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Abstract

Rotoscoping of facial features is often an integral part of

Visual Effects post-production, where the parametric con-

tours created by artists need to be highly detailed, con-

sist of multiple interacting components, and involve signif-

icant manual supervision. Yet those assets are usually dis-

carded after compositing and hardly reused. In this paper,

we present the first methodology to learn from these assets.

With only a few manually rotoscoped shots, we identify and

extract semantically consistent and task specific landmark

points and re-vectorize the roto shapes based on these land-

marks. We then train two separate models – one to predict

landmarks based on a rough crop of the face region, and

the other to predict the roto shapes using only the inferred

landmarks from the first model. In preliminary production

testing, 26% of shots rotoscoped using our tool were able

to be used with no adjustment, and another 47% were able

to be used with minor adjustments. This represents a sig-

nificant time savings for the studio, as artists are able to

rotoscope almost 73% of their shots with no manual roto-

scoping and some spline adjustment. This paper presents a

novel application of machine learning to professional in-

teractive rotoscoping, a methodology to convert unstruc-

tured roto shapes into a self-annotated, trainable dataset

that can be harnessed to make accurate predictions on fu-

ture shots of a similar object, and a limited dataset of ro-

toscoped multi-shape fine feature systems from a real film

production.

1. Introduction

Rotoscoping is a technique used to obtain object seg-

ments from a video that can subsequently be extracted for

use in compositing or further editing in the visual effects

post-processing pipeline. These object segments must be

spatially and temporally smooth in order for compositing

artifacts to be imperceptible to the human eye, and they

must be parametric so that an artist can iteratively modify

them until the composite meets their rigorous standard. The

high standards and stringent requirements of state-of-the-

art rotoscoping still requires a significant amount of manual

labor from live action and animated films.

We apply machine learning to automate rotoscoping in

the post-production operations of stop-motion filmmaking,

in collaboration with LAIKA, a professional animation stu-

dio. LAIKA has a unique facial animation process in which

puppet expressions are comprised of multiple 3D printed

face parts that are snapped onto and off of the puppet over

the course of a shot, leaving unattended seams and chat-

ter that must be removed in post-processing. We present

a methodology to help accelerate the seam removal and

holdout mask creation process. The architecture of our AI-

enabled rotoscoping solution is described in Figure 1. The

rotoscoping task in this example is to find and create roto

shapes around eyes, eyebrows and visible seams.The subse-

quent compositing task is to repair the seams while keeping

the eyes and eyebrows intact.

Our methodology upends the need for additional anno-

tations beyond what artists already generate as part of their

compositing task. We confront the practical problem of how

to repurpose these one-time use roto-assets that were cre-

ated without machine learning in mind. Additionally, we

are able to integrate this methodology and our trained AI

models directly into the roto artist’s existing Nuke work-

flow, such that the artists are able to interact with and ma-

nipulate the intermediate and final inferred outputs of the

models.

In the VFX segmentation field real data sets are hard

to come by and difficult to share due to intellectual prop-

erty constraints. Although we tested our method on multi-

ple tasks, we are only able to publicly share the results of

one character task to demonstrate our method. In addition

to the method we present here, we are releasing our train-
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ing dataset (consisting of 5 shots) as well as a test dataset

consisting of 200 frames [3]. We believe this is the first

dataset of rotoscoped multi-shape fine feature systems to

come from a real film production to be released to the com-

munity. Missing Link movie and character images copy-

right 2019-2020 Laika, LLC and licensed under CC BY-ND

4.0: https://creativecommons.org/licenses/by-nd/4.0/

Although we demonstrate the idea of end-to-end roto

learning for a specific stop-motion animation task, this

methodology is directly and generally applicable to any vi-

sual effects operation that requires a multitude of interact-

ing, consistent objects to be rotoscoped. While we high-

light our methods for one character, the studio has used

our techniques for many new characters and new shapes

(e.g. mouth, nose, ears). We hope that this work will mo-

tivate other researchers in the community to consider in-

production roto assets as sources of supervision for future

VFX machine learning work.

