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Abstract

Manipulating facial expressions is a challenging task

due to fine-grained shape changes produced by facial mus-

cles and the lack of input-output pairs for supervised learn-

ing. Unlike previous methods using Generative Adversar-

ial Networks (GAN), which rely on cycle-consistency loss

or sparse geometry (landmarks) loss for expression synthe-

sis, we propose a novel GAN framework to exploit 3D dense

(depth and surface normals) information for expression ma-

nipulation. However, a large-scale dataset containing RGB

images with expression annotations and their correspond-

ing depth maps is not available. To this end, we propose

to use an off-the-shelf state-of-the-art 3D reconstruction

model to estimate the depth and create a large-scale RGB-

Depth dataset after a manual data clean-up process. We

utilise this dataset to minimise the novel depth consistency

loss via adversarial learning (note we do not have ground

truth depth maps for generated face images) and the depth

categorical loss of synthetic data on the discriminator. In

addition, to improve the generalisation and lower the bias

of the depth parameters, we propose to use a novel con-

fidence regulariser on the discriminator side of the frame-

work. We extensively performed both quantitative and qual-

itative evaluations on two publicly available challenging

facial expression benchmarks: AffectNet and RaFD. Our

experiments demonstrate that the proposed method outper-

forms the competitive baseline and existing arts by a large

margin.

1. Introduction

Face expression manipulation is an active and challeng-

ing research problem [3, 24, 4]. It has several applications

such as movie industry and e-commerce. Unlike the manip-

ulation of other facial attributes [3, 16, 1], e.g. hair/skin

Image Landmarks Depth map Normal map

Figure 1. Sparse Geometry vs Dense Geometry. Some of the

randomly selected images from AffectNet and their corresponding

geometric information. We can observe that sparse geometry, i.e.

landmarks, is incapable of capturing expression specific fine de-

tails, e.g. wrinkles on the cheek and jaw area, nose and eyebrow

shapes.

colour, wearing glasses, beard, expression manipulation is

relatively fine-grained in nature. The change in expressions

is caused by geometrical actions of facial muscles in a de-

tailed manner. Figure 1 shows images with two different

expressions, sad and happy. From these images we can ob-

serve that different expressions bear different geometric in-

formation in a fine-grained manner. The task of expression

manipulation becomes even more challenging when source

and target expression pairs are not available to train the

model, which is the case in this study.

In one of the earliest studies [5], the Facial Action Cod-

ing System (FACS) was developed for describing facial ex-

pressions, which is popularly known as Action Units (AUs).

These AUs are anatomically related to the contractions and

relaxations of certain facial muscles. Although the number

of AUs is only 30, more than 7000 different combinations

of AUs that describe expressions have been observed [27].

This makes the task more challenging than other coarse at-

tribute/image manipulation tasks, e.g. higher order face

attribute editing [3], season translation [16]. These kind of
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problems cannot be addressed only by optimising existing

loss functions, such as cycle consistency [3] or by adding a

target attribute classifier on the discriminator side [3, 8].

A recent study on GAN [24] proposes to use AUs

to manipulate expressions and shows a performance im-

provement over prior-arts, which include CycleGAN [35],

DIAT [15] and IcGAN [22]. These methods do not explic-

itly address such details in their objective functions, but

rather only deal with coarse characteristics, and this ulti-

mately results in a sub-optimal solution. The main draw-

back of notable existing methods exploiting geometry, such

as GANimation [24] (action units) and Gannotation [24]

(sparse-landmarks), is the use of annotations which are

sparse in nature. As presented in Figure 1, these sparse ge-

ometrical annotations fail to capture the geometries of dif-

ferent expressions precisely. To address these issues, we

propose to introduce a dense 3D depth consistency loss for

expression manipulation. The use of dense 3D geometry

guides how different expressions should appear in image

pixel space and thereby the process of image synthesis by

translating from one expression to another.

