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Abstract

Precise detection of quadrilateral text is of great signif-
icance for subsequent recognition, where the main chal-
lenge comes from four distorted sides. Existing methods
concentrate on learning four vertices to construct the con-
tour. However, vertices are dummy intersections entangled
by their neighbor sides. The regression of each vertex would
simultaneously affect its two neighbor sides. As a result, the
originally independent side would be influenced by two dif-
ferent vertices which further inevitably disturb other sides.
The above entangled vertices learning suppresses the learn-
ing efficiency and detection performance. In this paper, we
proposed disentangled contour learning network (DCLNet)
to focus on clear regression of each individual side disen-
tangled from the whole quadrilateral contour. The side is
parameterized by a linear equation that disentangled in the
polar coordinates for easier learning. With tailored Ray-
loU loss and sine angle loss, DCLNet could better learn
the representation of each disentangled side without being
disturbed by others. The final quadrilateral text contour is
easily constructed by intersecting the predicted linear equa-
tions of sides. Empirically, the proposed DCLNet achieves
state-of-the-art detection performances on three scene text
benchmarks. Ablation study is also presented to demon-
strate the effectiveness of proposed disentangled contour
learning framework.

1. Introduction

Scene text detection plays an importance role in various
applications, such as authentication, product retrieve, text
translation and autonomous driving. Recently, deep learn-
ing based text detection methods [32, 13, 29, 25, 3, 24] ex-
hibit promising performances which benefits from the de-
velopment of network architecture [31, 7] and detection or
segmentation pipelines [12, 19, 27, 22, 28, 6]. However,
many regular texts tend to appear as distorted quadrilat-
eral shapes in image due to the changeable views of cam-
era. In this situation, the frequently used axis-aligned rect-
angle and rotated rectangle are not able to precisely lo-
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Figure 1. (a) Entangled vertices learning. The regression of each
independent side is influenced by two vertices which would in-
evitably disturb other sides. The learning efficiency and detection
performance are suppressed. (b) Disentangled contour learning in
our DCLNet. The sides are disentangled from whole contour with
independent line parameters in polar coordinates, which is easily
learned with higher efficiency and performance.

calize the quadrilateral shapes, which severely impairs the
subsequent recognition. Therefore, more and more meth-
ods concentrate their efforts on the quadrilateral text detec-
tion [9, 20, 46, 21, 18, 16, 34].

The main challenge of quadrilateral text detection comes
from the four distorted sides, which present irregular and
independent arrangements. As shown in Figure 1(a), ex-
isting mainstream methods detect the quadrilateral bound-
ary by regressing the four vertices of texts. Some of these
methods [20, 34, 16, 18] learn the regression based on
prior anchor boxes (two-stage) and others [21, 46, 9] di-
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rectly regress the offset between current location and ver-
tices (one-stage). However, the vertices are actually dummy
intersections entangled by their two neighbor sides. In this
situation, the regression of each vertex would simultane-
ously influence the localization of its two neighbor sides.
As a result, the originally independent contour side would
be influenced by two different vertices which further in-
evitably disturb other sides. The above entangled vertices
learning suppresses the learning efficiency and detection
performance as shown in following experiments.

To address the above interfering learning process caused
by entangled vertices, we proposed disentangled contour
learning network (DCLNet) in this paper to focus on more
clear regression of each individual side disentangled from
the whole quadrilateral contour shown in Figure 1(b). Espe-
cially, each side is parameterized by its own linear equation
and further disentangled in polar coordinates with physi-
cal meanings in image for easier learning. With the tai-
lored Ray-IoU loss and sine angle loss, DCLNet could bet-
ter learn each disentangled side without being disturbed by
others, which promotes the learning efficiency and detec-
tion performance. The quadrilateral text contour could be
easily constructed by intersecting the predicted linear equa-
tions of four sides. The proposed DCLNet achieves state-
of-the-art detection performances on three scene text de-
tection benchmarks: ICDAR 2017 MLT, ICDAR 2015 and
MSRA-TD500. Extensive ablation study is also performed
to validate the effectiveness of proposed disentangled con-
tour learning framework.