2. Background

2.1. Related Work

Many existing rotoscoping tools are semi-automated:

they allow the artist to label a few frames of an image se-

quence, and then the tool infers the labels for the rest of the

frames. The target region is usually labelled by creating the

region’s boundary with a shape tool. Researchers have pro-

posed ample approaches to rotoscoping [8, 25, 2, 19, 14].

Similar to other rotoscoping work [33, 34], we also incor-

porate our rotoscoping solution into the artists’ existing in-

teraction flows; however, we do not require them to do any

manual rotoscoping in real time.

In this work, we do not explicitly address smoothness

between frames. However, tracking is a common technique

that is leveraged by artists to maintain spatio-temporally

consistent predictions between frames [33, 1, 21], and our

tool allows the use of tracking after inference is performed.

There is a significant overlap between our work and sin-

gle image inferences such as semantic segmentation and fa-

cial landmark predictions in the computer vision commu-

nity. The goal of semantic segmentation is to detect the pix-

els that represent semantic regions, such as humans, trees,

bicycles, and more [13, 12, 32, 23, 5, 17, 31]. Our seman-

tic focus is to detect facial features, such as eyes, eyebrows,

puppet seams, and mouths. While we share a similar goal

with most semantic segmentation work, we do not perform

per-pixel inference. Instead, we leverage facial landmark

predictions [28, 29, 38, 36, 39, 26]. Traditional facial land-

mark predictors used cascade regressors [15], but they have

been surpassed by CNN methods and heatmap estimations

[28, 38]. After we complete landmark predictions, we lever-

age the landmarks to run regression methods [22, 35, 6, 30]

and output the semantic shapes that we are interested in

[4]. Facial landmark prediction research has also been con-

ducted on videos [7].

The work described in [19, 24, 20] predict shapes based

on landmarks and tangents. The work in [9, 37, 11] predict

shapes based on pixel predictions or correspondence. While

[19] does not make image aware predictions, our work and

that presented by [24, 20] base predictions on the image

as input. The predicted points are not semantic in [24, 20]

while the landmarks in our work are semantic with respect

to the object in the image. Additionally, our work is the

only one that predicts a system of shapes simultaneously.

2.2. Design Considerations

Data Efficiency: The raw stop-motion footage gener-

ated by the studio requires a considerable amount of post-

processing work to remove seams and other artifacts from

the puppet faces in order to transform the footage into a

film. Training a key point model normally takes a dataset

with millions of images [28, 16, 18]. Task specific annota-

tion is another major hurdle, and if the task changes slightly,

much of the annotation may have to be redone. While pre-

trained facial landmark detection models (trained on thou-

sands of human faces) exist, those models do not generalize

to puppet faces. Thus a major design consideration for solv-

ing this problem is to maximize the performance of a deep

learning model in a data efficient way.

Domain Matched Data: In the rotoscoping domain,

a good output shape is not necessarily determined by the

mean point-to-point error of facial landmarks inferred by

our tool. Rather, success is determined by how closely

the AI-generated shapes would match a professional artist’s

work on a particular character, or how much time an artist

may save by using this tool. With that in mind, we decided

to focus on training models for individual characters as op-

posed to training a general model that would apply to all

characters, but perform less well on all of them. We use

synthetically generated data and data augmentation to com-

plement a few shots of artist-generated rotoscoped data for

a particular puppet character, to train a model that can then

be used to assist in the labeling of many more raw shots of

that character. With as few as 5 professionally rotoscoped

shots for a particular character, we can assist in the roto-

scoping of hundreds of additional shots featuring the same

character.