RGB-Depth consistency loss has been successfully ap-

plied for the semantic segmentation task [2], which is for-

mulated as a domain translation problem, i.e. from simula-

tion to real world. However, this task is less demanding than

ours since the label as well as the geometric information of

the translated image remain the same as that of the source.

On the other hand, our objective is to manipulate an image

from the source expression to a target expression involv-

ing faithful transformation of expression relevant geometry

without distorting the identity information. Also note that

unlike previous works [4, 26, 13, 30, 25] on expression ma-

nipulation utilising depth information, our work is a target-

label conditioned framework where the target expression is

a simple one-hot encoded vector. Hence, it does not require

source-target pairs during both training and testing time.

Although, constraining depth information on model param-

eters are effective, a reasonably good size of RGB-D dataset

for expressions is not available to date. Among the existing

datasets, EURECOM Kinect face data set [17] consists of 3

expressions (neutral, smiling, open mouth) of 50 subjects,

and consisting of 2500 images, BU-3DFE [34] provides a

database with 8 expressions of 100 subjects. These datasets

are too small to train a generative model optimally.

To overcome the challenge of the unavailability of RGB-

D pairs in a scale to train a GAN, we propose to use an

off-the-shelf 3D face reconstruction model [31] and extract

the depth and surface normal information from the recon-

structions. As discussed, since in our case the category of

the image changes when translated from source to target

domain, we propose to minimise the target attribute cross

entropy loss on depth domain to ensure that the depth of

the reconstructed image is also consistent with the target la-

bels. As we are aware, the depth images extracted from the

off-the-shelf face 3D reconstruction model are error-prone

and sub-optimal for our purpose. To address this challenge,

we propose to penalise the depth estimator by employing a

confidence penalty [23]. This regulariser is effective to im-

prove the accuracy of classification models trained on noisy

labes [10].

Our contributions can be summarised as follows:

• We propose a novel geometric consistency loss to

guide the expression synthesis process using depth and

surface normals information.

• We estimated the depth and surface normal parameters

for two challenging expression benchmarks, namely

AffectNet and RaFD, and will make these annotations

public upon the acceptance of the paper.

• We propose a novel regularisation on the discriminator

to penalise the confidence of the depth estimator in or-

der to improve the generalisation of the cross-data set

model parameters.

• We evaluated the proposed method on two challeng-

ing benchmarks. Our experiments demonstrate that the

proposed method is superior to the competitive base-

lines both in quantitative and qualitative metrics.

2. Related Work

Unpaired Image to Image Translation. One of the ap-

plications of image-to-image translation by Generative Ad-

versarial Networks (GANs) [35, 11] is the synthesis of at-

tributes and facial expressions on given face images. Vari-

ous methods have been proposed based on the GAN frame-

work in order to accomplish this task. In general, the train-

ing sets used for image-to-image translation problems con-

sist of aligned image pairs. However, since paired datasets

for various facial expressions and attributes are quite small

and constructed in a controlled environment, most of the

methods are designed for datasets with unpaired images.

CycleGAN [35] tackles the problem of unpaired image-to-

image translation by coupling the mapping learned by the

generator with an inverse mapping and an additional cycle

consistency loss. This approach is employed by most of the

related studies in order to preserve key attributes between

the input and output images, and thus the person’s iden-

tity in the given source image. In StarGAN [3], the multi-

domain image-to-image translation problem is approached

by using a single generator instead of training a separate

generator for each domain pair. In AttGAN [8] an attribute

classification constraint is applied on the generated image

rather than imposing an attribute-independence constraint

on the latent encoding. The method is further extended to

generate attributes of different styles by introducing a set of
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style controllers and a style predictor. Unlike other attribute

generation methods ELEGANT [33] aims to generate from

exemplars, and thus uses latent encoding instead of labels.

For multiple attribute generation, they encode the attributes

in a disentangled manner, and for increasing the quality they

adopt residual learning and multi-scale discriminators.