The contributions of this work are summarized as fol-
lows: (1) We analyzed the shortcoming of existing entan-
gled vertices based methods and further proposed disentan-
gled sides parameterized in polar coordinates to represent
the quadrilateral contour; (2) A unified disentangled con-
tour learning network (DCLNet) is proposed with tailored
Ray-IoU loss and sine angle loss to better detect quadri-
lateral texts; (3) The proposed DCLNet achieves state-of-
the-art performances on challenging ICDAR 2017 MLT, IC-
DAR 2015 and MSRA-TD500 benchmarks, which contain
arbitrary quadrilateral and multi-oriented texts.

2. Related Work

Recently, more and more scene text detection methods
are proposed with the development of deep learning. For
instance, CTPN [32] detects the horizontal texts by group-
ing regressed adjacent text components based on the Faster-
RCNN [27] framework. However, the scene texts tend to
appear with distorted and irregular shapes due to the various
viewpoints of camera. Therefore, the majority of detection
methods concentrate their efforts on multi-orientated texts
which are represented by rotated rectangles and more gen-
eral arbitrary quadrilateral shapes.

For multi-orientated texts, R2ZCNN [13] and RRPN [25]

constructs prior anchor boxes with different rotations as
proposals which are adapted in two-stage FasterRCNN [27]
framework for detection. SegLink [29] detects the text frag-
ments and predicts the link between adjacent text fragments
to complete the oriented text boundary based on SSD [19]
framework. [8] also employs the SSD framework to regress
the offset of rotated anchor boxes with attention mechanism
and improved hierarchical inception module. CLRS [24]
learns the corner points of boundary box which are sampled
and grouped to construct the final boundary. EAST [46] di-
rectly regresses the bounding box with four distances and
rotation angle, which is similar to the DenseBox [12]. Be-
sides the above regression methods, PixelLink [3] segments
the text region and predicts the neighborhood connections
of each pixel to obtain instances which are surrounded by
rotation boxes as detection results. Border [40] segments
the center region of text and employ semantics-aware bor-
der detection technique to produce four types of text border
to extract each scene text.

Rotation rectangles are not able to precisely localize dis-
torted quadrilateral texts, which would damage the down-
stream recognition. As a result, EAST [46] also present the
direct quadrilateral regression on the eight coordinates of
four vertices, as well as the DeepReg [9]. Besides the above
anchor-free methods, most of existing methods employ an-
chor based two stage framework. Textboxes++ [16] em-
ploy axis-aligned rectangles as the anchor boxes and regress
the offset between anchor box and boundary label. DMP-
Net [20] designs quadrilateral sliding windows as anchor
boxes to better match the quadrilateral texts. RRD [18]
and [34] also follow the two stage framework which fur-
ther propose oriented response architecture and weighted
Rol (Region of Interest) pooling respectively to better ex-
tract the quadrilateral text features. Although the regression
manners and feature extractions are different, it can be seen
that the common operation for above methods is to regress
the four vertices of quadrilateral contour. As analyzed be-
fore, the independent sides would be affected by other sides
due to their entangled vertices, which suppresses the learn-
ing efficiency and detection performance.

For more complicated scene texts with arbitrary curved
shapes, most detection methods are based on segmentation.
CRAFT [1] predicts the Gaussian heatmap of characters
and their affinity link to obtain text instances. PSENet [35]
learns the text kernels on different scales and progressively
integrate them into different instances. TextCohesion [37]
and TextMountain [47] segment the center region of text to
avoid adhesion, then assign boundary pixels to correspond-
ing center to complete text instance. DB [17] improves the
binarization in text segmentation with differentiable learn-
ing with network. Note that the above methods for arbitrary
shapes also adapt quadrilateral texts and would be compared
as baselines in following benchmark experiments.
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Figure 2. The overview of DCLNet framework, which employs typical encoder-decoder architecture connected by channel reduce module
and feature aggregation module. The output feature maps contains nine channels denoted by different colors and further visualized using
demo lines in the right. The text boundaries are constructed by intersecting the line equations of sides.

3. Method

In this section, we first present the overview of DCLNet
framework. Next, the line equations of quadrilateral sides
are formulated in polar coordinates for easier learning.
Then, the loss functions tailored for line parameters are de-
scribed. Finally, the detailed generation of line parameter
labels is presented.

