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Abstract

In many real-world problems, there is typically a large

discrepancy between the characteristics of data used in

training versus deployment. A prime example is the anal-

ysis of aggression videos: in a criminal incidence, typically

suspects need to be identified based on their clean portrait-

like photos, instead of their prior video recordings. This

results in three major challenges; large domain discrep-

ancy between violence videos and ID-photos, the lack of

video examples for most individuals and limited training

data availability. To mimic such scenarios, we formulate

a realistic domain-transfer problem, where the goal is to

transfer the recognition model trained on clean posed im-

ages to the target domain of violent videos, where training

videos are available only for a subset of subjects. To this

end, we introduce the “WildestFaces” dataset, tailored to

study cross-domain recognition under a variety of adverse

conditions. We divide the task of transferring a recognition

model from the domain of clean images to the violent videos

into two sub-problems and tackle them using (i) stacked

affine-transforms for classifier-transfer, (ii) attention-driven

pooling for temporal-adaptation. We additionally formu-

late a self-attention based model for domain-transfer. We

establish a rigorous evaluation protocol for this “clean-to-

violent” recognition task, and present a detailed analysis

of the proposed dataset and the methods. Our experiments

highlight the unique challenges introduced by the Wildest-

Faces dataset and the advantages of the proposed approach.

1. Introduction

People engaging in criminal activities are likely to ex-

pose a diverse set of facial expressions/poses. The peo-

∗equal contribution

ple in these activities are also likely to move fast, caus-

ing the recorded video footage to have significant amount

of blur and occlusion. What is even more challenging is

that, these people may not necessarily have prior crimi-

nal records, therefore may not have recorded “fight scene

footage’s”. They may only have “clean” images, such as

passport or Facebook-type of photos, that can be used for

identification.

In this paper, we formulate this task as transferring the

face recognition model from the domain of clean (so-called

Red Carpet) images to the domain of violent (Fight Club)

videos 1. Since the training videos are labeled but scarce

and made available only for a subset of people, we re-

fer to the learning problem as partially-supervised domain-

transfer.

A plethora of studies have focused on face recognition

in computer vision literature. Compared to the pioneering

works [60, 1, 74, 14, 69, 67], face recognition models that

benefit from deep learning-based techniques and concen-

trate on better formulation of distance metric optimization

raised the bar [52, 58, 45, 66, 57, 55, 56, 12, 83, 64]. There

has been interest in using additional data (in the form of un-

labeled [81, 9] or synthetic data [82]), class-balancing [80]

and noisy-data handling [27] to improve face recognition

accuracy. In addition to face recognition in still images,

video-based face recognition studies have also emerged (see

[13] for a recent survey). Ranging from local feature-based

methods [37, 44, 38] to manifolds [30] and metric learn-

ing [7, 31, 24], recent studies have focused on finding infor-

mative frames in image sets [23] and finding efficient ways

of feature aggregation [8, 78, 48, 49]. Most of these studies

concentrate on relatively easier cases of recognition, where

the faces are seen under good lighting conditions and are

1Our dataset is available at https://ycbilge.github.io/

wildestFaces.
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Figure 1. Our focus is the problem of transferring recognition models trained on clean, portrait-like images for person identification in the

wildest (e.g. fight) videos. We introduce the WildestFaces dataset that contains videos of violent scenes from movies, together with the

clean red-carpet images of the corresponding actors. Importantly, training video examples are available only for a subset of the actors,

which leads to a challenging partially-supervised domain transfer problem.

mostly stable with orthogonal viewpoints. In contrast, face

recognition in the “wildest” demands more than that.

In order to facilitate research in this direction, we pro-

pose a new dataset, referred to as WildestFaces. This dataset

consists of clips with adverse effects at their extreme, and

auxiliary clean facial images of the corresponding peo-

ple. The videos are collected by manually finding violent

scenes in movies of predetermined actors2, and the clean

images are collected from IMDB3 and similar websites.

The task is depicted in Figure 1 with example images from

the dataset. The training set provides clean still images of

all people and violent videos of only a subset of people.

The test set, however, contains novel videos of all people.