Geometry Guided Expression Synthesis. Existing works

incorporating geometric information yields better quality of

synthetic images. GP-GAN [4] generates faces from only

sparse 2D landmarks. Similiarly, GANnotation [26] is a

facial-landmark guided model that simultaneously changes

the pose and the expression. In addition, this method also

minimises triple consistency loss for bridging the gap be-

tween the distributions of the input and generated image

domains. G2GAN [30] is also another recent work on ex-

pression manipulation guided by 2D facial landmarks. In

GAGAN [13], latent variables are sampled from a probabil-

ity distribution of a statistical shape model i.e. mean and

eigenvectors of landmark vectors, and the generated output

is mapped into a canonical coordinate frame by using a dif-

ferentiable piece-wise affine warping.

In GC-GAN [25], they apply contrastive learning in

GAN for expression transfer. Their network consists of

two encoder-decoder networks and a discriminator network.

One encodes the image whilst the other encodes the land-

marks of the target and the source disentangled from the

image. GANimation [24] manages to generate a contin-

uum of facial expression by conditioning the GAN on a

1-dimensional vector that indicates the presence and magni-

tude of AUs rather than just category labels. It benefits from

both cycle loss and geometric loss, however the annotations

are sparse. Whilst the studies mentioned above mostly rely

on sparse geometric information, some recent studies go be-

yond landmarks to exploit geometric information and make

use of surface normals. [28] exploits surface normals infor-

mation in order the address the coarse attribute manipula-

tion task whereas in our work we deal with the more chal-

lenging expression manipulation task. Similarly, [19] feeds

the surface normal maps of the target as a condition to the

networks for modifying the expression of the given image.

Unlike this work, we are dealing with an unpaired image

translation problem, where the expressions is given only as

a categorical label.

3. Proposed Method

The schematic diagram of our method can be seen in Fig-

ure 2. As seen in the Figure, our pipeline consists of two

generative adversarial networks in a cascaded form, namely

the RGB adversarial network and the depth adversarial net-

work. One of our contributions lies in introducing a depth

network to the RGB network and training the framework in

an end-to-end fashion. As our RGB adversarial network,

we choose StarGAN [3], which is one of the representa-

tive conditional GAN architectures of contemporary frame-

works that has been widely used for unpaired multi-domain

image translation. Since our method is generic, it can be

employed in any other RGB adversarial network. In this

section, we will explain our RGB-Depth dataset construc-

tion followed by architectural details and the training pro-

cess.

3.1. RGB­Depth Dataset Creation

To train a generator for estimating depth from RGB im-

ages accurately, there is a need for a large-scale dataset con-

sisting of RGB image and depth map pairs of faces with

different expressions. As discussed in Section 1, there is no

such large-scale dataset available that fits the requirement to

train a GAN adequately. To fill this gap, we propose to cre-

ate a large-scale RGB-depth dataset. Hence, we utilise the

publicly available model of [31] to reconstruct 3D meshes

of a subset of images from existing datasets, AffectNet[18]

and RaFD[14], and augment them with depth maps. How-

ever, some of the 3D meshes were poor in quality, which

we carefully discarded manually. We projected the recon-

structed meshes and interpolated missing parts of the pro-

jections in order to acquire the corresponding depth maps

and normal maps. Samples obtained by this process are

shown in Figure 3.

