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Abstract

Precise detection of quadrilateral text is of great signif-

icance for subsequent recognition, where the main chal-

lenge comes from four distorted sides. Existing methods

concentrate on learning four vertices to construct the con-

tour. However, vertices are dummy intersections entangled

by their neighbor sides. The regression of each vertex would

simultaneously affect its two neighbor sides. As a result, the

originally independent side would be influenced by two dif-

ferent vertices which further inevitably disturb other sides.

The above entangled vertices learning suppresses the learn-

ing efficiency and detection performance. In this paper, we

proposed disentangled contour learning network (DCLNet)

to focus on clear regression of each individual side disen-

tangled from the whole quadrilateral contour. The side is

parameterized by a linear equation that disentangled in the

polar coordinates for easier learning. With tailored Ray-

IoU loss and sine angle loss, DCLNet could better learn

the representation of each disentangled side without being

disturbed by others. The final quadrilateral text contour is

easily constructed by intersecting the predicted linear equa-

tions of sides. Empirically, the proposed DCLNet achieves

state-of-the-art detection performances on three scene text

benchmarks. Ablation study is also presented to demon-

strate the effectiveness of proposed disentangled contour

learning framework.

1. Introduction

Scene text detection plays an importance role in various

applications, such as authentication, product retrieve, text

translation and autonomous driving. Recently, deep learn-

ing based text detection methods [32, 13, 29, 25, 3, 24] ex-

hibit promising performances which benefits from the de-

velopment of network architecture [31, 7] and detection or

segmentation pipelines [12, 19, 27, 22, 28, 6]. However,

many regular texts tend to appear as distorted quadrilat-

eral shapes in image due to the changeable views of cam-

era. In this situation, the frequently used axis-aligned rect-

angle and rotated rectangle are not able to precisely lo-

Figure 1. (a) Entangled vertices learning. The regression of each

independent side is influenced by two vertices which would in-

evitably disturb other sides. The learning efficiency and detection

performance are suppressed. (b) Disentangled contour learning in

our DCLNet. The sides are disentangled from whole contour with

independent line parameters in polar coordinates, which is easily

learned with higher efficiency and performance.

calize the quadrilateral shapes, which severely impairs the

subsequent recognition. Therefore, more and more meth-

ods concentrate their efforts on the quadrilateral text detec-

tion [9, 20, 46, 21, 18, 16, 34].

The main challenge of quadrilateral text detection comes

from the four distorted sides, which present irregular and

independent arrangements. As shown in Figure 1(a), ex-

isting mainstream methods detect the quadrilateral bound-

ary by regressing the four vertices of texts. Some of these

methods [20, 34, 16, 18] learn the regression based on

prior anchor boxes (two-stage) and others [21, 46, 9] di-
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rectly regress the offset between current location and ver-

tices (one-stage). However, the vertices are actually dummy

intersections entangled by their two neighbor sides. In this

situation, the regression of each vertex would simultane-

ously influence the localization of its two neighbor sides.

As a result, the originally independent contour side would

be influenced by two different vertices which further in-

evitably disturb other sides. The above entangled vertices

learning suppresses the learning efficiency and detection

performance as shown in following experiments.

To address the above interfering learning process caused

by entangled vertices, we proposed disentangled contour

learning network (DCLNet) in this paper to focus on more

clear regression of each individual side disentangled from

the whole quadrilateral contour shown in Figure 1(b). Espe-

cially, each side is parameterized by its own linear equation

and further disentangled in polar coordinates with physi-

cal meanings in image for easier learning. With the tai-

lored Ray-IoU loss and sine angle loss, DCLNet could bet-

ter learn each disentangled side without being disturbed by

others, which promotes the learning efficiency and detec-

tion performance. The quadrilateral text contour could be

easily constructed by intersecting the predicted linear equa-

tions of four sides. The proposed DCLNet achieves state-

of-the-art detection performances on three scene text de-

tection benchmarks: ICDAR 2017 MLT, ICDAR 2015 and

MSRA-TD500. Extensive ablation study is also performed

to validate the effectiveness of proposed disentangled con-

tour learning framework.

