatively smaller models is slightly

larger.

Table 3. Evaluation results on ImageNet-C with the pretrained

models provided in torchvision.

Model Acc Acc* mCE mCE*

VGG-19 (BN) 35.4 45.5 81.6 69.3

ResNet 18 32.9 41.8 84.7 73.7

ResNet 50 39.2 48.7 76.7 64.9

Wide ResNet 101 46.3 51.7 67.7 60.9

ResNeXt 101 47.1 53.9 66.7 58.2

DenseNet 161 47.6 54.7 66.4 57.4

5.3. Evaluation on state­of­the­art models

The above pretrained models are not optimized for im-

proving the model robustness against common corruptions.

We further test whether a similar performance boost can be

observed on models that are optimized for achieving state-

of-the-art robustness. AugMix was proposed in [25] as a

simple preprocessing method together with a consistency

loss. Despite simplicity, it achieves competitive robustness

against corruptions, outperforming other approaches by a

large margin. More recently, it was proposed to strengthen

AugMix by combining it with DeepAugment, achieving

state-of-the-art performance [23]. The adopted model ar-

chitecture is ResNet50. The comparison results are shown

in Table 4. Compared with the baseline (vanilla ResNet50),

training with “AugMix” and “DeepAugment + AugMix”

improves the corruption robustness by a large margin. Strik-

ingly, we observe that adapting the BN statistics also im-

proves the accuracy from 48.3% to 56.7% for “AugMix”.

For the SOTA training method “DeepAugment + AugMix”,

adapting the BN statistics can still non-trivially improve the

accuracy from 58.1% to 63.3%. Similar robustness can also

be observed for the metric of mCE.

Table 4. Evaluation results on ImageNet-C with state-of-the-art

models.
Model Acc Acc* mCE mCE*

Baseline 39.2 48.7 76.7 64.9

Augmix 48.3 56.7 65.3 55.0

DeepAugment + Augmix 58.1 63.3 53.6 47.0

5.4. Evaluation on adversarially trained models

We further evaluate whether adversarially trained mod-

els [21, 40] can also benefit from rectifying the BN statis-

tics. For evaluation, we use the publicly available robust

ResNet-50 models for CIFAR10 and ImageNet from [13].

The models were adversarially trained with adversarial ex-

amples either bounded through an L2 or L∞ norm with an

upper bound of ǫ for a pixel range in [0, 1]. For the robus-

tified CIFAR10 models, it can be observed that adversarial
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Table 5. Evaluation results on CIFAR10-C (top) and ImageNet-C

(bottom) on adversarially trained models.

Model Acc Acc* mCE mCE*

ResNet-50 (L2, ǫ = 0.5) 83.6 86.6 50.8 43.8

ResNet-50 (L∞, ǫ = 8/255) 79.2 82.3 64.5 57.6

ResNet-50 (L2, ǫ = 3.0) 31.1 46.9 87.3 68.4

ResNet-50 (L∞, ǫ = 8/255) 23.8 38.1 96.7 79.7

training alone already improves the initial robustness sig-

nificantly. The two adversarial robust models achieve the

highest accuracy among all CIFAR10 models. Rectifying

the BN statistics additionally increases the corruption ro-

bustness. The performance increase on the robust CIFAR

models still is around 3% points, which is less compared to

that observed on the standard CIFAR models. For the adver-

sarially trained ImageNet models, we observe the opposite

trend. For the scenario without BN statistics rectification,

adversarially trained ResNet-50 models exhibit a lower cor-

ruption accuracy than the normal models. However, after

the BN statistics rectification, the corruption accuracy in-

creases by about 15%, which is more than that observed on

adversarially trained CIFAR10 models.