To validate the generalisation and statistical significance

of the RGB image and depth map pairs, we use the datasets

we constructed to train a model in an adversarial manner,

which generates depth maps and normal maps from RGB

images. As estimating depth from a single RGB image is an

ill-posed problem, it is essential to take the global scene into

account. Since we need local as well as global consistency

on the predicted depth maps, we train the model in an adver-

sarial manner [7]. Although recent CNNs are capable of un-

derstanding the global relationship too, their objective func-

tions minimise the combination of per-pixel wise losses. To

differentiate the predicted depth maps from the extracted

depth maps, for convenience, we refer to the extracted depth

maps as ground truth depth maps. Figure 3 shows the pre-

dicted and ground truth depth maps and normal maps of

some of the examples from the real test set. From these ex-

amples, we observe that predicted depth maps and normal

maps are quite similar to the ground truths. This demon-

strates that the model trained with our dataset generalises

well to unseen examples. Hence, it shows the potential uses

of our dataset for future use cases as well. We will make our

dataset publicly available for the research community upon

the acceptance of this paper. We name the depth augmented

AffectNet and RaFD datasets as AffectNet-D and RaFD-D,

respectively, for future use.
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Figure 2. Overview of the Proposed End-to-End Pipeline. It consists of two generative adversarial networks, namely the RGB network

and the depth network. Grgb takes as input the RGB source image along with the target label and generates a synthetic image with the with

the given target expression. This image is passed to Grgb to generate its estimated depth and thereby to calculate the depth consistency

loss. This loss helps capturing detailed 3D geometric information, which is then aligned in generated RGB images.

3.2. Model

We have a scenario in which an RGB input image and

a target expression label in the form of a one-hot encoded

vector are given. Our objective is to translate this image

accurately to the given target label with high-quality mea-

surements. To this end, we propose to train two types of

adversarial networks, namely RGB and Depth, in an end-to-

end fashion. In the following part, we discuss about these

networks in detail.

RGB Adversarial Network. As seen from Figure 2, the

first part of the pipeline describes the RGB adversarial net-

work that consists of a generator Grgb and a discrimina-

tor Drgb. This part is StarGAN [3], however we would

like to emphasise that our method is not constrained to

one architecture. The discriminator serves two functions

Drgb : {Drgb
adv, D

rgb
cls }, with D

rgb
adv providing a probability

distribution over real and fake domain, while D
rgb
cls pro-

vides a distribution over the expression classes. The net-

work takes as input an RGB source image, Is, along with a

target expression label, yt, as condition. Grgb translates the

source image in the guidance of the given target label, yt,

yielding a synthetic image It. Then, D
rgb
adv , which is a dis-

criminator trained to distinguish between real and synthetic

RGB images, is applied on the generated image to ensure

a realistic look in the target domain. The adversarial loss

used for training Drgb is given in Eqn. 1.

L
rgb
adv =EIs [log(D

rgb
adv(Is))]

+ EIs,yt
[log(1−D

rgb
adv(Grgb(Is, yt))]

(1)

The discriminator contains an auxiliary classifier, D
rgb
cls ,

which guides Grgb to generate images that can be confi-

dently classified as the target expression. We minimise a

categorical cross-entropy loss as follows:

L
rgb
cls = EIs,yt

[log(Drgb
cls (yt|Grgb(Is, yt)))] (2)

To preserve attribute excluding details, a reconstruction

loss is employed, which is a cycle consistency loss and is

formulated in Eqn.3. Here, ys represents the original label

of the source image Is.

Lrgb
rec = E(Is,ys),yt

[‖Is −Grgb(Grgb(Is, yt), ys)‖1] (3)

The overall objective to be minimised for the RGB ad-

versarial network can be summed as follows:

Lrgb = λadvL
rgb
adv + λclsL

rgb
cls + λrecL

rgb
rec (4)

In Equation 4, λadv , λcls, and λrec are hyper-parameters

to control the weight of adversarial, classification, and re-

construction losses, and are set by cross-validation. From

Equation 4, we can see that none of these objectives are ex-

plicitly modeling the fine-grained details of the expressions.

Thus, the solution from RGB adversarial network alone re-

mains sub-optimal.