This setup resembles to that of generalized zero-shot learn-

ing (GZSL) [73, 5], where there are both seen and unseen

classes in testing. We define an evaluation protocol that

explicitly measures the success at recognizing people with

and without training videos, and, penalizes methods that are

poor at any of the two tasks.

To tackle this partially-supervised domain-transfer

problem, we divide it into two sub-problems and propose

two major techniques for each one. First, we leverage

stacked affine-transform layers for classifier transfer, which

aims to adapt the image-based classification model to the

target-domain representations, in a supervised yet data-

efficient manner. Second, we propose an attention-driven

temporal pooling layer, which aims to enable data-driven

adaptation to the face tracks in the video domain. We ad-

ditionally propose a third self-attention [63] based formula-

tion, with components targeted to both sub-problems. We

rigorously evaluate all proposed techniques and show their

advantages over a number of state-of-the-art alternatives.

To sum up, the contributions of this paper include: (1)

A new dataset called WildestFaces that includes a wide

range of examples from violent movies; (2) A new partially-

supervised face recognition task, where classifiers trained

on clean image data are evaluated for their ability of rec-

2We use actor as a gender-neutral term, following the modern practice.
3www.imdb.com

ognizing faces in violent videos; (3) Rigorous evaluation

protocols inspired from the recent developments in related

problems (primarily zero-shot learning and few-shot learn-

ing); and (4) Effective techniques for the proposed partially-

supervised, clean-to-violent domain-transfer problem.

2. Related Work

Face Recognition Datasets: Due to the data-hungry nature

of face recognition, there have been many attempts in build-

ing large scale datasets. FDDB [32], AFW [85], PASCAL

Faces [77], Labeled Faces in the Wild (LFW) [28], Celeb

Faces [57], Youtube Faces (YTF) [68], FaceScrub [43],

IJB-A [35], MS-Celeb-1M [25], VGG-Face [45], VGG2-

Face [4], MegaFace [34] and WIDER Face [79] datasets

have been made publicly available for research purposes.

Datasets with extreme scales, such as [52] and [58] have

also been used but have not been disclosed to the public.

For video face recognition, YouTube Faces [68] is the

most widely used dataset. While it contains motion-blurred

and low-quality frames, overall the quality of the frames is

typically much better than the wildest conditions that we

target in our work. Plus, unlike our domain-transfer based

image-to-video recognition setup, in YouTube Faces, the

primary focus on video-to-video recognition. Other two

prominent video face recognition datasets are COX [29] and

PasC [2]. Despite their relatively large size, PasC [2] suffers

from video location constraints and COX [29] suffers from

demographics as well as video location constraints. Face-

Scrub [43] is a dataset which has resemblance to our case as

it also includes actors as individuals. However the dataset

only contains actor images rather than videos. The most

relevant benchmarks to ours are [33, 15, 53, 36]. However,

none of them specifically focus on domain shifts, recogniz-

ing unseen classes (from a ZSL perspective) or violent set-

tings.

Video Face Recognition: [78] employ attention modules

to adaptively aggregate image-based features from frames

into a single representation. Instead of aggregating fea-

ture representations, [48] opt to aggregate raw frames di-
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rectly to produce a synthesized image via generative mod-

els that is tailored to be more discriminative. [59] utilizes

an encoder-decoder structure in their GAN’s generator to

achieve a pose-independent identity representation, which

is later used to synthesize an image of desired pose. A simi-

lar work exploiting attention-like mechanism is presented

in [75], where content and visual quality of each image

is learned to perform set-wise classification. [49] exploits

reinforcement learning to attend to informative frames in

videos which are aggregated by a mean-pooling to repre-

sent sets as a single feature vector. [71], on the other hand,

presents a light-weight network to achieve fast face recogni-

tion. [82] employ video-domain only face recognition tech-

nique in a fully supervised manner. The method is tailored

for single-domain face recognition and for seen classes. In

template-based face recognition, a similar effort to produce

a single representation is given in [84]. These papers, how-

ever, do not address the explicit domain-transfer problem in

clean-to-violent face recognition problem and operate in the

domains of the datasets they are trained on.