3.1. Overview

The overview of DCLNet framework is presented in Fig-
ure 2. The entire network follows typical encoder-decoder
architecture which is connected by the channel reduce mod-
ule and feature aggregation module to reduce computation
and better utilize multi-scale features. The output feature
maps contains nine channels denoted by different colors.
The text mask is used to focus text region where the line
equation parameters of disentangled sides are regressed.
For easier observation, the regressed line parameters of dif-
ferent sides are visualized using the colors of correspond-
ing features and shown by the demo lines in the right. The
output text boundaries could be easily constructed by inter-
secting the line equations of sides.

It could be seen that the main pipeline differences be-
tween the proposed DCLNet and existing detection meth-
ods are the representations for quadrilateral text boundary
and subsequent learning process. In the entangled vertices
learning of existing baselines, the originally independent
sides would be inevitably disturbed by the neighbour sides
due to the regression on their entangled vertices, which sup-

presses the learning efficiency and detection performance.
In contrast, DCLNet explicitly disentangles each side from
the whole text contour which is further parameterized us-
ing independent line equation. The regression of each side
would not disturb others which promotes the learning effi-
ciency and the detection performance.

3.2. Disentangled Line Equation

The four sides of quadrilateral text boundary could be
viewed as four independent parameterized line equations.
For instance, Figure 3 presents the line equations of four
sides with respect to current location which is considered as
the origin of cartesian coordinates for easier convergence in
training stage. The order of four sides is kept similar to the
standard annotation which describes the text contour from
the top left corner in clockwise direction. Generally, the line
equation of one side could be formulated as:

Az +By+C =0, (D

where A, B, C are the three parameters. However, these
parameters are actually redundant when C' # 0. In other
words, predicting implicit parameters A, B, C' is ill-posed
since multiple solutions exist. Their physical meanings in
image are also ambiguous which is not conducive to net-
work learning. As a result, we convert the above line equa-
tion into polar coordinates and obtain:

p=zcosf+ysinb, 2)

where p and 0 are two independent parameters and have
physical meanings in image. As shown in Figure 3, p is
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Figure 3. The visualization of four parameterized line equations
with cartesian coordinates (orange, purple, blue and green) and
polar coordinates (red).

the nearest distance between origin (current location) and
line equation, 6 is the rotation angle from x-axis positive
direction to above nearest direction. Therefore, the conver-
sion from cartesian coordinates to polar coordinates simul-
taneously reduces the number of parameters and the correla-
tion between them, and brings physical meanings in images,
which is beneficial for network learning.

In the inference stage, firstly, the original A, B, C' pa-
rameters predicted by each location could be obtained by

A=cosf,B=sinf,C = —p. 3)

Then the above line parameters are shifted to one global
origin, i.e., the lower left corner of image for alignment. In
this way, the intersected vertex (x;, y;) of two line equations
(A1, B1,CY), (As, Bg, (C5) in cartesian coordinates could
be easily obtained by

D = A1By — A3 By, “)
_ BiCy — ByC,

Ti=——p )
 ACh — ACy

Yi = D ; (6)

where D should be checked avoid 0 to confirm meaningful
intersected point.

In summary, the line equation of each side is converted
to polar coordinates with respect to current location for eas-
ier training. In inference, the regressed parameters are con-
verted back to one global cartesian coordinates to calculate
the intersected points as detection results. The disentangled
idea is reflected in two aspects: (1) The originally indepen-
dent sides are disentangled from whole contour using line
equation representation; (2) The parameters of line equation
are disentangled in polar coordinates for easier learning.

Figure 4. The shrunk version (blue box) of original text bound-
ary (green box) based on anchor point (blue point) is viewed as
classification label (right).

3.3. Label Generation

The labels contain: (1) text classification, (2) distance p
and (3) angle . Here we describe the detailed label gen-
eration based on standard text annotation with four ordered
vertices (x;,v;),4 = 0,1,2,3.