Depth Adversarial Network. To address the limitations of

the RGB adversarial network, we propose to append another

network that operates on the depth domain and guides the

RGB network, because depth maps are able to capture the

geometric information of various expressions. As depicted

in the right-half of Figure 2, similar to the RGB adversar-

ial network, the depth network also consists of a generator

Gdepth and a discriminator Ddepth : {Ddepth
adv , D

depth
cls }. In

this case the generator, Gdepth, takes as input the synthetic

image, It, generated by Grgb and generates the estimated
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Figure 3. RGB Images and Their Ground Truth/Predicted Depth and Surface Normal Maps. Real test images with their corresponding

ground truth depth maps extracted from the off-the-shelf 3D model and the depth maps predicted by our depth-estimator network. We can

clearly see that the depth maps are quite aligned with the geometry of real images, and our network trained on the training set of image-depth

pairs is able to preserve the geometry.

depth map, dt, which is then passed to the discriminator.

Ddepth is trained to distinguish between realistic and syn-

thetic depth maps by using the following adversarial loss

function, where ds represents the real depthmaps:

L
depth
adv =Eds

[log(Ddepth
adv (ds))]

+ EIt [log(1−D
depth
adv (Gdepth(It))]

(5)

Again, an auxiliary classifier, D
depth
cls , is added on top of the

discriminator in order to generate depth maps that can be

confidently classified as the target expression, yt. The loss

function used for this classifier is given in Eqn. 6.

L
depth
cls = EIt,yt

[log(Ddepth
cls (yt|Gdepth(It)))] (6)

The Depth Network is trained in a similar way to the

multi-domain translation network in [3], where the domain

is given as a condition. Thus, the network is able to trans-

late from RGB to depth domain as well as from depth to

RGB domain. We denote the latter translation as G′
depth.

This network takes the estimated depth map and generates

an RGB image. As done in the RGB adversarial network,

we employ the reconstruction loss given in Eqn.7.

Ldepth
rec = EIt [‖It −G′

depth(Gdepth(It))‖1] (7)

The losses used for the depth network can be summed as

follows:

Ldepth = λadvL
depth
adv + λclsL

depth
cls + λrecL

depth
rec (8)

where λadv , λcls, and λrec are hyper-parameters for adver-

sarial, classification and reconstruction loss. We set their

values by cross-validation. Minimising dense depth loss

which encodes fine-grained geometric information related

to expressions helps to synthesise high-quality expression

manipulated images.

Overall Training Objective. The overall objective func-

tion used for the end-to-end training of the networks is as

follows:

min
{Grgb,Gdepth}

max
{Drgb,Ddepth}

(Lrgb + Ldepth)

From Eqns. 5, 6 and 7 we can see that the loss incurred

by the synthetic image on the depth domain is propagated

to the RGB adversarial network. This will ultimately guide

the RGB generator to synthesise the image with the target

attributes in such a way that their geometric information is

also consistent.

Pre-training the Depth Network. The Depth network that

we employed in this framework is trained offline on the data

set augmented with the depth maps. Please refer to Section

3.1 for creation and augmentation of the depth maps on Af-

fectNet and RaFD. We train the Depth Network with strong

supervision in prior utilising the RAFD-D and AffectNet-D

datasets we constructed, so that it can generate reasonable

depth maps for given synthetic inputs during the end-to-end

training. Employing such pre-trained network to constrain

the GAN training has been useful in other downstream tasks

such as identity preservation [6]. Apart from the depth net-

work losses described in the previous section, since we have

paired data we employ a pixel loss and a perceptual loss.

The pixel loss, as given in Eqn. 9, calculates the L1 dis-

tance between the depth map generated by Gdepth for the

input image, Is, and its ground truth depth map, ds,:

Lpix = E(Is,ds)[‖ds −Gdepth(Is)‖1] (9)

Instead of relying solely on the L1 or L2 distance, with

the perceptual loss [12] defined in Eqn. 10 the model learns

by using the error between high-level feature representa-

tions extracted by a pre-trained CNN, which in our case is

VGG19 [29].