6. Analysis and Discussion

6.1. Number of representation samples

In the preceding experiments, the BN statistics were rec-

tified using only a single batch of 32 samples. To moti-

vate this hyper-parameter choice, we provide an ablation

study analyzing the influence of the number of representa-

tion samples on the robustness performance. The results are

presented in Figure 4. A relatively low/high accuracy/mCE

is observed using a small number (1 to 4) of representa-

tion samples, indicating that the captured statistics are not

representative for the overall corruption dataset. A few rep-

resentation samples as low as 8 already lead to a sufficiently

robust performance above 70%. Increasing the number of

representation samples lifts the accuracy, with no signif-

icant further improvements above 32 representation sam-

ples. Compared with the performance without rectification

(dashed line), rectifying with as little as 2 samples already

leads to a noticeable performance increase.

Figure 4. Influence of the number of representation samples used

for rectification on Acc (left) and CE (right) for a ResNet-18

trained on CIFAR10. The results are averaged over all severities

for Gaussian noise corruption.

Table 6. Evaluation of the influence of rectifying the mean µ or

σ
2 in isolation. Subscript µ or σ2 indicate that this parameter was

rectified.
Dataset Model Acc*σ2 Acc*µ mCE*σ2 mCE*µ

CIFAR10-C
ResNet-20 79.3 69.3 69.9 102.6

ResNet-56 81.6 71.7 62.7 94.7

CIFAR100-C
ResNet-20 47.3 38.9 82.9 96.2

ResNet-56 52.4 44.2 75.0 87.9

ImageNet-C
ResNet-18 23.4 29.0 96.6 89.2

ResNet-50 34.2 37.2 83.4 78.9

6.2. Impact of mean and variance

Rectifying the BN statistics involves the manipulation of

two parameters, namely the mean µ and variance σ2. As an

ablation, we study the influence of each parameter in iso-

lation to investigate their contribution to BN rectification.

We indicate the rectifiable parameter in the subscript of the

metric, i.e. Acc*σ2 reports the accuracy for which only the

variance (σ2) was rectified and the mean (µ) was fixed. The

results for the two scenarios are reported in Table 6. For CI-

FAR rectifying the mean has only a marginal influence. The

improvement is never more than 1%. Significantly greater

improvement is observed when µ is fixed and only the vari-

ance σ2 is rectified. For both, ResNet-20 and ResNet-56,

with the rectified σ2 in most cases a higher accuracy is ob-

served than in the case of rectifying both parameters. For

example, under the standard-setting ResNet-20 achieves an

Acc* of 73.0%, while rectifying only the variance results in

an Acc*σ2 of 79.3%, an additional improvement by 6.3%
points. For ImageNet, however, such a phenomenon can

not be observed. Fixing any of the two parameters results

in a decrease in accuracy to even lower values than the cor-

ruption robustness of the model without rectification. Over-

all, we find that for simple datasets like CIFAR10-C and

CIFAR100-C, only adapting the variance is sufficient and

can even lead to better performances while for a more com-

plex dataset like ImageNet-C, rectifying only one parameter

is detrimental and both, µ and σ2 need to be adapted.

Figure 5 breaks down the accuracies before and after

rectification as well as with only the rectifiable mean and

variance for each corruption type. The overall beneficial

effect of BN rectification can be observed for most corrup-

tion types. Significant improvements can be observed for

Gaussian noise, shot, and glass corruption. For the corrup-

tions elastic, jpeg, snow, fog, and brightness the BN recti-

fication slightly decreases the performance. Figure 5 fur-

ther illustrates the increased performance by only adapting

the variance (Acc*σ2 ) and the detrimental effects of recti-

fying only the mean (Acc*µ). However, it is striking that

in the cases where BN rectification decreased the perfor-

mance, rectifying either the mean or the variance parameter

results in a better corruption performance than rectifying

the parameters in combination, while still achieving only
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Figure 5. Separate evaluation of corruptions types for a standard ResNet20 trained on Cifar10 (Acc), its accuracy with rectified BN statistics

(Acc*), only rectified variance (Accσ2 ) and only rectified mean (Accµ). The accuracies are averaged over all 5 severities.