The contributions of this work are summarized as fol-

lows: (1) We analyzed the shortcoming of existing entan-

gled vertices based methods and further proposed disentan-

gled sides parameterized in polar coordinates to represent

the quadrilateral contour; (2) A unified disentangled con-

tour learning network (DCLNet) is proposed with tailored

Ray-IoU loss and sine angle loss to better detect quadri-

lateral texts; (3) The proposed DCLNet achieves state-of-

the-art performances on challenging ICDAR 2017 MLT, IC-

DAR 2015 and MSRA-TD500 benchmarks, which contain

arbitrary quadrilateral and multi-oriented texts.

2. Related Work

Recently, more and more scene text detection methods

are proposed with the development of deep learning. For

instance, CTPN [32] detects the horizontal texts by group-

ing regressed adjacent text components based on the Faster-

RCNN [27] framework. However, the scene texts tend to

appear with distorted and irregular shapes due to the various

viewpoints of camera. Therefore, the majority of detection

methods concentrate their efforts on multi-orientated texts

which are represented by rotated rectangles and more gen-

eral arbitrary quadrilateral shapes.

For multi-orientated texts, R2CNN [13] and RRPN [25]

constructs prior anchor boxes with different rotations as

proposals which are adapted in two-stage FasterRCNN [27]

framework for detection. SegLink [29] detects the text frag-

ments and predicts the link between adjacent text fragments

to complete the oriented text boundary based on SSD [19]

framework. [8] also employs the SSD framework to regress

the offset of rotated anchor boxes with attention mechanism

and improved hierarchical inception module. CLRS [24]

learns the corner points of boundary box which are sampled

and grouped to construct the final boundary. EAST [46] di-

rectly regresses the bounding box with four distances and

rotation angle, which is similar to the DenseBox [12]. Be-

sides the above regression methods, PixelLink [3] segments

the text region and predicts the neighborhood connections

of each pixel to obtain instances which are surrounded by

rotation boxes as detection results. Border [40] segments

the center region of text and employ semantics-aware bor-

der detection technique to produce four types of text border

to extract each scene text.

Rotation rectangles are not able to precisely localize dis-

torted quadrilateral texts, which would damage the down-

stream recognition. As a result, EAST [46] also present the

direct quadrilateral regression on the eight coordinates of

four vertices, as well as the DeepReg [9]. Besides the above

anchor-free methods, most of existing methods employ an-

chor based two stage framework. Textboxes++ [16] em-

ploy axis-aligned rectangles as the anchor boxes and regress

the offset between anchor box and boundary label. DMP-

Net [20] designs quadrilateral sliding windows as anchor

boxes to better match the quadrilateral texts. RRD [18]

and [34] also follow the two stage framework which fur-

ther propose oriented response architecture and weighted

RoI (Region of Interest) pooling respectively to better ex-

tract the quadrilateral text features. Although the regression

manners and feature extractions are different, it can be seen

that the common operation for above methods is to regress

the four vertices of quadrilateral contour. As analyzed be-

fore, the independent sides would be affected by other sides

due to their entangled vertices, which suppresses the learn-

ing efficiency and detection performance.

For more complicated scene texts with arbitrary curved

shapes, most detection methods are based on segmentation.

CRAFT [1] predicts the Gaussian heatmap of characters

and their affinity link to obtain text instances. PSENet [35]

learns the text kernels on different scales and progressively

integrate them into different instances. TextCohesion [37]

and TextMountain [47] segment the center region of text to

avoid adhesion, then assign boundary pixels to correspond-

ing center to complete text instance. DB [17] improves the

binarization in text segmentation with differentiable learn-

ing with network. Note that the above methods for arbitrary

shapes also adapt quadrilateral texts and would be compared

as baselines in following benchmark experiments.
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Figure 2. The overview of DCLNet framework, which employs typical encoder-decoder architecture connected by channel reduce module

and feature aggregation module. The output feature maps contains nine channels denoted by different colors and further visualized using

demo lines in the right. The text boundaries are constructed by intersecting the line equations of sides.

3. Method

In this section, we first present the overview of DCLNet

framework. Next, the line equations of quadrilateral sides

are formulated in polar coordinates for easier learning.

Then, the loss functions tailored for line parameters are de-

scribed. Finally, the detailed generation of line parameter

labels is presented.