Interactivity and Vector Shapes: Our main goal in

this work was to create an AI-inference tool that would re-

duce the manual work of roto post-processing. In order to

meet this goal we made the conscious choice to integrate

our inference algorithms directly into the artist’s workflow

instead of building a separate stand-alone tool. Our trained

character models can be imported directly into Nuke via a

plugin and, as a result, the artist does not have to disturb

their workflow to gain the benefit of using our AI models.
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Much of the previous academic work in the area of roto-

scoping has focused on algorithms to the detriment of read-

ily usable output (a notable exception is the work presented

in [19]). For a tool to be adopted by the roto artist, it should

output shapes in a format that can be easily manipulated.

Figure 1. An overview of our solution illustrates how we mine the

ground truth dataset for landmark points (used to train the Land-

mark model) and shapes (used to train the Shape model). A se-

quence of images is input into our tool, accompanied by a rough

crop of the face, and fed into the Landmark model. The resulting

inferred landmark points are next fed into the Shape model and the

roto shapes are output.

3. Technical Approach

3.1. Overview

Our solution (Figure 1) has the following steps:

(1) The input to the system is a raw dataset containing the

image I of the object and unstructured multipart rotoshapes

Sraw. This dataset is not yet usable for training. Details

about our training dataset can be found in Supplementary

Section 1 or the project page [3].

(2) A series of feature engineering steps are performed

on this raw data. Landmark points are extracted based on

morphological and geometric operations on Sraw, we de-

note this set of points Pall (see Section 3.2). Sraw is then

re-vectorized into a canonical shape (denoted S) by using

points from Pall and regressing for tangents. Note that S
(comprised of points in Pall and their tangents to the shape)

are self-annotated from Sraw. No new annotation cost is

incurred.

(3) Even though I → S is now trainable, in the next

step we deliberately introduce the semantically consistent

subset of landmarks P ∈ Pall into the learning chain:

I → P → S. Rather than building a black box inference

system that cannot be tweaked, we insert these landmark

points into the process as they allow the user to assist the

system in correcting mis-predicted points that would down

the line result in a bad shape. The roto artist can easily

manipulate the inferred points P before the system outputs

the inferred roto shapes. Thus instead of learning E[S|I],
the system instead learns E[P|I] and E[S|P] separately for

the sake of predictability and interactivity. This provides

early intervention opportunities to the artist with fewer er-

rors being propagated down the chain in the case of mis-

predictions due to covariate shift.

(4) Finally, a landmark model E[P|I] and shape models

E[S|P] for each roto shape are trained.

3.2. Feature Extraction

We extract landmark features from existing rotoscoped

shots. This enables the inexpensive collection of domain-

matched data and forms a crucial part of our solution. As

part of the rotoscoping task, an artist creates vector shapes

as in Figure 2. We call these “ground truth shapes”. Even

though an artist uses several points and tangents to create

and manipulate these shapes, the point spacing, ordering

and numbering are largely arbitrary and inconsistent from

shot to shot.

Figure 2. Landmark extraction process from roto shapes to land-

mark points. (A) Corner points are defined by the intersection of

two curves. (B) An eyebrow shape is skeletonized to define its

axis. (C) Corner points are registered and the remaining landmark

points are created along the contour with uniform spacing. (D)

The extraction process results in a set of semantically consistent

points.

778



We use a combination of morphological and geomet-

ric techniques to derive landmark points from these ground

truth shapes as follows: (1) Corner points are defined by the

intersection between two shapes, (e.g., between seams and

eyes), as shown in Figure 2A. (2) For objects with oblong

shapes (e.g., eyebrows) we first rasterize and skeletonize the

shape. The intersection of the axis with the original shape

induces a pair of extreme points. We define a few points

in the middle based on equal spacing along the shape con-

tour (Figure 2B). (3) For other solid objects (e.g., eyes), we

use corner points to form an axis. The vector shape is then

rasterized and traversed in a clockwise direction, whereby

equidistant points along the contour are further defined as

shown in Figure 2C.

Note that roto shapes often appear imperfect because cer-

tain portions of the shapes may not have been relevant to

the eventual compositing goal. Consequently, a subset of

extracted landmarks may be visually inconsistent, that is,

they cannot be defined from any visible corners or edges in

the image (e.g., the top portions of eyebrows as shown in

Figure 2B). We discard these points.