A recent work that is most closely related to ours is

[42], where the main goal is to identify characters in TV

series videos using classifiers trained on clean actor im-

ages. Their main focus is different in many ways from ours

since [42] (i) presumes that a large number of weakly su-

pervised video examples are available for all characters, (ii)

uses voice classifiers and shows that identification is largely

influenced by them, and, (iii) leverages similarities across

different scenes within a single dataset during recognition.

Domain Adaptation: Due to its dual-domain nature, clean-

to-violent face recognition poses a domain-transfer prob-

lem. Having found application areas in primarily com-

puter vision tasks [72, 70, 65], supervised [6, 18, 61] and

unsupervised variants [17, 19, 76, 41] of domain adap-

tation techniques have surfaced in recent years. There

are several approaches pertinent to the task, such as fea-

ture space alignment [54], supervised feature transforma-

tion [11, 40], adversarial approaches [22], encoder-decoder

structures [3, 19] and many others. For a detailed review in

domain adaptation, readers are referred to [10].

The main difference between the mainstream domain-

adaptation tasks and our problem definition is that in do-

main adaptation, it is typically presumed that (labeled or un-

labeled) target-domain training examples are available for

all classes of interest, which is not realistic for our clean-

to-violent recognition problem. To this end, our work aims

to (i) address a partially supervised domain-transfer prob-

lem, (ii) handle unseen class recognition, (ii) introduce eval-

uation protocols for partially-supervised transfer and (iii)

learn to handle noisy sequences. A similar work to ours

in domain adaptation literature is [41], however ours differ

from this work by the factors listed above and ours is also

geared towards dual-domain (image-to-video and clean-to-

Wildest) face recognition.

Zero-shot learning: In zero-shot learning (ZSL), the clas-

sifiers are learned over seen classes and then extended to

unseen classes of which labeled data is not accessible, by

means of auxiliary data such as attributes or textual de-

scriptions. Generalized zero-shot learning (GZSL) [73, 5]

extends the test protocol of ZSL to include seen and unseen

classes together, as it is more natural to assume cooccurence

of these classes in general. Different from regular GZSL,

the auxiliary information is in the form of a set of labelled

images, as opposed to attributes or textual descriptions as

mostly used in the mainstream zero-shot learning research.

Overall, the proposed problem setup is at the intersection

of GZSL and supervised domain adaptation, where training

video data is available only for a subset of classes.

3. WildestFaces Dataset

To the best of our knowledge, there is no publicly avail-

able dataset which is composed of fight and dispute videos,

with annotated human faces. We introduce the WildestFaces

dataset collected by focusing on violent movie scenes of

celebrities. Below, we give the details of the dataset and the

collection procedure.

Videos. We first created a list of actors appearing in movies

with violence. We then collected videos of them from

YouTube using a variety of scene settings; e.g. car chase,

fist fights, gun fights, heated arguments, etc. This abun-

dance in scene settings provide an inherent variety of occlu-

sions, poses, background clutter and motion blur. Videos,

with an average 25 FPS are then divided into shots with a

maximum duration of 10 seconds.

In total, for 64 selected actors, 2,186 shots (64,242

frames) from 410 videos are collected. We annotated the

face regions by applying a face detector and manually cor-

recting its mistakes. In this process, no frames were fil-

tered out due to adverse conditions; and we labeled even

extremely tiny, occluded, frontal/profile and blurred faces.

Clean images. In order to employ classifier transfer from

clean images to violence videos, we also collected images

of actors taken under normal conditions such as red carpet

images. We primarily use IMDB-WIKI [50], from which

we acquire the images of 62 celebrities that overlap with the

video subjects. For the remaining two subjects, we collect

images from the Internet. In total, we obtain 8069 images of

64 subjects. A detailed analysis of the dataset is presented

in Section 5.

4. Partially-supervised domain-transfer

We assume that during training, there are two sets: (i) the

source domain training set Dx = (xi, yi)
nx

i=1
with nx still

image examples, and, (ii) the target video domain training

set Dv = (vj , yj)
nv

j=1
with nv video examples. Each exam-

3360



ple (xi, yi) in the image training set Dx contains the facial

image xi ∈ X and the corresponding person label yi. Each

example (vj , yj) in the video training set Dv contains the

facial image sequence vj ∈ V of length |vj |, with frames

denoted as vj = (vj [1], ..., vj [|vj |]), and the label yj .