3.1. Overview

The overview of DCLNet framework is presented in Fig-

ure 2. The entire network follows typical encoder-decoder

architecture which is connected by the channel reduce mod-

ule and feature aggregation module to reduce computation

and better utilize multi-scale features. The output feature

maps contains nine channels denoted by different colors.

The text mask is used to focus text region where the line

equation parameters of disentangled sides are regressed.

For easier observation, the regressed line parameters of dif-

ferent sides are visualized using the colors of correspond-

ing features and shown by the demo lines in the right. The

output text boundaries could be easily constructed by inter-

secting the line equations of sides.

It could be seen that the main pipeline differences be-

tween the proposed DCLNet and existing detection meth-

ods are the representations for quadrilateral text boundary

and subsequent learning process. In the entangled vertices

learning of existing baselines, the originally independent

sides would be inevitably disturbed by the neighbour sides

due to the regression on their entangled vertices, which sup-

presses the learning efficiency and detection performance.

In contrast, DCLNet explicitly disentangles each side from

the whole text contour which is further parameterized us-

ing independent line equation. The regression of each side

would not disturb others which promotes the learning effi-

ciency and the detection performance.

3.2. Disentangled Line Equation

The four sides of quadrilateral text boundary could be

viewed as four independent parameterized line equations.

For instance, Figure 3 presents the line equations of four

sides with respect to current location which is considered as

the origin of cartesian coordinates for easier convergence in

training stage. The order of four sides is kept similar to the

standard annotation which describes the text contour from

the top left corner in clockwise direction. Generally, the line

equation of one side could be formulated as:

Ax+By + C = 0, (1)

where A,B,C are the three parameters. However, these

parameters are actually redundant when C 6= 0. In other

words, predicting implicit parameters A,B,C is ill-posed

since multiple solutions exist. Their physical meanings in

image are also ambiguous which is not conducive to net-

work learning. As a result, we convert the above line equa-

tion into polar coordinates and obtain:

ρ = x cos θ + y sin θ, (2)

where ρ and θ are two independent parameters and have

physical meanings in image. As shown in Figure 3, ρ is
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Figure 3. The visualization of four parameterized line equations

with cartesian coordinates (orange, purple, blue and green) and

polar coordinates (red).

the nearest distance between origin (current location) and

line equation, θ is the rotation angle from x-axis positive

direction to above nearest direction. Therefore, the conver-

sion from cartesian coordinates to polar coordinates simul-

taneously reduces the number of parameters and the correla-

tion between them, and brings physical meanings in images,

which is beneficial for network learning.

In the inference stage, firstly, the original A,B,C pa-

rameters predicted by each location could be obtained by

A = cos θ,B = sin θ, C = −ρ. (3)

Then the above line parameters are shifted to one global

origin, i.e., the lower left corner of image for alignment. In

this way, the intersected vertex (xi, yi) of two line equations

(A1, B1, C1), (A2, B2, C2) in cartesian coordinates could

be easily obtained by

D = A1B2 −A2B1, (4)

xi =
B1C2 −B2C1

D
, (5)

yi =
A2C1 −A1C2

D
, (6)

where D should be checked avoid 0 to confirm meaningful

intersected point.

In summary, the line equation of each side is converted

to polar coordinates with respect to current location for eas-

ier training. In inference, the regressed parameters are con-

verted back to one global cartesian coordinates to calculate

the intersected points as detection results. The disentangled

idea is reflected in two aspects: (1) The originally indepen-

dent sides are disentangled from whole contour using line

equation representation; (2) The parameters of line equation

are disentangled in polar coordinates for easier learning.

Figure 4. The shrunk version (blue box) of original text bound-

ary (green box) based on anchor point (blue point) is viewed as

classification label (right).

3.3. Label Generation

The labels contain: (1) text classification, (2) distance ρ

and (3) angle θ. Here we describe the detailed label gen-

eration based on standard text annotation with four ordered

vertices (xi, yi), i = 0, 1, 2, 3.

For the text classification label, we scale down the orig-

inal text mask as shown in Figure 4 considering that the ρ

in edge areas is hard to distinguish. Specifically, the inter-

section of two diagonals is viewed as anchor point. Each

vertex is moved to the anchor point according to preset ra-

tio to construct the shrunk version of mask as label.

