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Abstract

We address the task of cross-domain visual place recog-

nition, where the goal is to geolocalize a given query image

against a labeled gallery, in the case where the query and

the gallery belong to different visual domains. To achieve

this, we focus on building a domain robust deep network by

leveraging over an attention mechanism combined with few-

shot unsupervised domain adaptation techniques, where we

use a small number of unlabeled target domain images to

learn about the target distribution. With our method, we are

able to outperform the current state of the art while using

two orders of magnitude less target domain images. Finally

we propose a new large-scale dataset for cross-domain vi-

sual place recognition, called SVOX. The pytorch code is

available at https://github.com/valeriopaolicelli/AdAGeo .

1. INTRODUCTION

In the last decade research on visual place recognition

(VPR) has experienced a steady growth, fostered by the

availability of large geolocalized image datasets and of

smartphones with integrated cameras that make it very easy

to capture and share new data. This growth is confirmed by

an increasing number of services that rely on visual place

recognition systems, such as 3D reconstruction, consumer

photography -”Where did I take these photos?”- and aug-

mented reality. Moreover, the limitations of localization

and orientation systems (e.g. unreliability of GPS signal

in urban canyons) make visual place recognition extremely

important for the success and scalability of self-driving cars

and autonomous robots.

In literature, geolocalization is generally cast as an im-

age retrieval problem. Given a query image as input, the al-

gorithm is tasked to find images that depict the same place

from a geotagged dataset, called gallery. Most of the recent

studies have tried to improve upon this task by using deep
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convolutional neural networks to extract better representa-

tions for the retrieval. However, they typically consider the

case of queries and gallery images belonging to the same

domain [20, 22, 26, 43]. When the query and gallery im-

ages belong to different domains, e.g. due to changes in

weather conditions, illumination or season, the performance

of such place recognition approaches can be significantly

degraded [31, 39]. Therefore, to make VPR approaches vi-

able in long-term applications we need to explicitly address

the cross-domain setting. In this work we tackle this chal-

lenge with a novel two-blocks architecture, called AdAGeo,

that is aimed at learning robust representations for images

for both source (gallery) and target (query) domains. The

first block is designed to learn a mapping from the source to

the target domain. This mapping is then used to transfer the

style of the target domain to the labeled query images of the

source domain, as an effective domain-driven data augmen-

tation technique. The second block is tasked with producing

a representation of the input data that is able to comply with

different domains and is suitable for the retrieval task. This

is achieved by a combination of an attention module and a

domain adaptation module. Remarkably, both parts of our

architecture only need few unlabeled images from the tar-

get domain to be trained. This is of paramount importance

to attain a scalable VPR solution, because collecting large

amounts of data every time the algorithm needs to be de-

ployed to a different domain is impractical if not infeasible.

To the best of our knowledge, this is the first architecture for

few-shot domain adaptation in visual place recognition. Ad-

ditionally, for training and validating our method we have

built a new large-scale multi-domain dataset, called SVOX

(Street View Oxford dataset), that consists of images of Ox-

ford taken from Google Street View (gallery) and queries

taken from the Oxford RobotCar dataset [23].

Contributions To summarize, the contributions of our

work are:

• We present a new dataset, called SVOX, that com-

bines Street View Images (gallery) and queries from
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the Oxford RobotCar dataset [23], for the first city-

wide multi-domain setting for visual place recognition.

• We propose a deep architecture for visual place recog-

nition that combines two orthogonal domain adapta-

tion modules: i) a generative approach to generate la-

beled data from the target domain; ii) a method to

produce domain-invariant features. AdAGeo achieves

a significant localization improvement using just few

images from the target domain (more than 13% im-

provement with 5 images). To the best of our knowl-

edge this is the first hybrid architecture for few-shot

domain adaptation in geolocalization.

• We propose an attention mechanism through class-

specific activation maps, which are used as score maps

to weight the features during the image retrieval train-

ing and testing processes.

• We perform an extensive ablation study as well as

comparisons with the current state of the art, demon-

strating that our method is able to achieve better perfor-

mance using just 5 target domain images, while other

approaches require hundreds of images.

2. Related works

In the following we review previous work on VPR and do-

main adaptation, the two fields closer to our contribution.