The crucial detail is the difference between set of classes

spanned by these two training resources: while Dx provides

examples for the set Y of all classes, Dv provides examples

only for a subset of them. However, at test time, an in-

put video may belong to any class in Y . Inspired from the

similarity to the generalized zero-shot learning problem (as

discussed in Section 2), we refer to the set of classes having

both image and video training examples as the seen classes

and denote them by Yseen, and, the remaining set of classes

having only image domain examples as the unseen classes

and denote them by Yunseen. We denote the number of seen

and unseen classes by cs and cu, respectively 4. The final

goal is to learn a classifier scoring function fv : V → R
|Y|

that maps a video-domain input to the vector of per-class

confidence scores for all classes. We divide this task in two

sub-problems and propose methods towards each one in the

following sections: (i) classifier transfer, (ii) temporal adap-

tation. We additionally propose a third self-attention [63]

based approach that aims to tackle both sub-problems.

4.1. Classifier Transfer

Let φ : X → R
dx be an image-domain feature extractor

that maps each input face image to a dx-dimensional vector,

and, let Ψ : V → R
dv be a video-domain feature extractor

that maps each input face video to a dv-dimensional vector.

Throughout our experiments, we use a pre-trained VGG-

face network [45] as φ (Section 5). We propose a number of

Ψ alternatives in Section 4.2. In classifier transfer, the goal

is to adapt a classifier pre-trained in the source domain using

φ representation, to the target domain with representation Ψ
via the restricted set of examples for the cs classes.

We start by defining the source domain classifier. For

simplicity, we use a linear model for source-domain classi-

fication, parameterized by the matrix W = [w1, ..., w|Y|] ∈

R
dx×|Y|. The model is trained on the source domain dataset

Dx via regularized loss minimization:

min
W

R(W ) +

nx
∑

i=1

ℓ(φ(xi)
TW, yi) (1)

where ℓ(·, y) is the soft-max cross-entropy loss function,

and, R(W ) is ℓ2-regularization in our experiments.5

We formalize the classifier-transfer problem as the task

of learning a transformation τ : Rdx → R
dv by minimizing

4We adapted the GZSL nomenclature, as clean images and training

videos are akin to class descriptions and seen class examples, respectively.
5While we exclude the regularization weight from the equations for

brevity, we tune it on the validation set and utilize in our experiments.

the regularized loss on the target-domain dataset Dv:

min
τ

R(τ) +

nv
∑

j=1

ℓ(τ(Ψ(vj))
TW, yj) (2)

where R(τ) represents the regularization applied to the

transfer model. In this framework, τ has the responsibil-

ity of transforming the input Ψ(v) video-domain represen-

tation to a φ(x)-like image-domain representation and make

it compatible with the classification layer W . When train-

ing on the Dv dataset, we deliberately keep the classification

layer W fixed, in order to keep the class models wj intact

and compatible with each other, and, minimize the risk of

learning a bias towards the subset of classes seen in Dv .

The first classifier-transfer technique that we consider is

the fully-connected classifier-transfer layer:

τfc(Ψ(v)) = QΨ(v), (3)

where τfc is instantiated by a fully-connected layer (fc) Q ∈
R

dx×dv , and, linearly transforms the dx dimensional image

representation to the dv dimensional face-track vector.

While the aforementioned approach looks simple and

promising, it performs poorly in practice: the number of

parameters in Q is typically too high to be trained properly

unless the target-domain dataset Dv is large-scale, which is

infeasible in most practical scenarios, including ours. For

instance, when VGG-face φ descriptors are being used and

Ψ is defined as the average of per-frame VGG-face descrip-

tors, Q contains 40962 (∼ 16M) parameters. As a result, it

quickly leads to over-fitting, and yields a poor trade-off be-

tween the seen and unseen class performance in the target-

domain (Section 5).

In our preliminary experiments, we have investigated a

number of common regularization techniques, including ℓ2,

drop-out, batch-normalization and explicit rank regulariza-

tion, and in all cases, we have observed very similar poor

generalization behavior for the fc based classifier transfer.