The label maps of distance ρ and angle θ are specified

based on different locations. For instance, the labels (ρ̂i,

θ̂i), i = 1, 2, 3, 4 for one location (x0, y0) in the text region

could be calculated in Algorithm 1 given the four text ver-

tices (xi, yi), i = 1, 2, 3, 4. Firstly, the parameters A,B,C

of line equation with end points (xi, yi), (xj , yj) are calcu-

lated. Then the distance label ρ̂i could be obtained with the

nearest distance formula. For the angle label θ̂i, we can cal-

culate the angle between the unit vector ~e in x-axis positive

direction and the perpendicular line vector ~l. Note that the

positive sign of BC denotes the ~l is under the x-axis, which

needs to be subtracted from 2π to obtain the real label θ̂i.

3.4. Loss Function

The overall loss function is formulated as

L = λ1Lcls + λ2Lρ + λ3Lθ, (7)

where Lcls, Lρ and Lθ denote the losses of text/non-text

classification, line equation parameters ρ regression and θ

regression, respectively.

Lcls is the commonly employed binary cross-entropy

loss shown in Eq. 8 with OHEM (Online Hard Example

Mining) [30] strategy to promotes the classification ability.

Assuming that M is the training mask to ignore invalid text

regions, ŷi and yi denote the label and prediction in the ith

location, respectively.

Lcls =
1

|M|
∑

i∈M

(−ŷi log yi − (1− ŷi) log (1− yi)) .

(8)
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Algorithm 1: Label (ρ̂i, θ̂i), i = 1, 2, 3, 4 for the

location (x0, y0)

Input: location (x0, y0), four text vertices

(xi, yi), i = 1, 2, 3, 4

Output: (ρ̂i, θ̂i), i = 1, 2, 3, 4
1 for i = 1, 2, 3, 4 do

2 j = mod(i, 4) + 1;

3 A = yj − yi;

4 B = xi − xj ;

5 C = xjyi − xiyj ;

6 ρ̂i =
|C|√

A2 +B2
;

7 ~l = (
−AC

A2 +B2
,

−BC

A2 +B2
);

8 ~e = (1, 0);

9 θ̂i = arccos
~l · ~e
|~l||~e|

;

10 if BC > 0 then

11 θ̂i = 2π − θ̂i;

12 end

13 end

Inspired by the IoU representation [44], we propose Ray-

IoU loss as Lρ for ρ regression:

Lρ = − 1

N

∑

i

log
min(ρ̂i, ρi)

max(ρ̂i, ρi)
, (9)

where ρ̂i, ρi denote the label and prediction of ρ in the ith

of N locations, respectively. Note that N is actually the

number of valid text pixels. Considering that ρ̂i and ρi share

the same start position which looks like rays so Lρ is named

as Ray-IoU loss. Compared with the L2, L1 and Smooth

L1 losses, Ray-IoU loss could better normalize the various

distances, which contributes to the multi-scale detection.

The θ ranges in [0, 2π]. However, the 0 and 2π are actu-

ally the same representation due to the cycle characteristic

in polar space. When the angle difference increases from pi,

in other words, the loss should decrease accordingly. There-

fore, we design the sine angle loss in Eq. 10 to alleviate the

confusion in above transition areas, where θ̂i and θi denote

the angle label and predicted angle in the ith of N locations,

respectively.

Lθ =
1

N

∑

i

sin
|θ̂i − θi|

2
. (10)

During the whole training stage, the weights λ1, λ2 and

λ3 are set to 1, 1 and 1, respectively.

4. Experiments

In this section, we evaluate the DCLNet on three chal-

lenging public benchmarks: ICDAR 2017 MLT [26], IC-

DAR 2015 [14] and MSRA-TD500 [43]. Ablation study is

also conducted to demonstrate the effectiveness of the pro-

posed modules in DCLNet.

4.1. Datasets

SynthText [5] is a synthetic dataset which is frequently

used to pretrain the network in existing methods. It con-

tains about 800K synthetic images by artificially blending

the natural images and texts rendered with random attributes

such as colors, orientations and scales.