3.3. Landmark Prediction

3.3.1 Face region localization

The artist creates a garbage matte (rough crop) over the re-

gion of interest and animates it over all the relevant frames

in a shot. We derive a coarse crop of size 224×224 from this

garbage matte. We require the region of interest to be fully

inside this crop and roughly within 50%-90% of the maxi-

mum possible scale. We trained our model to be robust to

this imprecision in order to enable fast face localization.

3.3.2 Model

We use a straightforward extension of the ResNet50

model [10] to directly regress on the landmark positions

within the 224 × 224 crop. We removed the final classi-

fication layer the network and replace it with a densely con-

nected layer and a landmark output layer. Alternative ar-

chitectures can potentially be adopted for this purpose with

similar modifications.

3.3.3 Loss function

Our custom loss function for all n points is a generalized

version of Mean Absolute Error

LMAE =
∑

n

εn, εn =
∣

∣

∣

∣

∣x̂n − xGT
n

∣

∣+
∣

∣ŷn − yGT
n

∣

∣

∣

∣

∣
, (1)

that also takes into account the unique features of our

dataset. Here x̂n, ŷn denote predicted points and xGT
n , yGT

n

are the corresponding ground truth points. Due to the mixed

nature of our dataset, which includes both synthetically gen-

erated data and actual rotoscoped data, our loss function

must handle potential inconsistencies in labeling methods

and utilize all possible metadata available. In particular, we

include three additional weights per point to equation (1).

Lroto =
∑

n

wvalid,nwpart,nwpoint,nεn (2)

A validity parameter, wvalid,n ∈ {0, 1}, allows us to han-

dle diverse data in which some labeled points are occluded

at particular rendered angles. We can pass whether or not

a point is valid into the loss function with this parameter.

Thus the εn of the occluded points will be multiplied by

0, and their contribution to the loss calculation will not be

backpropagated during training.

We also include a point-specific scaling parameter,

wpoint,n, that allows us to handle the relative importance

of individual points that are more semantically consistent

across poses and other conditions, by conferring additional

weight to them (e.g., the corner points at the intersection of

the eyes and seams).

wpart,n = 1
max(scln,s0n)

allows us to (1) impart scale and

pose invariance to landmark point deviations and (2) handle

the relative importance of shapes. This part-specific scaling

parameter is assigned by feature and is used to weight the

loss function by group. This method of scaling is similar to

using the inter-ocular distance to normalize the error in fa-

cial landmark detection when training is performed on faces

of varying scale, but differs in that we utilized distinct scal-

ing factors for each shape on which we are training. scln is

a scalar variable that signifies the size of the shape to which

the point n belongs. s0n is a scalar that describes the min-

imum shape weighting factor and is introduced in order to

avoid over-weighting points in smaller ground truth shapes

and to improve numerical stability. wpart,n is particularly

useful in training the model to accept a range of input crops

that allows the model to be more robust to the artist’s input.

For training details and software optimizations that we

performed, see Supplementary Section 2.

3.4. Shape Regression

Our shape models take the landmark points inferred from

the landmark prediction model as input and output shape

predictions. Figure 3 illustrates the steps involved in our

methodology. A typical roto shape from an artist’s project

is depicted in Figure 3A. Even though the shapes are para-

metric, i.e., defined in terms of both points and tangents,

these parameters have no fixed definition with respect to the

image other than the fact that the contour it induces encap-

sulates the object. In the absence of a fixed definition, it is

impossible to learn directly from these vector shapes.
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Figure 3. Shape regression method: (A) From the rotoshape, (B)

computes the canonical points. (C) Applies preprocessing trans-

formations on the canonical points for location and scale invari-

ance. (D) Applies shape augmentation. (E) Based on landmarks,

(F) predict the tangents (and any remaining landmarks) using our

model, and (G) transform the shape back.