Visual Place Recognition. Most VPR approaches cast

the problem as an image retrieval task [2, 14, 20, 22, 24,

26, 36]. This is mostly due to the fact that recent years have

seen a huge increase in large scale datasets that cover entire

cities or countries, both for research [6, 23, 37] and for com-

mercial use (such as Google Street View, Bing Streetside

and Apple Maps). The increasing availability of datasets

has also allowed end-to-end deep learning methods to be-

come dominant in this field, combining deep feature extrac-

tion backbones with trainable aggregation modules [2, 12]

or pooling layers [29]. Between the feature extractor and the

head, recent architectures for VPR have introduced other

modules to improve the retrieval performance. In particular,

following the success of class activation maps (CAM) [40],

several architectures have implemented some sort of atten-

tion module [20, 22, 24, 26, 43] to make the models more

robust. For what concerns the problem of cross-domain

VPR, it has mostly been addressed indirectly and with a

limited scope, with approaches that are based on heuristics

(e.g. selecting features corresponding to man-made struc-

tures [25]), on regions of interest [7], or tailored for a spe-

cific domain shift (e.g. day/night [35, 11]). However, none

of these methods allows for generalization. Only few pre-

vious works have explicitly tackled the cross-domain prob-

lem. In particular, [28, 1] both use GANs to replace the

query with a synthetic image that depicts the same scene

but with the appearance of the source domain. The authors

of [36] instead use MK-MMD [13] for domain adaptation

and allow the localization of old grayscale photos against

a gallery of present-day images. Both source and target

datasets are not available at the time of this writing. While

these prior works use either a generative approach or a do-

main adaptation method, in AdAGeo we combine both so-

lutions and show that there is a benefit to this. Moreover,

AdAGeo is truly a few-shot domain adaptation solution that

requires as little as 5 unlabeled and not aligned images from

the target domain to produce convincing results, whereas

[28, 1, 36] need several orders of magnitude more images

from the target domain.

Domain adaptation. Unsupervised Domain Adaptation

attempts to reduce the shift between the source and target

distribution of the data by relying only on labelled source

data and unlabeled target data. There are typically two ap-

proaches that are used for unsupervised domain adaptation.

The first approach is based on learning a style-transfer trans-

formation to map images from one domain to the other. The

cross-domain mapping is usually learned through GANs, as

in [17, 18], or autoencoders [32]. The authors of [42] pro-

pose to use a cycle-consistency constraint to learn a mean-

ingful translation, which has since been used in a number of

tasks [3, 9, 16, 30]. The second approach is based on learn-

ing domain-invariant features from the data, building on the

idea that a good cross-domain representation contains no

discriminative information about the origin (i.e. domain)

of the input. This approach was introduced by [10], where

a domain discriminator network and the gradient reversal

layer (GRL) forces the feature extractor to produce domain-

invariant representations. This method found successful ap-

plications in many tasks, such as object detection [10], se-

mantic segmentation [4] and video classification [5]. As an

alternative, [38] shows that features with larger norms are

more transferable across domains, and proposes to increas-

ingly enlarge the norms of the embedding during training.

In this work we integrate approaches from both kinds in a

unique pipeline that only needs few samples from the target

domain. We demonstrate via an ablation study that the im-

provements provided by the two methods are complemen-

tary, thus they can be advantageously combined.

3. Dataset

In order to address the cross-domain VPR problem we need

a dataset that supports different domains between gallery

(source) and queries (target). In recent years there have

been few VPR datasets that include multiple ambient con-

ditions (weather, seasons, ligthing) [6, 23, 37, 2, 34, 31],

however they do not fit our use case due to a limited number

of domains [2], a limited geographical coverage [23, 31], a
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SVOX RobotCar

Gallery Queries Snow Rain Sun Night Overcast

Train 22232 11294 750 714 712 702 705

Val 17226 14698 - - - - -

Test 17166 14278 937 870 854 823 872

Table 1: Sizes of SVOX dataset and Oxford RobotCar [23]

from 5 different scenarios

non dense collection of images [6] or a non urban setting

[34]. For this reason we built a new dataset specific for

cross-domain VPR in urban setting, called Street View Ox-

ford (SVOX).