Table 7. Evaluation of rectifying the BN statistics in different lo-

cations of the network. For this purpose, we divide the network

into three thirds. All experiments were conducted on CIFAR10-C.

Model
Front Middle End

Acc* mCE* Acc* mCE* Acc* mCE*

ResNet-20 71.7 95.7 71.5 94.7 67.2 109.3

ResNet-56 80.9 64.8 73.1 89.5 70.9 97.9

ResNet-18 83.1 57.2 77.2 76.3 73.5 89.2

ResNet-50 83.7 55.5 75.6 82.0 74.5 85.4

VGG-19 82.4 59.3 72.5 91.2 72.8 90.3

WRN-28-10 82.1 61.6 83.8 54.2 79.1 70.7

ResNeXt-29 83.8 56.2 78.3 74.5 76.6 79.8

DenseNet 86.0 48.2 79.2 71.5 76.9 79.9

values around the initial corruption robustness. Viewing the

corruptions individually paints a more nuanced picture and

reveals a different interplay between the mean and variance

parameters on a case by case basis.

6.3. Location of rectified parameters

In the following, we investigate whether the location

where the BN statistics will be rectified in the network in-

fluences the performance. Therefore, we separate the net-

work into three thirds and only rectify the BN statistics in

one of the thirds (front, middle, end). The results are shown

in Table 7. A trend can be observed that adapting the BN

statistics in the first third of the network achieves the highest

accuracies. However, overall most of the performance gains

under corruption are worse than the ones where all statistics

were adapted. ResNet-50 and VGG-19 are exceptions to

this observation, achieving marginal better performance by

only rectifying the first third of the BN statistics. Rectifying

only the BN statistics in the final section leads to accuracies

on par with the non-rectified models, indicating only a mi-

nor influence on the overall corruption robustness.

6.4. Effectiveness of BN rectification

By training a model on a training set augmented by a

certain corruption, we can achieve a model robust to this

particular corruption type. The performance of this model

on the respective corruption evaluation dataset can be inter-

preted as an approximate of the upper bound for this certain

corruption type. With such an “upper bound”, indicated

by AccUB we are able to relate the performance improve-

ment by rectifying the BN statistics. The performances of

a ResNet-20 trained on various corruptions for severity 3 is

shown in Table 8. As we have already observed in Figure 5,

rectifying the BN statistics does not improve the perfor-

mance on all corruptions. Consequently, for defocus, snow,

brightness and jpeg we also observe a decrease in robust-

ness here. However, it is striking that for these particular

corruption types Acc is already relatively close to AccUB.

For example for brightness, the model without rectified BN

statistics exhibits only a gap of around 1% to the perfor-

mance of a model trained on the corruption. In cases where

rectifying the BN statistics leads to an improvement in cor-

ruption robustness, a relatively large gap between Acc and

AccUB is noticeable. For example for the corruptions of

Gaussian noise, shot, impulse glass, and motion the gap be-

tween AccUB and Acc* is 25%± 0.5.

6.5. Comparison with other normalization tech­
niques

We evaluate the effect of group normalization (GN) and

instance normalization (IN) on the corruption robustness.

We train ResNet-18 and ResNet-50 with the respective nor-

malization technique on CIFAR10 and ImageNet and evalu-

ate their corruption robustness. The results for CIFAR10-C

and ImageNet-C are shown in Table 9 and Table 10, respec-

tively. For the CIFAR models utilizing GN and IN results in

a higher corruption robustness accuracy than for the mod-

els with non-rectified BN statistics (73.9% for ResNet-18

with BN and 74.0% for ResNet-50 with BN). ResNet-50
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Table 8. Comparison of the performance of a ResNet-20 trained on various CIFAF10-C corruptions of severity 3 (AccUB), the corresponding

rectified version of a standard trained model (Acc*) and the accuracy of a standard model on the respective corruption.

