
Dynamic Routing Networks

Shaofeng Cai Yao Shu Wei Wang

National University of Singapore

{shaofeng, shuyao, wangwei}@comp.nus.edu.sg

Abstract

The deployment of deep neural networks in real-world

applications is mostly restricted by their high inference

costs. Extensive efforts have been made to improve the ac-

curacy with expert-designed or algorithm-searched archi-

tectures. However, the incremental improvement is typically

achieved with increasingly more expensive models that only

a small portion of input instances really need. Inference

with a static architecture that processes all input instances

via the same transformation would thus incur unnecessary

computational costs. Therefore, customizing the model ca-

pacity in an instance-aware manner is much needed for

higher inference efficiency. In this paper, we propose Dy-

namic Routing Networks (DRNets), which support efficient

instance-aware inference by routing the input instance to

only necessary transformation branches selected from a

candidate set of branches for each connection between

transformation nodes. The branch selection is dynami-

cally determined via the corresponding branch importance

weights, which are first generated from lightweight hyper-

networks (RouterNets) and then recalibrated with Gumbel-

Softmax before the selection. Extensive experiments show

that DRNets can reduce a substantial amount of parame-

ter size and FLOPs during inference with prediction per-

formance comparable to state-of-the-art architectures.

1. Introduction

Deep convolutional neural networks (CNNs) [8, 42] have

revolutionized computer vision with increasingly large and

sophisticated architectures. The architectures are typically

designed and tuned by domain experts with rich engineer-

ing experience. These models achieve remarkable perfor-

mance with hundreds of layers and millions of parameters,

which however consume a substantial amount of computa-

tional resources during inference. Improving inference effi-

ciency has thus become a major issue for the deployment of

deep neural networks in real-world applications.

Recently, there has been a growing body of research on

efficient network design [11, 28, 33] for more efficient in-

ference architectures. These works mainly focus on design-

ing more efficient transformations to reduce the parameter

size and inference FLOPs. Many architectures with efficient

transformation building blocks have been proposed. Par-

ticularly, SqueezeNet [15] reduces the parameter size sig-

nificantly with the squeeze-and-expand convolution block.

MobileNets [11] substantially reduce the parameter size and

computation cost measured in FLOPs on mobile devices

with depthwise separable convolution. Subsequent works

such as MobileNetV2 [28] and ShuffleNetV2 [22] further

reduce FLOPs on the target hardware. However, it is well

recognized that designing these architectures is a non-trivial

task that requires engineering expertise.

To automate the architecture design process, there has

been an increasing interest in Neural Architecture Search

(NAS). Mainstream NAS algorithms [41, 42, 26] search for

the network architecture iteratively. In each iteration, an

architecture is proposed by the search algorithm and then

trained and evaluated. The evaluation performance is in turn

utilized to update the algorithm. This process is incredibly

slow because both the algorithm and the proposed architec-

tures require extensive training. In particular, the reinforce-

ment learning (RL) based algorithm NASNet [42] takes

1800 GPU days, and the evolution based algorithm Amoe-

baNet [26] costs 3150 GPU days to obtain the final archi-

tecture. To expedite the search process, many acceleration

methods [1, 19, 2, 25] have been proposed. Many recent

works [20, 39, 4, 36] instead remove the search algorithm

and instead optimize parameters of both the architecture and

the selection process concurrently with gradient-based al-

gorithms. Among these methods, the gradient-based NAS

algorithms turn out to be both efficient and effective for the

architecture search.

By and large, expert-designed and NAS-searched models

are quite efficient and accurate during inference. Nonethe-

less, most architectures of these models are static during in-

ference, and thus not adaptive to the varying complexity of

input instances. In real-world applications, only a small por-

tion of input instances require deep representations [33, 13],

as made evident by the diminishing marginal returns of in-

creasing model size on accuracy. Therefore, extensive com-

3588

𝑥"
#

𝑥$
#

𝑥%
#

𝑥&
#

𝑥'($
#

⋯

𝑥*+,
#

C

(a) Cell Structure

𝒃𝒓𝒂𝒏𝒄𝒉	𝟏

𝒃𝒓𝒂𝒏𝒄𝒉	𝟐

𝒃𝒓𝒂𝒏𝒄𝒉	𝑩

𝒇𝒂𝒔𝒕-𝒇𝒐𝒓𝒘𝒂𝒓𝒅	𝒃𝒓𝒂𝒏𝒄𝒉

input output

RouterNet

⋯
(b) Node Connection

Figure 1: Left: the Cell structure of DRNets with inter-connected nodes. Right: the illustration of a node connection with

B+1 transformation branches. During inference, each input instance is routed to only necessary branches for efficiency.