To avoid these difficulties, we propose the affine

classifier-transfer layer, which is built upon a much lower-

complexity affine model:

τaffine(Ψ(v)) = α⊙Ψ(v) + β, (4)

which implements feature scaling via applying Hadamard

Product with the vector α, and, shifting by the vector β,

which are trained according to Eq. 2. The underlying as-

sumption here is that the source-domain and target-domain

representations are of the same dimensionality and are suffi-

ciently correlated so that an affine transform can provide the

necessary correction. Fortunately, this assumption is met

in most practical Ψ definitions, including temporal average

pooling and attentive temporal pooling, which are explained

in the following section.

3361



We propose two extensions to the affine classifier-

transfer layer. First, we propose the stacked affine

classifier-transfer where the affine transform is followed

by the ReLU activation and then another affine transform.

Second, we propose the residual stacked affine classifier-

transfer (rsa) layer, which includes a residual connection:

τrsa(Ψ(v)) = α2⊙max(α1⊙Ψ(v)+β1, 0)+β2+Ψ(v) (5)

where (α1, β1) and (α2, β2) are the parameters of the first

and the second affine transforms, respectively. In Section 5,

we thoroughly evaluate all major cases of classifier-transfer

and the combinations with temporal adaptation techniques.

4.2. Temporal Adaptation

We now continue within the framework defined in the

previous section, and propose techniques for obtaining a

video representation Ψ(v) suitable for the clean-to-violent

domain-transfer task.

For clarity, we start with the simple temporal average

pooling scheme. In this case, the representation of a face

track is obtained by taking average of the per-frame features

extracted using the image-domain feature extractor φ:

ΨAvgPool(v) =
1

|v|

|v|
∑

t=1

φ(v[t]) (6)

While temporal average pooling is a versatile technique, the

resulting representation is likely to be dominated by the

heavily motion-blurred faces in a track, plus, it is likely

to handle multiple poses poorly. Similarly, temporal max

pooling, an obvious alternative, is likely to be negatively

affected by these factors.6

To handle the multi-modality and noise in face tracks,

we aim to learn a data-driven temporal representation opti-

mized for the clean-to-violent domain-transfer task. For this

purpose, we propose attentive temporal pooling (ATP), in-

spired from [78]. The intuition behind this model is to ex-

ploit the hidden pose information in a trainable fashion (un-

like other pooling strategies which require additional input

or manual invertention [26, 16]) to extract useful informa-

tion in the noisy sequences of video frames. The proposed

approach consists of two main components: (i) an attention

layer, and, (ii) a attention-weighted pooling layer. Attention

module learns to promote the informative parts of given im-

age sequences. Through the pooling layer, the overall se-

quence information is aggregated.

More formally, assuming that per-frame descriptors are

extracted using φ, we define the attention weight matrix

A = [a1, ..., aK ] ∈ R
dx×K , where K can be interpreted as

6In fact, we empirically observe that max-pooling performs similar to

or worse than average-pooling except when self-attention is being used.

We do not report simple max-pooling results in Section 5 for brevity.

the hyper-parameter defining the number of canonical ap-

pearance modes used in the attention model. The attention

function Γ(v) computes a |v| ×K attention matrix, whose

t-th frame, k-th mode value is given by applying a temporal

softmax over the raw attention scores:

[Γ(v)]t,k =
exp

[

φ(v[t])Tak
]

∑|v|
t′=1

exp [φ(v[t′])Tak]
. (7)

The k-th column of the resulting matrix can be considered

as a weight distribution over the frames. We use these

weights in temporal pooling to obtain K different represen-

tations, i.e. a dx×K dimensional matrix given by Φ(v)Γ(v),

where Φ(v) = [φ(v[t])]
|v|
t=1

∈ R
dx×|v| is the matrix of all

per-frame φ representations of the facial video v. These

per-mode descriptors are then aggregated into a single dx-

dimensional vector using average-pooling (Figure 2). The

overall operation can equivalently be expressed as:

ΨATP(v) =
1

K
Φ(v)Γ(v)1K (8)

where 1K is the K-dimensional vector of all ones. This

expression also reveals that the ATP scheme effectively as-

signs an attention weight to each frame, where all unnor-

malized per-frame weights are given by Γ(v)1K .