To build SVOX, we used Google Street View to extract

images covering a wide area in the city of Oxford. In par-

ticular, we took images from 2012 for the gallery, and im-

ages from 2014 as training queries (see Tab. 1), making

sure that for each query there is at least one positive sam-

ple in the gallery from previous years. We split the dataset

in three geographically disjoint subsets, for training, valida-

tion and testing. The images collected from Google Street

View provide the single source domain. Then, to provide

different target domains we used samples from the Oxford

RobotCar dataset [23] in which images are conveniently

tagged according to their weather or lighting conditions.

For all our experiments we use the 5 domains of Snow,

Rain, Sun, Night and Overcast, as defined in the RobotCar

dataset. Figures 1b-1g show the differences between the 6

domains. Notice that besides weather, season, and light-

ing conditions, the RobotCar domains also differ from the

source domain for the viewpoint (the hood of the car is visi-

ble in the foreground). Similarly to [27], we take one image

every 5 meters, in order to avoid using highly redundant

data, for example collected when the car was stuck with a

red traffic light. This procedure results in roughly 1500 im-

ages per domain. The images collected from the RobotCar

dataset are used for domain adaptation and as queries to test

the models on different target domains. As shown in Fig.

1a, we ensure that for each target query (RobotCar [23])

there is at least one positive sample in the source test gallery

(SVOX). Moreover the split is such that the SVOX train-

ing data (gallery and query sets) does not overlap RobotCar

places (target sets), to avoid possible overfitting.

Further details about the procedure implemented to col-

lect SVOX are provided in the supplementary material.

4. Method

In this section we present AdAGeo, our method for domain

adaptive and attentive visual place recognition. The archi-

tecture is composed of two parts (Fig. 2), which are trained

separately. The first one is a few-shot domain-driven data

augmentation (DDDA) module (Sec. 4.1). By using just

few images from the target domain, this module is able to

effectively transfer their style to the source domain images.

In this way we can use these labeled augmented images to

make the VPR model robust to the target domain. The sec-

ond block is made of a CNN encoder, which extracts fea-

tures for the domain adaptation (DA) module (Sec. 4.3),

and for the attention (Att) module (Sec. 4.2) followed by

a descriptors aggregator (Sec. 4.4), which builds robust at-

tentive embeddings for each image.

As shown in Fig. 2, during the phase 2, the network receives

the SVOX gallery set as retrieval gallery, the SVOX query

set and the related pseudo-target images as queries to per-

form the main task, while the unsupervised domain adapta-

tion (DA) task is computed over SVOX, pseudo-target and

just a few target images.

4.1. Fewshot domaindriven data augmentation

In unsupervised domain adaptation we have a labeled

source dataset Xs = {(xs
i , y

s
i )}

ns

i=1
made of ns samples

(comprising gallery and queries) from source domain Ds,

and an unlabeled target dataset Xt = {(xt
j)}

nt

j=1
made of

nt samples from target domain Dt. The goal of our few-

shot domain-driven data augmentation is to learn a mapping

from Ds to Dt, in the case where nt is small (results of

of experiments with different values of nt are later shown

in Fig. 5b). This mapping is used as data augmentation

for the training queries, to generate labeled target domain

queries, and to ultimately make the image retrieval model

more robust to the domain shift. We take inspiration from

[8], which proposes an approach for the related problem of

learning a bi-directional mapping between two domains, for

which they only have one sample belonging to Dt. The

idea is to use an architecture made of two parallel autoen-

coders, one for each domain. Let us call AeS and AeT the

two autoencoders, where AeS(x) = DecS(EncS(x)) and

AeT (x) = DecT (EncT (x)), with EncS and EncT denot-

ing encoders and DecS and DecT decoders. The goal is to

minimize the distance between the distributions of the la-

tent spaces of the two autoencoders, forcing the encoders

to produce domain-invariant embeddings, while at the same

time each decoder should be able to translate the embed-

dings to an image in its own domain. This is achieved by

minimizing a reconstruction loss on both autoencoders:

LREC =
∑

s∈S

‖AeS(s))− s‖1 +
∑

t∈T

‖AeT (t))− t‖1 (1)

as well as cycle-consistency losses:

Lsts−cycle =
∑

s∈S

‖DecS(EncT (DecT (EncS(s))))− s‖1

Ltst−cycle =
∑

t∈T

‖DecT (EncS(DecS(EncT (t))))− t‖1

(2)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1: Combining SVOX and RobotCar datasets: a) shows the areas covered by SVOX and RobotCar [23] on the Oxford

city map. b) an example of image from SVOX; c-g) examples from the RobotCar scenarios: respectively Snow, Rain, Sun,