Importance weights of branches are dynamically generated from the RouterNet and then recalibrated with Gumbel-Softmax.

putational resources could be wasted if all input instances

are processed in the same way. To further improve the in-

ference efficiency over existing architectures, designing a

dynamic architecture with adequate representational power

to support the inference of hard instances, and meanwhile a

flexible mechanism to provide only necessary computation

for instances of varying difficulty is thus much needed.

To support dynamic inference, we propose DRNets to

support instance-aware inference with the building block

Cell and the transformation of the node connection illus-

trated in Figure 1. At a high level, DRNets can be regarded

as a dynamic architecture generator with its backbone net-

work building upon best-performing expert-designed and

NAS-searched architectures, which produce architectures

customized for the current input instance for higher infer-

ence efficiency. Specifically, the backbone network is a

stack of L structurally identical Cells. Each cell contains

N inter-connected Nodes and receives inputs from the out-

puts of its two preceding cells. Instead of painstakingly

searching for the connection topology and the respective

transformation for each node connection of the cell as in

NAS [41, 42, 26, 20], each node of DRNets is simply con-

nected to a predetermined subset of its previous node(s),

e.g., two in Figure 1a, and each connection transforms the

current instance via a candidate operation set of B+1 trans-

formation branches. These B branches can be homoge-

neous or heterogeneous, which are trained to specialize in

certain types of instances. There is another fast-forward

branch integrated to efficiently forward the current instance

without heavy computation.

To enable instance-aware architecture customization, we

integrate L lightweight hypernetworks RouterNets, one for

each cell to dynamically determine the relative importance

weight of each branch among the B+1 branches of each

connection. We further introduce Gumbel-Softmax [16, 23]

to recalibrate the importance weights of each connection so

that during training, these weights are dense and the en-

tire architecture is efficiently optimized, and during infer-

ence, the input instance is routed only to necessary branches

of larger importance weights for efficiency as illustrated in

Figure 1b. The advantages of DRNets can be summarized

as follows:

• The architecture of DRNets is general and customiz-

able, which supports the instance-aware dynamic rout-

ing mechanism and thus improves inference efficiency

significantly by reducing redundant computation.

• DRNets introduce Gumbel-Softmax to lightweight

RouterNets during the branch selection process, which

enables direct gradient descent optimization and is

more tractable than the RL-based methods.

• DRNets achieve state-of-the-art inference efficiency in

terms of parameter size and FLOPs and inherently sup-

ports applications that require runtime control.

Our experiments show that DRNets are extremely ef-

ficient during inference which selects only necessary

branches on a per-input basis. For instance, DRNets reduce

the parameter size by 3.71x and FLOPs by 4.53x respec-

tively compared with the NAS-searched high-performance

architecture DARTS [20] on CIFAR-10 with comparable

accuracy. With a tiny model of 0.57M parameters, DRNets

achieve much better accuracy while with only 13.48% pa-

rameter size and 46.41% FLOPs during inference compared

with the expert-designed network MobileNetV2 1.5x [28].

We also provide ablation studies and visualize the branch

selection process to better understand the proposed dynamic

routing mechanism.

The remainder of this paper is organized as follows: we

first discuss the related works in Section 2. Then in sec-

tion 3, we introduce the backbone network and the hyper-

networks of DRNets in detail. Experimental evaluations of

DRNets are provided in Section 4, where the main results

and findings are summarized in Section 4.2 and Section 4.3.

Finally, Section 5 concludes the paper.