For the text classification label, we scale down the orig-
inal text mask as shown in Figure 4 considering that the p
in edge areas is hard to distinguish. Specifically, the inter-
section of two diagonals is viewed as anchor point. Each
vertex is moved to the anchor point according to preset ra-
tio to construct the shrunk version of mask as label.

The label maps of distance p and angle 6 are specified
based on different locations. For instance, the labels (p;,
@-),i = 1,2, 3,4 for one location (xg, yo) in the text region
could be calculated in Algorithm 1 given the four text ver-
tices (x;,yi), @ = 1,2, 3, 4. Firstly, the parameters A, B, C
of line equation with end points (z;, y;), (x;,y;) are calcu-
lated. Then the distance label p; could be obtained with the
nearest distance formula. For the angle label 6;, we can cal-
culate the angle between the unit vector €' in x-axis positive
direction and the perpendicular line vector I. Note that the
positive sign of BC' denotes the ['is under the x-axis, which
needs to be subtracted from 27 to obtain the real label @

3.4. Loss Function

The overall loss function is formulated as

L=XLgs+ XL, + A3Lg, @)

where L., L, and Ly denote the losses of text/non-text
classification, line equation parameters p regression and 6
regression, respectively.

L5 is the commonly employed binary cross-entropy
loss shown in Eq. 8 with OHEM (Online Hard Example
Mining) [30] strategy to promotes the classification ability.
Assuming that M is the training mask to ignore invalid text
regions, 7; and y; denote the label and prediction in the ith
location, respectively.

LS (gilogyi — (1— ) log (1 yi)

Lcs = T
T Ml ©
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Algorithm 1: Label (p;, 6;),i = 1,2,3,4 for the
location (zg, yo)

Input: location (g, yo), four text vertices
(Z'i, yi)a 1= la 2) 37 4

Output: (p;, 0;),i=1,2,3,4
for: =1,2,3,4do

1
2 | j=mod(i, 4) +1;
3| A=y -y
4 B =x; —xj;
5 C = zjy; — 2y
e
T /7142 +B27
, i ( —AC —-BC )
- VA24 B2 A2 4 B2V
8 €= (1,0);
~ I.e
9 0; = arccos ?e;
Ui
10 if BC > 0 then
11 0; =2w — 0;;
12 end
13 end

Inspired by the IoU representation [44], we propose Ray-
IoU loss as L, for p regression:

1 min(pi, pi)
L,=—— log ———= 9
P N - og max(ﬁi, pz) ’ ( )

where p;, p; denote the label and prediction of p in the ith
of N locations, respectively. Note that [V is actually the
number of valid text pixels. Considering that p; and p; share
the same start position which looks like rays so L, is named
as Ray-IoU loss. Compared with the Ly, L1 and Smooth
L4 losses, Ray-IoU loss could better normalize the various
distances, which contributes to the multi-scale detection.

The 6 ranges in [0, 27r]. However, the 0 and 27 are actu-
ally the same representation due to the cycle characteristic
in polar space. When the angle difference increases from pz,
in other words, the loss should decrease accordingly. There-
fore, we design the sine angle loss in Eq. 10 to alleviate the
confusion in above transition areas, where 9: and 6; denote
the angle label and predicted angle in the ith of /V locations,
respectively.

1 10— 64
Ly = Zi:smT. (10)

During the whole training stage, the weights A;, Ao and
Ag are set to 1, 1 and 1, respectively.

4. Experiments

In this section, we evaluate the DCLNet on three chal-
lenging public benchmarks: ICDAR 2017 MLT [26], IC-
DAR 2015 [14] and MSRA-TDS500 [43]. Ablation study is
also conducted to demonstrate the effectiveness of the pro-
posed modules in DCLNet.

4.1. Datasets

SynthText [5] is a synthetic dataset which is frequently
used to pretrain the network in existing methods. It con-
tains about 800K synthetic images by artificially blending
the natural images and texts rendered with random attributes
such as colors, orientations and scales.

ICDAR 2017 MLT [26] is a multi-lingual scene text
dataset, which includes 9 languages representing 6 differ-
ent scripts. There are totally 7,200 training images, 1,800
validation images and 9,000 testing images, which are la-
beled using word level quadrangle with 4 vertices. Follow-
ing prior arts, the training images and validation images are
both used to finetune the model.