Night and Overcast, depicting the same location as image b.
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Figure 2: The proposed AdAGeo architecture: training is performed in two phases: during phase 1 the domain-driven data

augmentation learns a transformation from source to target domain from just 5 target images. The transformation is then used

to generate labeled pseudo-target images. Phase 2 is tasked with the actual geolocalization task, leveraging the generated

pseudo-target images, an attention layer and a domain adaptation module.

where the bar above a module means that its weights are

frozen during backpropagation of this loss. Moreover, as

in [8], it is important that the embeddings approximate a

Gaussian distribution, which helps the two domains to bet-

ter align, and can be achieved through a variational loss on

both encoders:

LV EncS =
∑

s∈S

KL({EncS(s)|s ∈ S}‖N (0, I))

LV EncT =
∑

t∈T

KL({EncT (t)|t ∈ T}‖N (0, I))
(3)

We can then compute the final loss as:

Lfinal = LREC + Lsts−cycle + Ltst−cycle+

0.001LV EncS + 0.001LV EncT

(4)

Once the training process is finished, it is possible to gen-

erate new images from the source domain dataset Xs,

by translating them into the target domain Dt. We

therefore generate a new pseudo-target dataset Xpt =
{(xpt

i , y
pt
i )}n

pt

i=1
where npt = ns, x

pt
i = DecT (EncS(x

s
i ))

and y
pt
i = ysi for all i ∈ {1, 2...npt}. We call this pseudo-

target because its domain Dpt ≈ Dt. The creation of the

pseudo-target dataset is a data augmentation technique per-

formed only once, offline, in order to speed up the training

of the second part of the architecture.

4.2. Attention mechanism

In order to highlight the most important features’ areas for

the retrieval task, we introduced an attention layer after the

encoder. To this purpose, we took inspiration from the class

activation map (CAM) paper [40] which tries to focus on
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(a) Original (b) Snow (c) Rain

(d) Sun (e) Night (f) Overcast

Figure 3: An image from the SVOX dataset (a) and the

5 generated pseudo-target images over the 5 domains of

RobotCar. Although the generated images present visible

artifacts, this step is essential for cross-domain robust ge-

olocalization (see Tab. 3).

discriminative image areas that are the most useful to pro-

duce the class output in the image classification task, ex-

ploiting the final average pooling layer present in recent

networks such as the ResNet [15]. Let us consider for a

given image of dimension 3×H ×W the extracted feature

representation f of shape D × H1 × W1 where D is the

number of kernels from the last convolutional layer in the

encoder. Furthermore, consider also the backbone classifier

block, which contains a fully connected layer with D × C

weights wcd with d values respectively for each class c. The

attention map AMc for a given class c is obtained by the fol-

lowing linear combination:

AMc = σ(
∑

d

fd · wcd) (5)

where σ is the softmax function and whose result has di-

mension H1 ×W1.

Finally, AMc is upsampled to H × W and is applied over

the input image, to visualize the most relevant regions for

that class c.

In our architecture we used the fully connected layer

of a CNN pretrained on Places365 [41], which contains

C = 365 classes, to produce the AMc. The idea stems

from the fact that the classes in Places365 [41] (such as

house, building, market) are inherently relevant to our task.

The images are passed to the whole backbone extracting the

local features representation f from the last convolutional

layer and producing the AMcmax
for the category cmax with

the highest probability P, predicted by the fully connected

layer. Then, the features are spatially weighted with the

scores calculated before:

fw = f ·AMcmax

cmax = ci | i =argmax
j

[P(cj)], ∀j ∈ C (6)

(a) (b) (c)

(d) (e) (f)

Figure 4: Visualization of attention score maps on source

domain (a) and target domains (b-f) unseen by the attention

module at training time.

producing new weighted features fw with the same dimen-

sions as f .

We demonstrate that the attention mechanism is useful also

for the target images, since the salience regions can help to

distinguish also the elements across different domains. Fig.

4 shows the results obtained applying the attention mecha-

nism over all domains at test-time, which shows significant

visual results also over target domains unseen by the atten-

tion module.