ICDAR 2017 MLT [26] is a multi-lingual scene text

dataset, which includes 9 languages representing 6 differ-

ent scripts. There are totally 7,200 training images, 1,800

validation images and 9,000 testing images, which are la-

beled using word level quadrangle with 4 vertices. Follow-

ing prior arts, the training images and validation images are

both used to finetune the model.

ICDAR 2015 [14] is a dataset for incidental scene text

detection. There are totally 1000 images for training and

500 images for testing, where each text instance is also la-

beled by word level quadrangle with 4 vertices. The texts

in this scene are usually multi-orientated which suffer from

motion blur and low resolution.

MSRA-TD500 [43] is a line-level dataset with 300 train-

ing images and 200 test images of multi-oriented and long

texts. Although the annotations are rotated rectangles, they

could be viewed as a special type of quadrangle. The train-

ing set is relatively small, so we also include 400 images

from HUST-TR400 [42] as training data according to pre-

vious works [46, 24, 23].

4.2. Implementation Details

The DCLNet backbone is ResNet50 [7] which has been

pretrained on ImageNet [4]. It produces 4 stages feature

maps denoted by C2, C3, C4 and C5. With the channel re-

duce module, their channels are reduced to 64, 128, 256 and

512, respectively. The feature aggregation module fuses the

feature maps on different scales to deliver the final output

feature map which has stride of 4 pixels with respect to the

original input image. The output feature maps for text clas-

sification, distance regression and angle regression are 1,

4 and 4 channels, respectively. Finally, the entire network

contains about 35.3M parameters.

The model is optimized using Adam [15] with batch-size

64 and the learning rate decreases under cosine schedule.

The training stage contains two phases: Firstly, we use Syn-

thText [5] to pretrain the model for 5 epochs. The learn-

ing rate decreases from 1 × 10−3 to 1 × 10−4. Then, we

finetune the model on ICDAR 2017 MLT with 150 epochs
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with the same learning rate setting and only select the final

epoch for evaluation. The training stages on ICDAR 2015

and MSRA-TD500 are both finetuned 100 epochs from the

MLT model. During the training, the blurred texts labeled

as DO NOT CARE are all ignored.

For the data augmentation, we set the height and with

of training image in [640, 2560] randomly without keeping

the original aspect ratio in all benchmarks. It is because the

texts usually have various viewpoints with distorted shapes.

Color jitters on brightness, contrast and saturation are also

employed to improve the generalization ability. Finally,

640 × 640 patches are randomly cropped from the trans-

formed images as training data.

In inference stage, the images are resized by setting the

short side to 1280 and keep the original aspect ratio as sin-

gle scale test. The constructed bounding boxes are filtered

using the Locality-Aware NMS (Non Maximum Suppres-

sion) [46] with 0.2 threshold in all experiments.

4.3. Benchmark Comparisons

ICDAR 2017 MLT. We evaluate the proposed DCLNet

and other state-of-the-art baselines on ICDAR 2017 MLT,

which contains multiple languages texts with challenging

distorted quadrilateral boundaries. Table 1 presents the per-

formance comparisons where the best scores are highlighted

in bold. DCLNet achieves 73.3% F-measure in the single

scale test, which has outperformed many detection meth-

ods. Furthermore, the short side of image is resized to [640,

1920] with the same aspect ratio to perform multi-scale test.

In this way, DCLNet finally achieves state-of-the-art 76.3%

F-measure, with a 1.8% improvement with respect to prior

arts. The comparison clearly demonstrates the effectiveness

of DCLNet to handle arbitrary quadrilateral texts, with the

tailored Ray-IoU loss and sine angle loss.

ICDAR 2015. We also evaluate the proposed DCLNet

and other state-of-the-art baselines on ICDAR 2015. The

viewpoints of texts in ICDAR 2015 are relatively stable and

not distorted like ICDAR 2017 MLT. However, the main

challenge comes from the motion blur and low resolution

of texts in this incidental scene. Table 2 presents the perfor-

mance comparisons where the best scores are highlighted

in bold. In the single scale test, DCLNet achieves 88.7% F-

measure and already outperforms all other detection meth-

ods even under multi-scale test. It indicates that DCLNet

could effectively recognize the texts even with low quality

imaging. With the proposed Ray-IoU loss and sine angle

loss, the boundary of these challenging texts could also be

accurately restored.