ICDAR 2015 [14] is a dataset for incidental scene text
detection. There are totally 1000 images for training and
500 images for testing, where each text instance is also la-
beled by word level quadrangle with 4 vertices. The texts
in this scene are usually multi-orientated which suffer from
motion blur and low resolution.

MSRA-TD500 [43] is a line-level dataset with 300 train-
ing images and 200 test images of multi-oriented and long
texts. Although the annotations are rotated rectangles, they
could be viewed as a special type of quadrangle. The train-
ing set is relatively small, so we also include 400 images
from HUST-TR400 [42] as training data according to pre-
vious works [46, 24, 23].

4.2. Implementation Details

The DCLNet backbone is ResNet50 [7] which has been
pretrained on ImageNet [4]. It produces 4 stages feature
maps denoted by Cs, C5, Cy and C5. With the channel re-
duce module, their channels are reduced to 64, 128, 256 and
512, respectively. The feature aggregation module fuses the
feature maps on different scales to deliver the final output
feature map which has stride of 4 pixels with respect to the
original input image. The output feature maps for text clas-
sification, distance regression and angle regression are 1,
4 and 4 channels, respectively. Finally, the entire network
contains about 35.3M parameters.

The model is optimized using Adam [15] with batch-size
64 and the learning rate decreases under cosine schedule.
The training stage contains two phases: Firstly, we use Syn-
thText [5] to pretrain the model for 5 epochs. The learn-
ing rate decreases from 1 x 1072 to 1 x 10~%. Then, we
finetune the model on ICDAR 2017 MLT with 150 epochs
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with the same learning rate setting and only select the final
epoch for evaluation. The training stages on ICDAR 2015
and MSRA-TD500 are both finetuned 100 epochs from the
MLT model. During the training, the blurred texts labeled
as DO NOT CARE are all ignored.

For the data augmentation, we set the height and with
of training image in [640, 2560] randomly without keeping
the original aspect ratio in all benchmarks. It is because the
texts usually have various viewpoints with distorted shapes.
Color jitters on brightness, contrast and saturation are also
employed to improve the generalization ability. Finally,
640 x 640 patches are randomly cropped from the trans-
formed images as training data.

In inference stage, the images are resized by setting the
short side to 1280 and keep the original aspect ratio as sin-
gle scale test. The constructed bounding boxes are filtered
using the Locality-Aware NMS (Non Maximum Suppres-
sion) [46] with 0.2 threshold in all experiments.

4.3. Benchmark Comparisons

ICDAR 2017 MLT. We evaluate the proposed DCLNet
and other state-of-the-art baselines on ICDAR 2017 MLT,
which contains multiple languages texts with challenging
distorted quadrilateral boundaries. Table 1 presents the per-
formance comparisons where the best scores are highlighted
in bold. DCLNet achieves 73.3% F-measure in the single
scale test, which has outperformed many detection meth-
ods. Furthermore, the short side of image is resized to [640,
1920] with the same aspect ratio to perform multi-scale test.
In this way, DCLNet finally achieves state-of-the-art 76.3%
F-measure, with a 1.8% improvement with respect to prior
arts. The comparison clearly demonstrates the effectiveness
of DCLNet to handle arbitrary quadrilateral texts, with the
tailored Ray-IoU loss and sine angle loss.

ICDAR 2015. We also evaluate the proposed DCLNet
and other state-of-the-art baselines on ICDAR 2015. The
viewpoints of texts in ICDAR 2015 are relatively stable and
not distorted like ICDAR 2017 MLT. However, the main
challenge comes from the motion blur and low resolution
of texts in this incidental scene. Table 2 presents the perfor-
mance comparisons where the best scores are highlighted
in bold. In the single scale test, DCLNet achieves 88.7% F-
measure and already outperforms all other detection meth-
ods even under multi-scale test. It indicates that DCLNet
could effectively recognize the texts even with low quality
imaging. With the proposed Ray-IoU loss and sine angle
loss, the boundary of these challenging texts could also be
accurately restored.