4.3. Domain adaptation module

In order for the retrieval to work well across domains it

is important that the embeddings produced by the atten-

tion module are domain agnostic, i.e. they do not encode

domain-specific information. We achieve this by using a

domain discriminator which receives embeddings from the

three domains Ds, Dpt and Dt. The discriminator is com-

posed of two fully connected layers, and its goal is to clas-

sify the domain to which the embeddings belong. Just

before the discriminator there is a gradient reversal layer

(GRL) [10], that in the forward pass acts as an identity

transform, while in the backward pass multiplies the gra-

dient by -λ, where λ > 0. The use of this layer effectively

sets up a minimax game strategy, where the discriminator

tries to minimize the domain classification loss, that is a

cross-entropy loss LCE , while the feature extractor learns

to produce domain-invariant embeddings, acting as an ad-

versary to the discriminator.
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4.4. Weakly supervised descriptors aggregation

In order to transform the attentive embeddings into vector-

ized representations of each image we use a NetVLAD [2]

layer, arguably the most common descriptor aggregator for

VPR [2, 20, 36]. To use NetVLAD, we first perform K-

means clustering over 500 randomly sampled embeddings

of images from all 3 domains to compute K centroids.

Then, given the embeddings fw of dimension D×H1×W1,

reshaped with dimensions D×R where R = H1×W1, the

(j, k) element of the VLAD representation V [19] is com-

puted as

V (j, k) =

R∑

i=1

e−‖fw
i −ck‖

2

∑
k′ e−‖fw

i
−ck′‖2

· (fw
i (j)− ck(j)) (7)

where fw
i (j) and ck(j) are the j-th dimensions of the i-th

embedding and k-th centroids, respectively; while the frac-

tion is the soft-assignment of descriptor fw
i to centroid k-th.

Given the intrinsic nature of VPR data, where the label for

each image is represented solely by its position, it is not pos-

sible to use standard supervised losses to drive the training,

because two photos taken in the same position (therefore

with the same label) but opposite directions would depict

different locations. To overcome this, we use a weakly su-

pervised triplet margin loss [2], which for each query q is

defined as

Ltriplet =

Y∑

y

h(min
i

d2(F (q), F (pqi )) +m

−d2(F (q), F (nq
y)))

(8)

where d( · , · ) represents the Euclidean distance, F (x) is

the features representation for image x, {pqi } is the set of

potential hard positives (images within 10 meters from the

query q), {nq
y} is the set of Y negatives (further than 25

meters), h is the hinge loss and m is a constant parameter

chosen as margin.

5. Experiments

In this section we explain the experimental protocol, focus-

ing on the methods considered for comparisons, the training

details for AdAGeo, the experimental results and an abla-

tion study.

5.1. Comparisons with other methods

To compare AdAGeo with other methods, we first consider

NetVLAD [2], arguably the most used and well-established

method for visual place recognition. We also compute re-

sults with the only other method built for VPR with do-

main adaptation, by Wang et al. [36], which uses an at-

tention module and MK-MMD [13], with the code pro-

vided by the authors. We used the two variants proposed

by the authors, the first one with just the attention mech-

anism (Wang: Att) and the second one with also the DA

branch (Wang: Att+DA). Given the lack of other methods

for the task, we implement NetVLAD [2] with a GRL [10]

branch, as well as NetVLAD [2] with a DeepCORAL [33]

branch and NetVLAD [2] with an SAFN [38] branch, as

SAFN is chosen as the current state of the art for domain

adaptation. For SAFN, we compute the features norm from

the embeddings produced by the last convolutional layer of

the backbone, using the code provided by the authors. For

fairness of comparisons, we compare the methods using as

backbones AlexNet [21] and ResNet18 [15], both cropped

at the last convolutional layer, pretrained on Places365 [41].

5.2. Training details

The training process is split in two distinct phases, as shown

in Fig. 2. The first phase is tasked with building the pseudo-

target dataset using nt = 5 target domain images (Sec .