Gaussian Noise Shot Impulse Defocus Glass Motion Zoom Snow Brightness Contrast Pixelate Jpeg

AccUB 87.55 88.42 91.46 91.70 87.55 90.38 90.90 90.04 91.59 91.57 90.70 86.37

Acc* 62.26 63.74 66.40 83.01 62.48 75.55 78.89 70.40 82.64 80.62 77.90 68.81

Acc 33.41 46.31 59.17 83.13 51.22 65.85 71.75 76.68 90.44 80.56 73.06 76.14

with IN (83.2%) even outperforms the model with rectified

BN statistics (83.1%). To evaluate the effect of different

normalization on the ImageNet dataset, we train ResNet-

18 and ResNet-50 with GN and IN. Similarly to the re-

sults in Subsection 6.2, the results for the ImageNet-C

dataset exhibit the opposite trend of the smaller CIFAR10

dataset. With GN the ResNet-18 (35.1%) and ResNet-50

(43.6%) achieve higher corruption robustness compared to

the ResNet-18 (33.7%) and ResNet-50 (40.2%) with non-

rectified BN statistics. However, the model trained with IN

achieves overall the lowest accuracy for ImageNet-C.

Table 9. Evaluation of CIFAR10-C on standard models trained on

CIFAR-10 with GN and IN.

Model
GN IN

Acc mCE Acc mCE

ResNet-18 80.5 66.3 81.2 64.2

ResNet-50 82.4 60.4 83.2 57.6

Table 10. Evaluation of ImageNet-C on standard models trained

on ImageNet with GN and IN.

Model
GN IN

Acc mCE Acc mCE

ResNet-18 35.1 82.2 30.0 88.8

ResNet-50 43.6 71.5 34.4 83.1

6.6. t­SNE analysis

In Figure 6 we visualize the feature vectors of 1000 ran-

domly chosen images of a model without rectified and rec-

tified BN statistics with t-SNE [39] in 2D. We observe that

feature vectors produced by a network with rectified BN

statistics are more clustered than the ones resulting from a

model without rectified BN statistics.

Figure 6. t-SNE for image features of ResNet56 before (left) after

(right). 1000 Gaussian noise corruption images of severity 3 were

used.

6.7. Rectifying BN for adversarial perturbation

Regarding the model robustness, a parallel line of re-

search analyses adversarial robustness. Small perturbations

that are nearly imperceptible to the human eye are able to

fool a neural network [48, 21, 11, 40]. Clean samples and

adversarial examples have been shown to belong to two

different domains [53]. Thus, we also experimented with

rectifying BN statistics with the representative adversarial

examples. However, this technique reduces instead of im-

proving adversarial robustness, which suggests a significant

difference between natural corruptions (average-case) and

adversarial corruption (worst-case).

7. Conclusion

Motivated by the observation that features statistics can

be interpreted as the style instead of the content, we pro-

posed to rectify the BN statistics to improve model ro-

bustness against common corruptions. Despite simplicity,

on several benchmark classification datasets with a wide

range of seminal models, we demonstrated that rectifying

BN statistics can significantly improve the corruption ro-

bustness with an accuracy boost of around 10%. We also

performed extensive analysis and found that (a) the per-

formance boost increases with the increase of representa-

tion samples until it saturates near 32 samples; (b) variance

adaptation is sufficient for CIFAR-C, while the more chal-

lenging ImageNet-C dataset requires adapting both mean

and variance; (c) rectifying the front layers is more crucial

than adapting the rear layers; (d) there is a significant im-

balance between different corruption regarding the perfor-

mance boost; (e) other normalization like GN and IN have

shown high corruption robustness on CIFAR-C and an op-

posite trend is observed on ImageNet-C; (f) Rectifying BN

statistics also help to make the t-SNE more clustered, which

provides some insight on the performance boost; (g) rec-

tifying BN can not help improving adversarial robustness,

suggesting a difference between natural corruption and ad-

versarial perturbation.
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