3589

2. Related Work

Efficient Architecture Design. An increasing number

of works focus on directly designing resource-aware net-

works [15, 22, 11, 28]. SqueezeNet [15] proposes the fire

module of the squeeze-and-expand convolution, which re-

duces the parameter size substantially. MobileNets [11, 28,

10] series architectures adopt depthwise separable convo-

lution for efficient inference. MobileNetV2 [28] achieves

higher efficiency with inverted residual blocks, and Mo-

bileNetV3 [10] further improves efficiency with the inte-

gration of components searched by NAS. ShuffleNet [40]

introduces the lightweight channel shuffle operation for in-

formation exchange between channel groups, and Shuf-

fleNetV2 [22] further improve inference speed by consid-

ering the actual overhead on the target platform. To pro-

vide efficient inference, many of these transformations are

adopted in the candidate operation set of DRNets.

Neural Architecture Search. There has been an increasing

interest in automated architecture search (NAS). Given the

learning task, NAS aims to find the optimal architecture,

specifically, the topology of network connections between

nodes and the transformation operation for each connec-

tion. NAS typically consists of two stages, i.e., architec-

ture optimization and parameter optimization. Mainstream

NAS methods [42, 26] consider architecture optimization

as a stand-alone process that is separated from the param-

eter optimization. Search algorithms, such as RL-based

NAS [41, 42] and evolutionary-based NAS [37, 26], ob-

tain high-performing architectures while at the cost of an

unprecedented amount of search time. Many works have

been proposed to expedite the search process, e.g., via per-

formance prediction [1, 19], hyperparameter generating ini-

tialization weights [3], weight sharing [25], and etc.

Many recent works [4, 36] instead integrate the architec-

ture search and architecture optimization into one gradient-

based optimization framework. In particular, DARTS [20]

relaxes the discrete search space to continuous operation

mixing weights for each connection and optimizes the

weights directly with gradient back-propagated from the

validation loss. Likewise, SNAS [39] models the discrete

search space with sets of one-hot random variables, which

are made differentiable by sampling from continuous Con-

crete Distribution [16, 23]. DRNets also relax the discrete

branch selection to continuous importance weights that are

optimized by gradient descent. While instead of obtaining

a set of fixed weights, RouterNets are introduced to dynam-

ically generate these weights to support instance-aware ar-

chitecture customization for efficiency.

Dynamic Inference Architecture. A growing body of re-

search has been investigating methods to accelerate infer-

ence, e.g., model compression via weight pruning [7], vec-

tor quantization, knowledge distillation [9] and etc. Typ-

ically, these methods are designed as post-training tech-

niques. Relatively fewer works explore dynamic infer-

ence architectures, which supports instance-aware execu-

tion. The dynamic inference is based on the observation

that most input instances can be accurately processed with

a small network, and only a few inputs need an expensive

model.

The idea of dynamic inference is related to mixture-of-

experts [29], whereas in DRNets, the input is dynamically

routed to specialized branches instead of individual mod-

els. Most prior dynamic inference architectures [29, 27, 18]

focus mainly on accuracy, and their architectures are in-

troduced in abstract terms. To improve efficiency, the two

ResNet [8] based architectures SkipNet [33] and AIG [32]

propose to dynamically skip each residual layer. While the

backbone network of DRNets adopts the topology and ef-

ficient branches of best-performing architectures [28, 20],

which provides more efficient and diversified branch selec-

tion for higher efficiency. Further, the dynamic skipping

of SkipNet [33] and AIG [32] are based on a hypernet-

work trained with policy gradient [34] and straight-through

Gumbel-Softmax [16] respectively. However, training with

policy gradient is brittle and often stuck in poor optima;

the Straight-Through gradient estimation of AIG is bi-

ased [32, 16, 23] and easily falls into the selection collapse

of sampling only a few branches repeatedly. Compared with

SkipNet and AIG, the hypernetworks of DRNets are op-

timized more effectively with a two-stage temperature an-

nealing scheme, and DRNets support a varied branch selec-

tion of multiple branches for each connection instead of the

binary skipping choice. MSDNet [13] inserts multiple clas-

sifiers into a multi-scale version of DenseNet [14] and sup-

ports faster predictions by exiting into a classifier. DRNets

can also selectively route the input to lightweight branches

for accelerating predictions.