Lper = E(Is,ds)[‖V (ds)− V (Gdepth(Is)))‖1] (10)

Finally, to improve the generalisation of the depth net-

work, we propose to introduce a regulariser on the depth
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network called confidence penalty as shown in the Equa-

tion 11. This regulariser relaxes the confidence of the

depth prediction model similar to regularisers that learn

from noisy labels [10]. Such regularisers are successfully

applied on image classification tasks [23] As mentioned be-

fore, the depth maps are extracted from the off-the-self 3D

reconstruction model and manual eradication of low qual-

ity depth maps has already made our data set ready to learn

the model. Even then, this regulariser helps to further re-

move the noise from the data set and learn the robust model.

In Eqn. 11 H stands for the entropy and β controls the

strength of this penalty. We set the parameters of β by cross-

validation.

L
depth
cls =EIs,yt

[log(Ddepth
cls (yt|Gdepth(Is)))]

− βH(Ddepth
cls (yt|Gdepth(Is))

(11)

4. Experimental Results

Datasets. We extended two popular benchmarks, Affect-

Net [18] and RaFD [14], to AffectNet-D and RaFD-D. For

AffectNet, we took the down sampled version, where a

maximum of 15K images are selected for each class. This

resulted in a reconstruction of 87K meshes for 8 expres-

sions. RaFD[14] contains images of 67 models taken with

3 different gazes and 5 different camera angles, where each

model shows 8 expressions. The images are aligned based

on their landmarks and cropped to the size of 256× 256.

Implementation. Our method is implemented on PyTorch

[21]. We perform our experiments on a workstation with

Intel i5-8500 3.0G, 32G memory, NVIDIA GTX1060 and

NVIDIA GTX1080. As for the training schedule, we first

pre-train the depth network for 200k epochs, then both

GANs in an end-to-end fashion for 300k epochs, where the

bath size is set to 15 and 8, respectively. We start with a

learning rate of 0.0001 and decay it in every 1000 epochs.

We update the discriminator 5 times per generator update.

The models are trained with Adam optimiser.

Evaluation metrics. We evaluate our method both quan-

titatively and qualitatively. To quantitatively evaluate the

generated images we compute the Frechet Inception Dis-

tance (FID)[9]. FID is a commonly used metric for assess-

ing the quality and diversity of synthetic images. We further

evaluate our method by applying a pre-trained face recog-

nition model to calculate the identity loss for synthesised

images. We also calculate the peak signal-to-noise ratio

(PSNR) and the structural similarity (SSIM) [32] between

the original and reconstructed images. Also, similar to the

attribute generation rate reported on STGAN [16], we report

expression generation rate in our experiments. To calculate

it, we train a classifier independent of all models on the real

training set and evaluate on the synthetic test sets.

Compared Methods. We compare our method to some

of the state-of-the-art attribute manipulation baselines, Star-

GAN [3], IcGAN [22] and CycleGAN [35]. Among these

methods we took StarGAN[3] as our baseline. We further

compare our method to some recent studies that utilise geo-

metric information, namely Ganimation [24] and Gannota-

tion [26] (Please refer to Table 1). For Ganimation, we use

their publicly available implementation and trained it on our

dataset.

4.1. Quantitative Evaluation

We compare our method with existing arts on various

quantitative metrics on both Affectnet and RaFD.

Expression generation rate: On AffectNet, we report the

performance on 6 expressions excluding contempt and dis-

gust, since these two classes are highly under-represented

on this dataset. Apart from this accuracy score on Affect-

Net, all other quantitative results are based on all 8 expres-

sion classes for both datasets. As seen from Table 1, on

AffectNet, when we apply our method on StarGAN, the

performance increases by 3.8%. With the introduction of

the confidence penalty to the depth network, this rate fur-

ther increases by 1.3% yielding a 5.1% improvement over

StarGAN by reaching 87.2%. Similarly, as seen from Table

2, for RaFD, with our method we get an accuracy of 62%,

which corresponds to an 8.9% improvement over StarGAN.