MSRA-TD500. We further evaluate DCLNet and other

state-of-the-art baselines on MSRA-TD500. The main chal-

lenge is from the texts with multiple orientations and ex-

treme long lengths. Considering that the texts are usually

clear with relatively large scale, the short side of image in

Method Precision Recall F-measure

DR [10] 76.7 57.9 66.0

Border [40] 77.7 62.1 69.0

PSENet [35] 73.8 68.2 70.9

CLRS [24] 83.8 55.6 66.8

CLRS* [24] 74.3 70.6 72.4

LOMO [45] 78.8 60.6 68.5

LOMO* [45] 80.2 67.2 73.1

CRAFT [1] 80.6 68.2 73.9

SPCNet [38] 73.4 66.9 70.0

SPCNet* [38] 80.6 68.6 74.1

Two-stage [34] 78.3 63.4 70.1

Two-stage* [34] 81.8 68.5 74.5

GNNet [39] 79.6 70.1 74.5

DCLNet 81.0 66.9 73.3

DCLNet* 81.9 71.4 76.3

Table 1. The quantitative results of DCLNet and other baselines

on the ICDAR 2017 MLT dataset. The best scores are highlighted

in bold. “*” denotes multi-scale test.

Method Precision Recall F-measure

SegLink [29] 73.1 76.8 75.0

WordSup [11] 79.3 77.0 78.2

EAST* [46] 83.3 78.3 80.7

DeepReg [9] 82.0 80.0 81.0

R2CNN [13] 85.6 79.7 82.5

TextSnake [23] 84.9 80.4 82.6

TextBoxes++* [16] 87.8 78.5 82.9

PixelLink [3] 85.5 82.0 83.7

RRD* [18] 88.0 80.0 83.8

FTSN [2] 88.6 80.0 84.1

CLRS* [24] 89.5 79.7 84.3

Two-stage [34] 89.2 82.3 85.6

SAE [33] 88.3 85.0 86.6

IncepText* [41] 89.4 84.3 86.8

CRAFT [1] 89.8 84.3 86.9

SPCNet [38] 88.7 85.8 87.2

PSENet [35] 89.3 85.2 87.2

LOMO* [45] 87.8 87.6 87.7

DCLNet 90.3 87.1 88.7

Table 2. The quantitative results of DCLNet and other baselines on

the ICDAR 2015 dataset. The best scores are highlighted in bold.

“*” denotes multi-scale test.

set to 880 in single scale test. Table 3 presents the perfor-

mance comparisons where the best scores are highlighted in

bold. DCLNet achieves the state-of-the-art 85.1 F-measure

in the single scale test. It demonstrates the effectiveness of

DCLNet with tailored Ray-IoU loss to address extreme long

texts with large scale in some orientations.

Figure 5 presents some detected text boundaries in above

three benchmarks for better visualization. The 1-3 rows
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Figure 5. Visualization of detected texts in ICDAR 2017 MLT, ICDAR 2015 and MSRA-TD500.

Method Precision Recall F-measure

DeepReg [9] 77.0 70.0 74.0

RRPN* [25] 82.0 69.0 75.0

EAST* [46] 87.3 67.4 76.1

SegLink [29] 86.0 70.0 77.0

PixelLink [3] 83.0 73.2 77.8

TextSnake [23] 83.2 73.9 78.3

CLRS [24] 87.6 76.2 81.5

FTSN [2] 87.6 77.1 82.0

CRAFT [1] 88.2 78.2 82.9

SAE [33] 84.2 81.7 82.9

IncepText [41] 87.5 79.0 83.0

RRD* [18] 88.0 80.0 83.8

PAN [36] 84.4 83.8 84.1

DCLNet 90.2 80.5 85.1

Table 3. The quantitative results of DCLNet and other baselines

on the MSRA-TD500 dataset. The best scores are highlighted in

bold. “*” denotes multi-scale test.

denote the detection results of ICDAR 2017 MLT, ICDAR

2015 and MSRA-TD500, respectively. It can be seen that

the texts with different languages, orientations and scales

are all precisely located. Moreover, the distorted quadrilat-

eral texts, blurred texts with low resolution and long texts

are also detected with high quality boundaries. It solidly

demonstrates that the disentangled contour learning could

better regress the independent sides without distributions

from each other. In the polar coordinates, the proposed Ray-

IoU loss and sine angle loss further improve the regression

quality to produce more accurate detection results.