4.1). We adopt the successful architecture of [8] consist-

ing in two encoders made of two convolutional layers and

four residual blocks, and two symmetric decoders made of

four residual blocks and two deconvolutional layers. In this

phase we use the Adam optimizer with learning rate 0.0002

and batch size 1. The second phase is tasked with building

the embedding for each image, and the domain adaptation

task is performed using the same target domain images as in

the first phase. The backbone pretrained on Places365 [41]

is finetuned from the last two convolutional blocks to the

end (both for AlexNet [21] and ResNet18 [15]), while the

features are extracted at the last convolutional layer, before

ReLU, to be passed to the attention and the domain adap-

tation modules. As optimizer we use Adam with learning

rate 0.00001, and for each iteration we use 4 tuples, each

consisting of 1 query image, the best positive, and 10 neg-

ative samples. The negative samples are chosen following

the standard described in [2], in order to increase the like-

lihood that Ltriplet > 0, by making sure that each negative

is similar enough to the positive. The two losses are com-

bined as Ltriplet + α · LCE where α = 0.1. Finally, unlike

most domain adaptation methods which train the network

for a constant number of epochs, or perform validation and

early stopping on the source validation set, we perform val-

idation and early stopping on the generated pseudo-target

validation set which, having a similar distribution to the tar-

get set, helps to stop the training in an optimal position.

5.3. Results

All methods are trained on SVOX dataset (Tab. 1). For

methods which use domain adaptation (DA), we used the

whole unlabeled target train set from Oxford RobotCar [23]

(around 800 images, depending on the domain, see Tab.

1) for the DA task. For our architecture, we only used 5

images from the unlabeled target set for DA, simulating
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Figure 5: a) Comparison between all methods, shown as recall@N averaged over the 5 target domains (Average Recall@N).

The base CNN encoder is denoted in brackets: (A)lexNet and (R)esNet18. b) Results of experiments with AdAGeo with

0-shots, 1-shot, 5-shots, 50-shots and all-shots. With easier domains (Snow, Rain, Overcast) AdAGeo shows a good improve-

ment in accuracy with just 1 target domain image, while with more challenging domains (Sun, Night) AdAGeo requires a

higher amount of images to perform significant improvements.

Method EN #T
Snow Rain Sun Night Overcast

Avg
R@1 R@1 R@1 R@1 R@1

NetVLAD[2] A 0 9.8 ± 2.6 9.2 ± 1.5 2.0 ± 0.2 0.0 ± 0.0 22.5 ± 4.5 8.7

Wang: Att[36] A 0 11.7 ± 1.5 9.8 ± 0.6 2.9 ± 0.6 0.2 ± 0.1 19.6 ± 2.0 8.8

Wang: Att+DA[36] A all 28.7 ± 1.5 20.6 ± 2.5 6.4 ± 0.2 0.8 ± 0.2 41.3 ± 1.0 19.6

NetVLAD[2]+DCORAL[33] A all 9.6 ± 1.1 8.7 ± 1.3 2.2 ± 0.3 0.1 ± 0.1 17.2 ± 2.0 7.6

NetVLAD[2]+GRL[10] A all 12.4 ± 3.4 9.2 ± 1.8 3.2 ± 0.3 0.1 ± 0.2 28.0 ± 2.4 10.6

AdAGeo (ours) A 5 34.9 ± 2.2 26.4 ± 3.3 10.0 ± 0.1 1.7 ± 0.4 49.9 ± 1.9 24.6

NetVLAD[2] R 0 50.1 ± 1.3 36.5 ± 0.6 17.7 ± 0.9 1.6 ± 0.4 60.0 ± 0.7 33.2

Wang: Att[36] R 0 47.2 ± 5.0 28.1 ± 3.3 13.5 ± 1.9 1.3 ± 1.4 55.7 ± 4.6 29.2

Wang: Att+DA[36] R all 23.8 ± 6.2 11.2 ± 1.4 5.7 ± 0.5 0.9 ± 0.5 37.6 ± 8.2 15.8

NetVLAD[2]+SAFN[38] R all 57.3 ± 2.5 43.6 ± 0.4 19.1 ± 2.0 2.2 ± 0.7 68.3 ± 1.2 38.1

NetVLAD[2]+DCORAL[33] R all 60.2 ± 2.0 33.5 ± 1.1 14.1 ± 0.6 2.1 ± 0.8 61.2 ± 3.6 34.2

NetVLAD[2]+GRL[10] R all 68.9 ± 2.5 50.9 ± 2.0 27.1 ± 4.8 4.6 ± 1.2 76.9 ± 0.7 45.7

AdAGeo (ours) R 5 73.3 ± 2.2 55.7 ± 1.8 29.6 ± 1.0 10.5 ± 1.9 80.1 ± 1.5 49.8

Table 2: Comparison between all methods, shown as recall@1 (R@1) on each target domain. Column EN stands for the

encoder used: AlexNet (A) or ResNet18 (R). #T shows the number of target images used at training time. Snow, Rain, Sun,