FID: To assess the quality of the synthesised images we

calculate the FID for both datasets. As seen in the tables,

when our method is applied over StarGAN, the FID val-

ues decrease from 16.33 to 13.35 for AffectNet, and from

39.45 to 35.14 for RaFD. Since lower FID values indicate

better image quality and diversity, these results verify that

our method improves the synthetic images in both aspects.

PSNR/SSIM: We further compute the PSNR/SSIM scores

to evaluate the reconstruction performance of the networks.

Our method improves the PSNR score by 2.33 and 1.32
yielding a score of 35.29 and 32.57 for AffectNet and

RaFD, respectively. Similarly, the SSIM score improves by

5% for AffectNet and 4% for RaFD resulting in 84% and

79%.

Identity Preservation: Finally, to assess how well the iden-

tity is preserved we employ the pre-trained model of VGG

Face[20] to extract the features of real and synthesised im-

ages. We calculate the L2 loss between the features of each

synthesised image and the corresponding real image. Fig-

ure 4 illustrates the resulting distribution of this loss. As

seen in these graphs, our method manages to preserve the

identity better than StarGAN in both datasets.

Comparison to existing arts: Our method obtains a bet-

ter score than all three compared methods, StarGAN[3],

Ganimation[24] and Gannotation[26], in every metric. This

verifies that depth and surface normal information captures

expression-specific details which are missed by sparse geo-

metrical information, i.e. landmarks and action units.

Hyper-parameter Study. The important additional hyper-
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Method Geometry Conf. penalty Accuracy (%) ↑ FID↓ PSNR↑ SSIM↑

StarGAN [3] N/A No 82.1 16.33 32.96 0.79

Ganimation [24] Action Units No 74.3 18.86 32.12 0.74

Gannotation [26] Landmarks No 82.6 17.36 32.54 0.77

Our Method Depth map No 85.9(+3.8) 14.03 33.88 0.82

Our Method Normal map Yes 83.9(+1.8) 13.29 33.59 0.81

Our Method Depth map Yes 87.2(+5.1) 13.35 35.29 0.84

Table 1. Performance Comparison on AffectNet.

Method Geometry Conf. penalty Accuracy (%)↑ FID↓ PSNR↑ SSIM↑

StarGAN [3] N/A No 53.1 39.45 31.19 0.75

Our Method Depth map Yes 62(+8.9) 35.14(-4.31) 32.57(+1.38) 0.79(+0.04)

Table 2. Performance Comparison on RaFD.

Method Depth network weight (β) Accuracy (%) ↑

StarGAN 0.0 82.1

Our Method 0.1 85.9(+3.8)

Our Method 0.2 86.1(+4.0)

Our Method 0.3 86.3(+4.2)

Our Method 0.4 86.3(+4.2)

Table 3. Performance Comparison on AffectNet with Different

Weights for the Depth Network.

Figure 4. ID Loss Distribution. AffectNet (left) and RaFD (right).

Please zoom in to see the details.

parameter for us in comparison to StarGAN is the weight

of the loss incurred by the depth network, which comprises

depth adversarial loss and depth classification loss. We set

different weights for this loss and evaluate the performance.

Table 3 summarises this hyper-parameter study. When we

set the weight of depth loss to 0.0, which is the RGB Net-

work alone, i.e StarGAN, the mean target expression clas-

sification accuracy is 82.1%. As discussed before, without

using the confidence penalty, setting the weight to 0.1 im-

proves StarGAN by +3.8, yielding an accuracy rate of 85.9.

We set the weight to 0.2, which improves the performance

from 85.9% to 86.1%. Slightly increasing the weight to 0.3
gives a mean accuracy of 86.3%. As increasing the weight

to 0.4 does not further improve the performance, we choose

0.3 as the optimal value for this parameter. These experi-

mental results show that the performance of our method is

influenced by the hyper-parameters but is stable.