4.4. Ablation Study

Disentangled v.s. Entangled. Although the benchmark

comparisons have demonstrated the effectiveness of disen-

tangled learning, there are many other variables affect the

fair comparison such as backbone architecture, data aug-

mentation, training strategy. Therefore, we design ablation

study to clearly compare the disentangled DCLNet and en-

tangled baseline. Specifically, baseline regresses the off-

sets of eight vertices coordinates with the L1 loss like prior

arts. Figure 6 presents the regression loss curves of DCLNet

and baseline on ICDAR 2017 MLT dataset without pre-

train. Note that the regression of DCLNet contains ρ and

θ two parts, which are added with 1:1 ratio as in training. It

can be seen that the loss curve of DCLNet is smoother and

converges faster compared with the baseline, which brings

about 3.5% F-measure improvement. The above compar-

ison proves that the learning process in DCLNet is much

easier than that in entangled baseline, which benefits from

the disentangled side representation of quadrilateral con-

tour and meaningful parameterization in polar coordinates.

Moreover, Figure 7 presents some detected examples of dis-

torted quadrilateral texts, where the irregular boundaries are

all precisely localized. It clearly shows the effectiveness

of DCLNet to detect quadrilateral texts for the subsequent

recognition applications.

Ray-IoU and sine angle losses. DCLNet clearly sepa-
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Figure 6. Regression losses comparison of entangled baseline and

our DCLNet. The training of disentangled DCLNet is more stable

and converges faster than baseline.

Figure 7. Detection results of distorted quadrilateral texts with

DCLNet, where irregular boundaries are all precisely localized.

Ray-IoU Loss Sine Angle Loss F-measure

- - 86.9

X - 88.3

- X 87.2

X X 88.7

Table 4. The performances of DCLNet with different losses on

ICDAR 2015 dataset. The best score is highlighted in bold.

rates the independent parameters of each disentangled side.

Ray-IoU and sine angle losses are designed to further im-

prove the learning ability for these line parameters. Table 4

presents the single scale F-measures on ICDAR 2015 with

different losses. The replacements for these two losses are

commonly used L1 loss and cosine angle loss [46]. It can

be seen that Ray-IoU loss significantly improves the per-

formance. For texts with extreme short or long lengths in

some orientations, Ray-IoU loss could better supervise the

learning under various scales compared with other distance

losses. Sine loss alleviates the angle confusion in junction

Figure 8. The F-measures with different shrink ratios on ICDAR

2015 dataset.

areas, which further promotes the performance to 88.7% F-

measure. The above improvement clearly demonstrates the

effectiveness of proposed Ray-IoU loss and sine angle loss

for line equation parameters learning.

Text classification label. The regression is based on text

region which is supervised by shrunk text mask with pre-

set ratio. Shrunk mask could help avoid confusing learning

in the edge areas. However, too large shrink ratio would

also cause classification confusion on surrounding text re-

gion. Therefore, we perform the single scale experiments

of shrink ratio on ICDAR 2015 dataset as shown in Figure

8. It can be seen that appropriate ratio could avoid con-

fusion and improve the performance. However, large ratio

would also introduce extra classification confusion thus the

performance severely drops. Overall, the ratio in [0.3, 0.4]

is beneficial for improving performance and 0.35 is selected

as the default value in our experiments.

5. Conclusion

The main challenge of quadrilateral text detection comes

from four distorted sides. Existing methods detect the con-

tour by learning four vertices, which are actually dummy

intersections entangled by neighbor sides. Each originally

independent side would be influenced by two different ver-

tices which inevitably disturb other sides. The above en-

tangled vertices learning suppresses learning efficiency and

detection performance. In this paper, we proposed DCLNet

to clearly regress each individual side disentangled from

whole quadrilateral contour. The side is parameterized by a

linear equation disentangled in polar coordinates. With the

tailored Ray-IoU loss and sine angle loss, DCLNet could

better learn the representation of each disentangled side

without being disturbed by others. DCLNet achieves state-

of-the-art detection performances on three scene text bench-

marks. Ablation study also proves the effectiveness of pro-

posed disentangled learning framework.
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