3. Dynamic Routing Network

We aim to devise an efficient and flexible backbone net-

work for DRNet so that during inference, accompanying

hypernetworks can dynamically produce a customized ar-

chitecture for each input instance for higher inference effi-

ciency. We introduce the backbone network in Section 3.1,

hypernetworks in Section 3.2, and the optimization and ef-

ficient inference in Section 3.3.

3.1. The Backbone Network

Following NAS [41, 20, 39], the backbone of DRNet is

constructed with a stack of L Cells. As illustrated in Fig-

ure 1a, each cell is a directed acyclic graph consisting of an

ordered sequence of N intermediate nodes, which receives

inputs xl
0 and xl

1 from outputs of the two preceding cells.

Each intermediate node xl
i(i > 1) of the lth cell learns la-

tent representations and receives inputs from a set of n pre-

3590

vious nodes of smaller indexes I li , e.g., n = 21 in Figure 1a:

xl
i =

∑

j∈Il
i

Fj,i(x
l
j), j < i ∧ |I li | = n

(1)

The main task of NAS is to find the best cell connection

topology given by I li , i.e., best previous nodes (two nodes

for most NAS architectures [41, 20, 39]) for each interme-

diate node, and meanwhile, determine the best branch from

candidates for each node connection. We sidestep the archi-

tecture search by using a hypernetwork, which will be intro-

duced in Section 3.2, to dynamically determine the neces-

sary branches for each connection given the current input

instance for higher efficiency.

Thereby, there are C = n ·N connections for each cell.

As is illustrated in Figure 1b, the connection passes infor-

mation from node xl
j to xl

i via a predetermined set of B+1

candidate transformation branches, e.g., operations adopted

from efficient networks [28, 40] and NAS [20, 39]:

Fj,i(x
l
j) =

B∑

b=0

wb · Fb(x
l
j) =

B∑

b=0

wb · (Wb ∗ x
l
j) (2)

where Wb is the transformation weights (e.g., the weight

matrix of a linear layer or a convolutional kernel), ∗ de-

notes the transformation (e.g., matrix multiplication or a

convolutional operation), and wb indicates and importance

of the bth branch. The branch importance weight wb is

dynamically determined by the cell hypernetwork (Router-

Netl), rather than a fixed learned parameter as in most NAS

methods [20, 39]. For each connection, the B+1 impor-

tance weights are recalibrated with Gumbel-Softmax so that

these branches can be effectively trained and specialized for

different input instances during training; while during in-

ference, only the most important branches are selected for

prediction efficiency. We will elaborate on RouterNet and

Gumbel-Softmax in Section 3.2.

The candidate operation set should contain at least one

fast-forward branch, e.g., identity mapping, to minimize

unnecessary computation for easy instances. Further, the

training cost of Equation 2 can be greatly reduced by

preparing the aggregate transformation weights before the

computation-heavy input transformation, with the reformu-

lation:
∑B

b=0 wb ·(Wb∗x
l
j) = (

∑B
b=0 wb ·Wb)∗x

l
j . Finally,

the output of the cell xl
out is collected by concatenating out-

puts from all intermediate nodes {xl
2, . . . , x

l
N+1}. We shall

use superscript l, subscript c and b to index the cell, connec-

tion, and branch respectively.

Recent works [38] demonstrate that architectures with

randomly generated connections achieve surprisingly com-

petitive results compared with the best-performing NAS

1
n=1 and I

l

i
= {i− 1} forms canonical feed-forward networks, and n

can be larger than two for larger model capacity and better representation

learning.

models, which is also confirmed in our experiments. In this

paper, we thus adopt a simple connection topology intro-

duced in Section 4.1 and focus mainly on the branch se-

lection mechanism and the impact of dynamic routing on

inference efficiency. With such a dynamic architecture, we

can readily adjust the candidate operation set for each con-

nection to customize the model capacity and inference effi-

ciency based on the task difficulty and resource constraints

in deployment.

3.2. Dynamic Weight Recalibration with RouterNet

To support instance-aware inference control, we intro-

duce one lightweight hypernetwork RouterNet for each cell.