3.4.1 Canonical representation

In order to utilize a roto shape we must first derive the

canonical re-parameterization of that shape based on land-

marks identified earlier in Section 4.2. We define additional

points as they are needed to complete the shape. For ex-

ample, in Figure 3E, the 4 landmark points along the lower

edge of the eyebrow are insufficient to describe the eyebrow

shape, so additional points along the top of the shape are de-

fined. Again in Figure 3B, points (0, 7, 6, 5, 4) are seman-

tically consistent landmark points for an eyebrow across all

of the image data, so we define points (1, 2, 3) at this stage

to complete the shape in a consistent way. Once the point

selection is complete, we compute the tangents as follows:

(1) Rough tangents: We regress on individual segments to

find the control points c1, c2 and latent variables {αm}
M
m=1

such that the contour points can be parameterized as c(α) =
(1−α)3c0+3(1−α)2αc1+3(1−α)α2c2+α3c3, where

α ∈ [0, 1] is the monotonically increasing stretch parameter

and c0, c3 are end points which are fixed in our case. The

latent variables {αm} for selected contour points are as-

signed uniformly spaced values during initialization and are

updated in an Expectation-Maximization loop until conver-

gence. (2) Finalize directions: For points where smooth-

ness is desired, the adjacent tangents are projected onto the

line with minimal projection error while guaranteeing that

these projections are in opposing directions. We treat the

direction of tangents after this stage as frozen. (3) Final-

ize tangents: For tangents that were tweaked during Step 2

above, we apply a final regression to the magnitude of the

tangent and leave the end points and tangent directions un-

altered. Notationally, this is the same as Step 1 with regres-

sion performed on β1, β2 where ci ← βici/||ci||. All three

steps above are computations that solve convex problems,

which result in a robust estimation of the parameters.

3.4.2 Preprocessing

In order to preprocess the canonical shapes for location and

scale invariance, the shapes undergo an isotropic motion

transformation based on aligning a couple of axis points.

Optionally, if two shapes are equivalent with respect to a re-

flection (e.g., right and left eyes) one is flipped during this

step. For example in Figure 3C, the right eyebrow shape

from Figure 3B is flipped and oriented so that points (0, 4)
are interchanged and mapped to pre-defined points.

3.4.3 Shape Augmentation

Even though we train our landmark model E[P |I] to predict

points that are uniformly spaced along the contour connect-

ing two axis points, we must consider two practical issues,

(1) there are errors in landmark prediction which deviate

from the uniform spacing assumption, and (2) even after

an artist interactively manipulates the landmark predictions,

we have observed that these points, while guaranteed to lie

along the contour, can remain non-uniformly spaced. These

two practical considerations result in a shift between train-

ing and domain distributions that we can account for with

an additional shape augmentation step prior to training. We

apply two kinds of shape augmentation to the shape training

data: (1) random tweaking of points along the contour, up

to 30% of the length of the segments on either side of the

points, followed by re-fitting of Bézier curves on both sides

of the points and 2) random affine transformations of small

magnitudes.

3.4.4 Shape Models

We evaluated three strategies for shape completion with in-

creasing levels of complexity.

Cusping: For shapes where all the points are avail-

able (e.g., eyes), we try cusping as a baseline tech-

nique. This converts a piecewise linear curve to a

piecewise cubic spline with tangential continuity. Here,

interpolating splines are fit on X and Y coordinates

separately using normalized cumulative pairwise dis-

tance dk =
∑k

i=2

√

(xi − xi−1)2 + (yi − yi−1)2, d̃1 =

0, d̃k = dk/dK as the common interpolating parame-

ter. To achieve closed shapes and smoothness at the ends,

splines are computed on stacked set of points, pstack =
[p1, . . .pK ,p1, . . .pK ] and only the middle segment is re-

tained. The splines are typecast to Bézier after computing

the tangents from the spline derivatives. For shapes where
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other points are needed to complete the shape (e.g., eye-

brows), cusping is not an option. Note that cusping is a

static technique which is not influenced by or learned from

data.