Using the previously defined domain-transfer frame-

work, we learn the ATP model jointly with the classifier-

transfer model τ on the dataset Dv:

min
τ,ΨATP

R(τ) +R(ΨATP) +

nv
∑

j=1

ℓ(τ(ΨATP(vj))
TW, yj) (9)

which corresponds to learning a data-driven temporal rep-

resentation for the domain-transfer task.

4.3. Self­attention based domain­transfer

In addition to the techniques that we propose for

classifier-transfer and temporal-adaptation, we define an-

other baseline method, a self-attention [63] based formu-

lation that aims to jointly tackle both sub-problems. Self-

attention mechanism aims to capture the internal structure

of a sequence by learning the inter-element relations. Be-

low we briefly explain the way we adapt it to the domain-

transfer problem, and, refer to [63] for a full specification

of the original approach.

A self-attention layer consists of three transforms for

computing the key, query and value tensors for each ele-

ment. The attention weight of each element (i.e. face) in a

sequence w.r.t. each other element is computed based on the

per-element query and key embeddings, and the attention-

driven representation of each element is obtained by com-

puting the attention-weighted sum of all per-element value

embeddings. In this sense, self-attention has certain similar-

ities to ATP (Eq. 8), with two major differences: (i) while
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Figure 2. The architecture of the proposed domain transfer approach based on Attentive Temporal Pooling (ATP) layer for temporal-

adaptation, combined with residual stacked affine classifier-transfer layer.

ATP learns K canonical attention-references, self-attention

uses each element within a sequence as an attention-

reference on its own, (ii) while ATP yields a weighted sum-

mation of original per-frame descriptors, self-attention ad-

ditionally learns a descriptor transformation, which can be

considered as the classifier-transfer layer.

In the context of our domain-transfer problem, we have

observed that it is beneficial to (i) carefully tune the out-

put dimensionality of key and query transforms on the val-

idation set, (ii) utilize position-wise feed-forward network

component [63], (iii) use max-pooling (instead of average-

pooling) to aggregate the final per-element embeddings to

a single vector. We set the value dimensionality to dx, so

that the classifier layer can be applied to the resulting video

representation Ψ. We learn the parameters of the network

on Dv pretty much the same way as in ATP training (Eq. 9).

5. Experimental Results

In this section, we present a detailed analysis of the

WildestFaces dataset, the experimental setup, evaluation

protocols, and, the evaluation of the proposed approaches.

5.1. Dataset analysis

In Figure 3, k-means centers of all Al Pacino images are

shown for FaceScrub [43] and WildestFaces datasets. It can

be seen that WildestFaces has a wide spectrum of adverse

effects as its cluster centers are not recognizable. Wildest-

Faces offers a good distribution of blur levels, pose vari-

ance, and a noticeable age variance, where approximately

half of all shots are occluded. Dataset splits are summa-

rized in Table 1. Below we present the detailed statistics.

Scale. Faces below 100 pixels are accounted as small, in

between 100 to 300 pixels as medium, and larger than 300

pixels as large. Scale statistics given in Figure 4(a) shows

that medium size is more common.

Blur. Inspired from [47], we perform contrast normaliza-

tion and grayscale conversion. These images are convolved

with a 3x3 Laplacian Kernel, and variance of the result is

used to produce a blurness value. Blur values are used to

empirically find a threshold to categorize images in blur lev-

els. Blur statistics are shown in Figure 4(b).

Figure 3. K-Means cluster centers (with k = 8 for Al Pacino im-

ages in FaceScrub [43] and WildestFaces datasets are shown in first

and second row. Average faces from WildestFaces are hardly rec-

ognizable, indicating a large degree of variance in adverse effects.

Images are histogram equalized for convenience. Better viewed

when zoomed in.

Age. For each individual, we measure the differences be-

tween the dates of their earliest and latest movies. We ob-

serve age variations up to 40 years (Figure 4(c)), where the

average variation is 13 years.

Occlusion. We randomly select 250 shots and label them

according to the amount of occlusion present. We observe

that 20% have no occlusion, 28% have medium and 52%

have significant occlusion.