MSRA-TDS500. We further evaluate DCLNet and other
state-of-the-art baselines on MSRA-TDS500. The main chal-
lenge is from the texts with multiple orientations and ex-
treme long lengths. Considering that the texts are usually
clear with relatively large scale, the short side of image in

Method Precision Recall F-measure
DR [10] 76.7 57.9 66.0
Border [40] 77.7 62.1 69.0
PSENet [35] 73.8 68.2 70.9
CLRS [24] 83.8 55.6 66.8
CLRS* [24] 74.3 70.6 72.4
LOMO [45] 78.8 60.6 68.5
LOMO* [45] 80.2 67.2 73.1
CRAFT [1] 80.6 68.2 73.9
SPCNet [38] 73.4 66.9 70.0
SPCNet* [38] 80.6 68.6 74.1
Two-stage [34] 78.3 63.4 70.1
Two-stage™* [34] 81.8 68.5 74.5
GNNet [39] 79.6 70.1 74.5
DCLNet 81.0 66.9 73.3
DCLNet* 81.9 71.4 76.3

Table 1. The quantitative results of DCLNet and other baselines
on the ICDAR 2017 MLT dataset. The best scores are highlighted
in bold. “*” denotes multi-scale test.

Method Precision Recall F-measure
SegLink [29] 73.1 76.8 75.0
WordSup [11] 79.3 77.0 78.2
EAST* [46] 83.3 78.3 80.7
DeepReg [9] 82.0 80.0 81.0
R2CNN [13] 85.6 79.7 82.5
TextSnake [23] 84.9 80.4 82.6
TextBoxes++* [16] 87.8 78.5 82.9
PixelLink [3] 85.5 82.0 83.7
RRD* [18] 88.0 80.0 83.8
FTSN [2] 88.6 80.0 84.1
CLRS* [24] 89.5 79.7 84.3
Two-stage [34] 89.2 82.3 85.6
SAE [33] 88.3 85.0 86.6
IncepText* [41] 894 84.3 86.8
CRAFT [1] 89.8 84.3 86.9
SPCNet [38] 88.7 85.8 87.2
PSENet [35] 89.3 85.2 87.2
LOMO* [45] 87.8 87.6 87.7
DCLNet 90.3 87.1 88.7

Table 2. The quantitative results of DCLNet and other baselines on
the ICDAR 2015 dataset. The best scores are highlighted in bold.
“*” denotes multi-scale test.

set to 880 in single scale test. Table 3 presents the perfor-
mance comparisons where the best scores are highlighted in
bold. DCLNet achieves the state-of-the-art 85.1 F-measure
in the single scale test. It demonstrates the effectiveness of
DCLNet with tailored Ray-IoU loss to address extreme long
texts with large scale in some orientations.

Figure 5 presents some detected text boundaries in above
three benchmarks for better visualization. The 1-3 rows
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MSRA-TD500

Method Precision Recall F-measure
DeepReg [9] 77.0 70.0 74.0
RRPN* [25] 82.0 69.0 75.0
EAST* [46] 87.3 67.4 76.1
SegLink [29] 86.0 70.0 77.0
PixelLink [3] 83.0 73.2 77.8
TextSnake [23] 83.2 73.9 78.3
CLRS [24] 87.6 76.2 81.5
FTSN [2] 87.6 77.1 82.0
CRAFT [1] 88.2 78.2 82.9
SAE [33] 84.2 81.7 82.9
IncepText [41] 87.5 79.0 83.0
RRD* [18] 88.0 80.0 83.8
PAN [36] 84.4 83.8 84.1
DCLNet 90.2 80.5 85.1

Table 3. The quantitative results of DCLNet and other baselines
on the MSRA-TDS500 dataset. The best scores are highlighted in
bold. “*” denotes multi-scale test.

denote the detection results of ICDAR 2017 MLT, ICDAR
2015 and MSRA-TD500, respectively. It can be seen that
the texts with different languages, orientations and scales
are all precisely located. Moreover, the distorted quadrilat-
eral texts, blurred texts with low resolution and long texts
are also detected with high quality boundaries. It solidly
demonstrates that the disentangled contour learning could
better regress the independent sides without distributions
from each other. In the polar coordinates, the proposed Ray-

IoU loss and sine angle loss further improve the regression
quality to produce more accurate detection results.