For data driven predictions using linear and neural-

network models, we denote the Bézier shape as

S =





p0 p1 · · · pK0
· · · pK

tl,0 tl,1 · · · tl,K0
· · · tl,K

tr,0 tr,1 · · · tr,K0
· · · tr,K



 , (3)

where pk = (xk, yk) are 2D points, tl,k, tr,k are corre-

sponding left and right tangents, K0 is the number of known

points (a subset of landmark points) and K ≥ K0 is the total

number of points in the complete shape. We want to model

the conditional estimate E[S|p1,p2, . . . ,pK0
] through a

function y = F (x), where x , [p0,p1, . . . ,pK0
] is a vec-

tor of known parameters and y is a vector of the remaining

parameters in S.

Linear: A linear model for F (·) with only 2K0 re-

gressors - (x, y) for K0 points was found to be inadequate.

However we found a featurized version, with K0(K0−1)/2
pairwise distances among the shape points added to the list

of regressors, to have better predictive performance. We re-

fer to this as the linear model in comparisons below.

𝑥

𝑦

𝐷$%&'

𝑐𝑎𝑡 𝑐𝑎𝑡 𝐷

𝑁,&-./0

𝐷$%&'

𝐷$%&'

𝐷$%&'

Figure 4. Neural network model for predicting shapes from land-

marks.

Neural network: We also try the more expressive model

in Figure 4, where Drelu and D stands for dense linear

layer with and without rectified-linear activation, and cat
refers to concatenation of variables. Here Nblocks = 3
and width(Drelu) = 100 are model hyperparameters. This

model is motivated by the relative success of the featurized

linear model and designed to have ample skip connections

to encourage polynomial calculations among the regressors.

The loss function is constructed to focus on tangent end-

point errors (normalized with respect to the ground truth)

for semantically consistent points with a small L1-norm

contribution from the overall shape deviation,

LNN = LEPE + γ
∥

∥

∥
SGT − Ŝ

∥

∥

∥

1
, where (4)

LEPE =

K0
∑

k=1

∑

tl,tr

∥

∥tGT
k − t̂k

∥

∥

max
(
∥

∥tGT
k

∥

∥ , ǫ
) . (5)

Here ǫ = 0.01 is used for numerical stability and γ = 0.1

is used to weigh the relative contribution of L1 shape devi-

ation.

4. Experimental results

Our training dataset consists of 1438 frames across 5 an-

notated shots. The test dataset consists of 240 annotated

frames across 12 shots (from the same film but different

from the training shots), balanced across 4 classes (face

poses: Up, Down, Left and Right) with 60 frames in each

class. The over-all result of using our method can be seen in

Figure 5, which shows the raw images, and the roto shapes

and seams output by our method. We ran several experi-

ments on the test dataset.

4.1. Shape Regression Results

In order to evaluate our shape learning methodology, we

choose the average tangent endpoint error LEPE (Equation

5) as our metric for comparison. We use all the points

for eyes and only the bottom points for the eyebrows in

the LEPE computation. We process the test dataset to ob-

tain canonical equivalents (Section 3.4.1) so that we can

measure the error on both canonical shapes (where middle

points are equivalently spaced along the contour) and raw

artist tweaked shapes (where there is no such guarantee).

The four techniques we compare here are 1) cusping, which

applies only to eyes 2) a linear model with no data augmen-

tation 3) a linear model with data augmentation and 4) a

neural network model with data augmentation.

eye eye-can brow brow-can

cusp 0.23 0.24

lin-noaug 0.48 0.13 0.61 0.26

lin-aug 0.31 0.30 0.20 0.26

nn-aug 0.16 0.15 0.17 0.22
Table 1. Our neural network shape regression model has a lower

error than the linear model or the cusping model. Additionally, the

use of shape augmentation decreases the error. The error metric

used in the table is the average deviation of the inferred tangent

relative to the ground truth tangent (Equation 5).