Pose. We use [51] to find orientations of the faces and then

quantize them using k-means to find the pose codes. Fig-

ure 4(d) shows the distribution of various pose codes. We

observe that pose variance is a major challenge.

5.2. Experimental setup

Supervised evaluation is not fully realistic in our case;

not every individual may have a criminal record history and

corresponding fight or dispute video footage(s). The only

available means of identification can be clean images. Our

evaluation protocol mimics this scenario, where the test set

includes videos of individuals that are not seen before.

Evaluation protocol and metrics. Training, test and val-

idation sets for WildestFaces are split person-wise, where

classes with fewer per-class sample counts are selected

as unseen classes. For the partially-supervised domain-

transfer evaluation, inspired from the recently developed

evaluation protocols for generalized zero-shot learning [73,

5] and generalized few-shot learning [20], we use the fol-

lowing protocol and metrics: the recognition model has ac-

cess to the still image training examples of all 64 classes,

the training videos of 40 classes, and the validation videos

of additional 10 persons. At test time, an input image may
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Figure 4. WildestFaces Statistics. (a) Blue and red correspond to width and height, respectively. (b) Blur statistics indicate an emphasis on

medium blur. (c) and (d) show that the pose and age variances are high.

Table 1. Dataset splits. The upper two rows and the bottom one

correspond to WildestFaces and IMDB datasets, respectively.

Train Validation Test

Shots 1156 495 535

Images 35051 14520 14671

Images 6428 n/a 1641

belong to any one of the 64 classes. The normalized accu-

racy values over the test images of seen and unseen classes

are averaged separately. The final performance score is de-

fined as the harmonic mean (test-h) of the seen and unseen

class accuracies. The same procedure is also utilized to ob-

tain validation set harmonic mean score (val-h).

Implementation details. We use VGGFace [45] for image

representation. We tune all the hyper-parameters based on

the val-h metric and decide whether to use dropout or not

for each method separately. We use early stopping to intro-

duce further regularization. While training, we take samples

from each class with probability inversely proportional to its

number of training examples to deal with class imbalance.

The models are implemented in PyTorch [46], parameters

are initialized using Xavier [21], and the results are aver-

aged over 10 runs to mitigate the occasional fluctuations.

5.3. Results and discussion

5.3.1 Classifier Transfer

We evaluate the effectiveness of fc and affine transform

based classifier transfer methods. We consider two main

domain-adaptation baselines, based on MMD [39] and the

adversarial training method of ADDA [62]. For both, we

consider the fixed VGG feature extractor as the source do-

main mapping and aim to learn a target-to-source mapping

that can transform the video representation to the source do-

main. We define their fc and affine transform based ver-

sions, which yields four domain adaptation baselines.

Results are shown in Table 2. Fully-connected classi-

fier layer (fc) performs poorly, due to heavy overfitting as

a result of having a large number of trainable parameters,

despite our tuning efforts. While MMD-affine improves

over MMD-fc, neither method improves over results w/o

any transfer layer. ADDA-fc fails to converge even with

one fc layer (not shown for brevity). ADDA-affine, on

Table 2. Comparison of classifier-transfer methods (with one affine

layer and temporal average pooling).

seen unseen harmonic

Random 2.5 4.1 3.1

No transfer 29.3 25.5 27.3

Fully-connected 20.2 7.2 10.3

MMD-fc [39] 25.8 22.1 23.6

MMD-affine 28.0 23.2 25.2

ADDA-affine [62] 35.2 29.3 31.7

Affine (Ours) 39.6 32.2 35.4

the other hand, proves effective and improves from 27.3 to

31.7. The proposed affine transfer further improves to 35.4.

We also train MMD-affine and ADDA-affine baselines with

train and validation videos, but observe only neglibible im-

provements despite adding examples from 10 new classes.

In Table 3, we experiment with the stacked affine

classifier-transfer, and residual stacked classifier-transfer

layers together with AvgPool and ATP temporal adaptation

techniques. As can be seen, amongst different variations,

2-layer residual stacked classifier-transfer (rsa) layer works

the best. In the rest of the experiments, we continue with

2-layer rsa as the classifier-transfer method.