Night and Overcast are the 5 target domains of the SVOX+RobotCar dataset. The last column shows the average recall@1

across all domains.

a five-shots scenario. Testing is then performed using the

test gallery from SVOX and the test queries from Oxford

RobotCar [23]. For methods with DA, trainings are per-

formed separately for each of the 5 target domains (Snow,

Rain, Sun, Night and Overcast). As evaluation metric, we

use the percentage of correctly localized queries within the

first N predictions, known as recall@N, as standard prac-

tice for place recognition [2, 36, 20, 26, 22, 43]. A query

is deemed correctly localized if at least one of the top N re-

trieved gallery images is within 25 meters from the ground

truth position of the query. Results for each method over

each domain are shown in Tab. 2. Our AdAGeo framework

outperforms all other approaches with both AlexNet and

ResNet18 encoders while using two orders of magnitude

less target domain images, which verifies the effectiveness

of our method. Moreover, AdAGeo presents good results

with both encoders, showing the stability of the framework,

while other methods are highly dependent on the architec-

ture of the features extractor. More comparisons of each

method are shown in Fig. 5a. The supplementary material

provides an additional qualitative comparison between our

method and the best baseline by visualizing some retrieval
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Method
Snow Rain Sun Night Overcast

Avg
R@1 R@1 R@1 R@1 R@1

Baseline 50.1 36.5 17.7 1.6 60.0 33.2

Baseline+DDDA 61.3 45.3 23.3 6.1 71.1 41.4

Baseline+Att 49.4 39.9 24.5 3.3 64.0 36.2

Baseline+DA 65.3 49.7 25.4 6.0 75.2 44.3

Baseline+DDDA+Att 66.6 54.5 27.3 5.5 72.2 45.2

Baseline+DDDA+DA 67.2 51.5 24.8 9.4 78.4 46.3

Baseline+Att+DA 66.0 49.1 24.8 3.2 76.1 43.8

AdAGeo 73.3 55.7 29.6 10.5 80.1 49.8

Table 3: Ablation table of our proposed framework on the SVOX+RobotCar dataset in a 5-shot setting with ResNet18 as

encoder. R@1 = recall@1, DDDA = Domain-Driven Data Augmentation, Att = Attention layer and DA = Domain adaptation

layer.

results.

For fairness of comparison, we ran all experiments 3 times

in a fully deterministic environment, with seeds 0, 1 and 2,

and we present the mean over the 3 runs.

5.4. Ablation study

We evaluate the components of our method by conduct-

ing an extensive ablation study over each target domain

of SVOX+RobotCar. The results are shown in Tab. 3,

where all experiments have been run in a 5-shot environ-

ment (except for the experiments where the target domain

is not used) and all the modules combination are tried. As

baseline, we use a ResNet18 encoder (cropped at the last

convolutional layer) followed by a NetVLAD [2] descriptor

aggregator. Then, each component is added to the base-

line: Baseline + Domain-driven data augmentation mod-

ule (DDDA), Baseline + Attention module (Att), Baseline

+ Domain adaptation module (DA) and all their combina-

tions (Baseline+DDDA+Att, Baseline+DDDA+DA, Base-

line+Att+DA) until the entire AdAGeo architecture (Base-

line+DDDA+Att+DA). As shown in Tab. 3, each module

produces an improvement w.r.t. the baseline. The ablation

study also proves that the modules are orthogonal to each

other, giving consistent improvements when used alone as

when used together. In particular, the attention module

yields a 3% improvement on the baseline, and 3.5% on the

final model, although it does not see the target domain at

training time. Finally, the three modules together show an

improvement of more than 16% on average over the base-

line.

6. Conclusions

In this work we propose AdAGeo, a method to tackle the

problem of cross-domain visual place recognition using

only few unlabeled target images. The key improvements

over previous architectures are due to an attention mech-

anism, and two orthogonal domain adaptation techniques.

We extensively show the robustness of AdAGeo, especially

when only few target images are available for domain adap-

tation at training time, being able to outperform current state

of the art with two orders of magnitude less target images.

Moreover, we propose a new dataset, called SVOX, which,

extends Oxford RobotCar and can be used as a large scale

multi-domain dataset for visual place recognition, present-

ing a realistic scenario for future research on the field.
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