The results (Table 1) clearly reveal the need for shape

augmentation (Section 3.4.3) in training the shape models.

For prediction on canonical shapes only, the linear model

seems adequate, but does not perform well when the con-

tour points are not uniformly distributed. The neural net-

work model performs better. Some examples of shape pre-

diction are presented in Supplementary Figure 3.

4.2. Landmark Prediction Results

In order to evaluate the facial landmark results, we com-

puted the average Mean Absolute Error (MAE) of inferred

landmark points relative to their respective points on an

artist’s defined shape. We also calculate the contribution
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Figure 5. Top: Raw images of puppet faces with seams. Bottom: Roto shapes for seams and hold-out masks inferred by our method.

to total MAE of each type of shape (e.g. seams, eyes,

eyebrows, and total) across various experimental conditions

pertaining to key design choices relevant to our methodol-

ogy: (1) data efficiency, (2) the use of synthetic data, (3)

image data augmentation and a scale-aware loss function.

We summarize the results below. For a full discussion of

the results with accompanying data and visualizations, see

Supplementary Section 3.

Data Efficiency: Supplementary Figures 4, 5 and Table

2 show that we have significantly increased the effective-

ness of one shot of ground truth data by adding synthetic

data and data augmentations. A model trained only on raw,

unaugmented ground truth data is not able to fit the land-

mark points onto the correct facial features, nor is it able to

scale appropriately. Adding synthetic data or augmentations

alone significantly improves the results.

Given synthetic data and augmentations, but no ground

truth data, the model outperforms the case in which the

model is trained on one shot of augmented ground truth

data without synthetic data (MAE of 42.64 versus 60.26).

These results suggest that our rendered synthetic data is

approximately equivalent to a single shot of ground truth

data. When trained with a single shot of augmented ground

truth data without synthetic data, the model’s inferred re-

sults are significantly improved 10-fold over the raw, unaug-

mented single shot scenario, from a total MAE of 602.22 to

60.26. Training a model on a single shot of ground truth

data with both synthetic data and augmentations results in

a more than two-fold and three-fold improvement in the to-

tal MAE as compared with training on synthetic data alone

(from a total MAE of 42.64 to 17.31) or on one shot of aug-

mented ground truth data alone (from a total MAE of 60.26

to 17.31), respectively. Taken as a whole, adding synthetic

data, augmentations, and a scale-aware loss function to only

1 shot of ground truth data improves performance by almost

35X over training on raw data alone (from a total MAE of

602.22 to 17.31).

We can clearly observe the improvement of model per-

formance when trained with each additional set of ground

truth data, and that beyond 2 shots, the effect on the MAE

of each additional shot decreases (see Supplementary Fig-

ures 6, 7 and Table 3). While one shot of ground truth data

has a significant effect on minimizing the domain gap be-

tween synthetic data and real data (e.g. the total MAE de-

creases from 42.64 to 17.31), each additional shot results in

a decremental reduction of the total MAE, by comparison.

Synthetic Data: We conclude from Supplementary Fig-

ure 7 that more training data results in better performance

as long as it increases the variance in the data. As more data

is added to the training set, the model’s performance starts

to plateau. The synthetic data only uses 8 facial expressions

with many camera angles. These results lead us to hypoth-

esize that if we add more facial expressions to the synthetic

data then it would increase variability and decrease error up

to a point. Our results illustrate that synthetic data can be a

very powerful tool when the domain gap is addressed.