5.3.2 Temporal Adaptation

In Table 3, average pooling, majority voting and ATP are

evaluated. Compared to vanilla AvgPool, vanilla ATP in-

creases accuracy more than 5 points. ATP with 2-layer

residual affine layer increases val-h and test-h even further,

from 30.6 and 27.3 to 47.4 and 39.3, respectively. Fine-

tuning the IMDB classifier with WildestFaces training set

increases the accuracy by another 5 points to 45.8.

We compare our proposed method with another aggre-

gation method DAN [48], which is amongst the state-of-

the-art methods for video face recognition. DAN [48] ag-

gregates the information of an input video into one or few

discriminative image(s) by using a GAN-based approach.

For each face sequence, we generate an image using DAN

model pre-trained on Youtube Faces(YTF) [68] dataset. Ex-

ample images generated by DAN [48] is shown in Figure 5.

Inevitably, the images generated by this GAN-based model
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Table 3. Comparison of temporal-adaptation techniques for three different affine classifier-transfer models. Majority-voting is an image-

to-image baseline (image-level classifier transfer). † are cases where the IMDB classifier is fine-tuned with WildestFaces training set.

None 1-layer affine 2-layer affine 2-layer res affine (rsa)

val-h test-h val-h test-h val-h test-h val-h test-h

Maj. Voting 30.5 24.6 37.7 28.8 31.4 26.3 43.11 31.9

AvgPool 30.6 27.3 43.6 35.4 45.7 35.4 46.6 34.9

ATP (ours) 36.5 32.6 44.8 39.3 42.9 35.3 47.4 39.3

Maj. Voting† 38.1 30.0 39.3 30.0 37.1 30.3 46.2 34.6

AvgPool† 40.6 32.7 45.2 35.3 43.6 36.5 48.4 40.5

ATP (ours)† 43.0 35.3 45.1 36.0 49.8 42.2 51.8 45.8

Table 4. Comparison of temporal-adaptation techniques for video representation. We report the separate accuracies of seen and unseen

classes, together with their harmonic mean. † represents the case that the IMDB classifier is fine-tuned with WildestFaces training set.

w/o classifier-transfer w/ classifier-transfer

seen unseen harmonic seen unseen harmonic

AvgPool 29.3 25.5 27.3 36.7 33.2 34.9

DAN [48] 5.0 2.9 3.7 5.2 6.5 5.6

Self-attention [63] 37.2 34.5 35.8 37.1 34.7 35.9

ATP (ours) 35.3 30.3 32.6 41.6 37.3 39.3

ATP (ours) † 34.5 31.2 32.7 47.1 44.6 45.8

are not precise, due to noisy input sequences (Figure 5).

DAN [48] fails to extend to different domains and unseen

classes (see Table 4). Self-attention [63] adaptation per-

forms well yet enjoys slight improvements with classifier

transfer. We argue this is due to its implicit classifier trans-

fer mechanism (multi-head attention) as its high complexity

can be harmful in our data-sparse setting. Ultimately, ATP

outperforms other baselines with a clear margin.

6. Conclusion

In common surveillance scenarios, one may only have

access to a clean photo of a person but may need to rec-

ognize the person in an unconstrained setting. In line with

such scenarios, we study the partially-supervised domain-

transfer problem within the context of face recognition,

where algorithms are evaluated for their ability to recognize

people in videos with violence, based on clean train images.

We introduce the WildestFaces dataset that contains ad-

verse effects at their extreme, such as blur, pose diversity,

occlusions and resolution, and a principled evaluation pro-

tocol. Towards tackling the partially-supervised domain

transfer, we propose (i) affine layers for classifier transfer,

and, (ii) attention-based pooling for temporal adaptation.

Compared to a number of strong baselines, including a self-

attention based model, we show the proposed techniques

outperform the baselines. We also highlight the challenges

of this newly introduced dataset and the problem definition.
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IMDB Original Face Tracks DAN

Figure 5. Example results for ATP with classifier-transfer. The

first and last 4 rows depict examples for correct and incorrect clas-

sifications, respectively. The corresponding DAN [48] generated

images (the rightmost column) are mostly noisy and imprecise.
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[47] José Luis Pech-Pacheco, Gabriel Cristóbal, Jesús Chamorro-
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