4.4. Ablation Study

Disentangled v.s. Entangled. Although the benchmark
comparisons have demonstrated the effectiveness of disen-
tangled learning, there are many other variables affect the
fair comparison such as backbone architecture, data aug-
mentation, training strategy. Therefore, we design ablation
study to clearly compare the disentangled DCLNet and en-
tangled baseline. Specifically, baseline regresses the off-
sets of eight vertices coordinates with the L; loss like prior
arts. Figure 6 presents the regression loss curves of DCLNet
and baseline on ICDAR 2017 MLT dataset without pre-
train. Note that the regression of DCLNet contains p and
6 two parts, which are added with 1:1 ratio as in training. It
can be seen that the loss curve of DCLNet is smoother and
converges faster compared with the baseline, which brings
about 3.5% F-measure improvement. The above compar-
ison proves that the learning process in DCLNet is much
easier than that in entangled baseline, which benefits from
the disentangled side representation of quadrilateral con-
tour and meaningful parameterization in polar coordinates.
Moreover, Figure 7 presents some detected examples of dis-
torted quadrilateral texts, where the irregular boundaries are
all precisely localized. It clearly shows the effectiveness
of DCLNet to detect quadrilateral texts for the subsequent
recognition applications.

Ray-IoU and sine angle losses. DCLNet clearly sepa-
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Figure 6. Regression losses comparison of entangled baseline and
our DCLNet. The training of disentangled DCLNet is more stable
and converges faster than baseline.

Figure 7. Detection results of distorted quadrilateral texts with
DCLNet, where irregular boundaries are all precisely localized.

Ray-IoU Loss  Sine Angle Loss | F-measure
- - 86.9
v - 88.3
- v 87.2
v v 88.7

Table 4. The performances of DCLNet with different losses on
ICDAR 2015 dataset. The best score is highlighted in bold.

rates the independent parameters of each disentangled side.
Ray-IoU and sine angle losses are designed to further im-
prove the learning ability for these line parameters. Table 4
presents the single scale F-measures on ICDAR 2015 with
different losses. The replacements for these two losses are
commonly used L; loss and cosine angle loss [46]. It can
be seen that Ray-IoU loss significantly improves the per-
formance. For texts with extreme short or long lengths in
some orientations, Ray-IoU loss could better supervise the
learning under various scales compared with other distance
losses. Sine loss alleviates the angle confusion in junction
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Figure 8. The F-measures with different shrink ratios on ICDAR
2015 dataset.

areas, which further promotes the performance to 88.7% F-
measure. The above improvement clearly demonstrates the
effectiveness of proposed Ray-IoU loss and sine angle loss
for line equation parameters learning.

Text classification label. The regression is based on text
region which is supervised by shrunk text mask with pre-
set ratio. Shrunk mask could help avoid confusing learning
in the edge areas. However, too large shrink ratio would
also cause classification confusion on surrounding text re-
gion. Therefore, we perform the single scale experiments
of shrink ratio on ICDAR 2015 dataset as shown in Figure
8. It can be seen that appropriate ratio could avoid con-
fusion and improve the performance. However, large ratio
would also introduce extra classification confusion thus the
performance severely drops. Overall, the ratio in [0.3, 0.4]
is beneficial for improving performance and 0.35 is selected
as the default value in our experiments.

5. Conclusion

The main challenge of quadrilateral text detection comes
from four distorted sides. Existing methods detect the con-
tour by learning four vertices, which are actually dummy
intersections entangled by neighbor sides. Each originally
independent side would be influenced by two different ver-
tices which inevitably disturb other sides. The above en-
tangled vertices learning suppresses learning efficiency and
detection performance. In this paper, we proposed DCLNet
to clearly regress each individual side disentangled from
whole quadrilateral contour. The side is parameterized by a
linear equation disentangled in polar coordinates. With the
tailored Ray-IoU loss and sine angle loss, DCLNet could
better learn the representation of each disentangled side
without being disturbed by others. DCLNet achieves state-
of-the-art detection performances on three scene text bench-
marks. Ablation study also proves the effectiveness of pro-
posed disentangled learning framework.
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