Augmentations: We can qualitatively observe that mod-

els trained with background and occlusion augmentations
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Figure 6. Tool Workflow: (A) A shot is imported into Nuke, a

rough crop of the face is placed on the frames and a model is se-

lected for landmark inference. (B) The plug-in calls an external

subprocess that runs inferencing on the shot. (C) Landmark points

and initial shapes are output across all frames. (D) The points in

each shape can be displayed and tweaked, and a revised shape out-

put. (E) The final splines are overlayed on the face. (F) We can

also visualize the final roto matte. These finished shapes can be

exported to a JSON file and used to further train the model.

perform better when inferencing on character images that

contain small occlusions such as hats (see Supplementary

Figures 8, 9 and Supplementary Table 4). Additionally, we

can observe that using background augmentation decreases

the error. However, adding the backgrounds to the syn-

thetic data had a much more significant effect on model

performance than adding backgrounds to the ground truth

data. Background augmentation only adds randomization

and variance to the background of the ground truth data,

whereas it provides synthetic data a background where none

existed before, thus greatly reducing the domain gap, and

not just the variance in data.

We did not explore the effect of other augmentations

such as flips, rotations, warping, motion, hue, color as they

are much more commonly used and applied.

Scale-Aware Loss function Adding point and part-

specific scaling improves performance by 12.3% over ig-

noring the scale in the loss function (see Supplementary

Figure 10 and Table 4). The majority of the benefit is ab-

sorbed by the seams and eyebrows (which result in an av-

erage MAE of 2.95 and 2.67 when the model is not trained

with scaling parameters, respectively, versus 2.45 and 2.15

respectively when the model is trained with scaling parame-

ters), while the eyes do not appear to benefit. This could be

due to greater invariance of the eye shape to pose and facial

expression. The seams also benefit from point scaling be-

cause we can overweight their impact on the loss function.

5. Artist Workflow and Tool Interaction

Our Nuke node (Figure 6) is interactive on three levels:

(1) The input to the node is a rough crop created by the

artist. (2) The node performs inference on this crop and

provides intermediate inferred output in the form of land-

mark points, which the artist can use as-is or adjust. (3)

When the artist is satisfied with the positions of the key-

points, these are then used to generate the output of the

tool–Bézier splines of the shapes, which the artist can also

adjust. See Supplementary Section 4 for a detailed discus-

sion of the workflow.

In preliminary production testing, 26% of shots roto-

scoped using our tool were able to be used with no adjust-

ment, and another 47% were able to be used with minor ad-

justments. This represents a significant time savings for the

studio, as artists are able to rotoscope almost 73% of their

shots with no manual work and some spline adjustment.

A more detailed discussion of the production aspects of

this work can be found in [27].

6. Future work

Broader Applications: We believe that our method can

be applied to many more fine rotoscoping problems such as

facial aging and de-aging, removing or adding scars, adding

stains and injuries to a face, augmentations for aliens and

deformed characters and other sequential fine rotoscoping

tasks. When applied on human faces, these techniques may

require more sophisticated methods to bridge the domain

gap beyond our addition of synthetic data.

Contour-Aware Loss Function: We hope to better uti-

lize the labeled ground truth data to make our loss function

contour-aware. We can mine the rotoscoped shapes for tan-

gent data pertaining to each labeled point, for example, we

could store two additional data points that represent the tan-

gent to the curve at the landmark point and then calculate

the loss function using the distance to these additional seg-

ments instead of the distance to the individual point.

Confidence Scoring Improvements: We currently out-

put a confidence score associated with whether the model

infers a face or not. Ultimately, we want the model to output

a confidence score more closely associated with how likely

the landmark points and inferred shapes are going to save an

artist time. We also hope to explore incorporating feedback

in the form of artist clicks into the confidence score.

Challenging Shots: The most challenging shots have

occlusions such as characters facing sideways or characters

wearing a hat.

Animated Transforms: We would like the tool to fea-

ture animation of points and shapes. We also hope to give

the user some control over how many “keyframes”are out-

put on a shot, to eliminate frames that do not perform well

and to interpolate between the frames that do.

Improved Synthetic Data: We hypothesize that the

synthetic data may add additional benefit if assets such as

pre-production rendered animation could also be used.

Incorporation of Optical Flow: We also plan to use

optical flow to improve temporal coherence for the inferred

shapes across sequential frames. Additionally, we can score

the correlation between the shapes inferred on the current

frame and the prior frame and predict excessive deviation.
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