4.2. Qualitative Evaluation

Figure 5 shows a comparison of some samples synthe-

sised by StarGAN and our method. We observe that in-

corporating the depth information with our method yields

results that are of higher quality while also maintaining the

facial geometry and photometry, hence the identity.

On the left-hand side of Figure 5, we present some of the

examples that show our method is capable of providing pho-

tometric consistency. Images synthesised by StarGAN con-

tain artifacts on the skin, and in some cases fail to preserve

the shapes of nose, mouth and eyes as well as the original

texture. On the other hand, in almost all synthesised im-

ages our method yields results that look more realistic and

natural. In particular, areas like mouth, nose and eyebrows

are well synthesised in correspondence with the given target

expression even in cases where StarGAN fails.

The right-hand side of Figure 5 presents a comparison

of samples generated by StarGAN and our method along

with their depth maps predicted by our method. For the first

two and the last sample, when translating a neutral image to

happy, our method synthesises the face with a realistic ge-

ometry whereas StarGAN fails in the mouth area resulting

in artifacts in the inner mouth. In translation from happy

to neutral on the fourth and fifth samples, StarGAN yields

results where the mouth is uncertain and not closed. Our

method, on the other hand, results in a closed mouth with

little or no artifacts. The predicted depth maps for StarGAN

verify this inference as the mouth is ambiguous in the fourth

depth map and open in the fifth. For the third and sixth sam-

ples, when synthesising images with the target class ’sad’,

both methods generate open-mouth samples. However, in

images generated by StarGAN the inner mouth has artifacts,

the mouth is blurry and the original mouth geometry is not

preserved, which is reflected in the predicted depth maps.

These results show that the guidance of the depth network

leads the RGB network to synthesise images that yield more

realistic depth map predictions, which results in improved

geometric and photometric consistency in the synthesised

images. These qualitative examples further validate that the

geometric consistency loss is essential while training GANs

for high quality expressions translation.

Figure 6 shows a comparison of our method to existing
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Figure 5. Qualitative Results on AffectNet. (a) A comparison of images synthesised by StarGAN and our method. Results show that our

method preserves photometric consistency. (b) Synthesised images and their predicted depth maps. The original images with the given

expressions are translated to the target expressions by StarGAN and our method. Our depth map estimator network is applied to obtain the

predicted depth maps.
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Figure 6. Qualitative Results on RaFD. Facial expres-

sions synthesised by CycleGAN[35], IcGAN[22], StarGAN[3],

Ganimation[24] and our method. Synthesised images for previ-

ous methods are taken from [24].

work. In this figure we observe that our method produces

outperforming or competitive results on RaFD as well. Re-

sults produced by CycleGAN and IcGAN are of lower qual-

ity, whilst StarGAN and GANimation produce high qual-

ity results. However, we observe that the geometric guid-

ance introduced by our method helps preserving the existing

geometry while modifying expression-specific geometrical

details. For instance, contempt expression synthesised by

Ganimation only slightly modifies the mouth, whereas our

method adds mouth wrinkles and lowers the eyelids.

5. Conclusion

In this paper, we proposed a novel end-to-end deep net-

work for manipulating facial expressions. The proposed

method incorporates the depth information with an addi-

tional network that guides the training process by the depth

consistency loss. To train the proposed pipeline of net-

works, we constructed a dataset that consists of RGB im-

ages and their corresponding depth maps and surface nor-

mal maps using an off-the-shelf 3D reconstruction model.

To improve generalisation and lower the bias of the depth

parameters, a confidence regulariser is applied to the dis-

criminator side of the GAN frameworks. We evaluated

our method on two challenging benchmarks, AffectNet and

RaFD, and showed that our method synthesised samples

that are both qualitatively and quantitatively superior to the

ones generated by recent methods.
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