Each RouterNetl receives the same input as the lth cell,

specifically, the output nodes xl−2
out , x

l−1
out (xl

0, x
l
1) from the

two preceding cells, and generates importance weights W l

for the C connections of the corresponding cell at once:

W
l = RouterNetl(xl

0, x
l
1),W

l ∈ R
C×(B+1) (3)

Specifically, each RouterNetl weighs each branch of the

connection with the respective importance weight during

training; and further, as illustrated in Figure 1b, routes the

current input to only necessary branches during inference.

In this work, the RouterNet comprises a pipeline of 2 con-

volutional blocks, a global average pooling, and finally an

affine transformation to produce the weights. The convo-

lution block adopts the separable convolution [28], specifi-

cally a point-wise convolution and a depth-wise convolution

of stride two and kernel size 5×5. The convolution block

with large stride and kernel size incurs minimal compu-

tational overhead while extracts necessary features for the

generation of the importance weights.

The importance weights are introduced along the lines

of convolutional attention mechanism [24, 12, 35], where

attention weights are first determined based on the input in-

stance and then used to recalibrate the activations of certain

input dimensions, e.g., channels [12]. In DRNets, the im-

portance weights are applied to transformation branches of

each connection, where each candidate branch is coupled

with a respective weight for branch selection.

The Gumbel-Softmax [16, 23] and reparameterization

technique [17] are integrated to recalibrate the importance

weights generated by RouterNets. The weight recalibration

is a continuous relaxation of the categorical branch sam-

pling process, which enables tractable gradient-based op-

timization for the entire network during training. Specifi-

cally, w̃l
c,b (the importance weight of bth branch of the cth

connection in the lth cell) after the recalibration of wl
c,b

(W l
c ∈ R

B+1) with Gumbel-Softmax follows a Concrete

Distribution [23]:

3591

w̃l
c,b =

exp((wl
c,b + glc,b)/τ)∑B

b′=0 exp((w
l
c,b′ + glc,b′)/τ)

, τ > 0 (4)

where τ is the temperature of the softmax and is annealed

steadily during training, and glc,b=− log(− log(ul
c,b)) is a

Gumbel(0, 1) [23] random variable for the bth branch by

sampling ul
c,b from Uniform Distribution U(0, 1) [16]. w̃l

c,b

is then directly used for branch weighting in Equation 2.

Denoting parameters of the backbone network and Router-

Nets as θ and φ, then the objective function LCE(θ, φ) can

be reparameterized as:

LCE(θ, φ) = Ew̃∼pφ(x)[fθ(x, w̃)]

= Eg∼Gumbel(0,1)[fθ(x, hφ(x, g))]
(5)

where x is the current input instance and the dependence

of the importance weights w̃ on the parameters of φ can

be transferred from the sampling of pφ(x) into hφ(x, g).
With such reparameterization, the branch selection weights

w̃l
c,b can be computed as a deterministic function of the

weights wl
c,b generated from RouterNets with parameters

φ and an independent random variable ul
c,b, such that non-

differentiable categorical branch sampling process is made

directly differentiable with respect to φ during training. The

weight w̃l
c,b following Concrete Distribution [23] satisfies

the nice properties: (1) w̃c,b =
1

B+1 , τ → +∞, and (2)

p(lim
τ→0

w̃l
c,b = 1) = exp(wl

c,b)/

B∑

b′=0

exp(wl
c,b′) (6)

which indicates that the softmax computation of Equation 4

smoothly approaches discrete argmax branch selection as

the temperature τ anneals. High temperature leads to uni-

form dense branch selection, while a lower temperature

tends to select the most important branch following a Cate-

gorical Distribution parameterized by softmax(W l
c).

3.3. Optimization and Efficient Inference

With the continuous relaxation of the Gumbel-Softmax

(Equation 4) and reparameterization (Equation 5), the

branch selection process of the RouterNets is made directly

differentiable with respect to the parameters of RouterNets

using the chain rule:

∇φLCE(θ, φ) = Eg[∇φfθ(x, hφ(x, g))]

= Eg[f
′
θ(x, hφ(x, g))∇φhφ(x, g)]

(7)

where the gradient ∂L
∂w̃l

c,b

backpropagated from the loss

function LCE to w̃l
c,b through the backbone network via

f ′
θ(x, hφ(x, g)) can be directly backpropagated to wl

c,b with

low variance [23], and further to the RouterNetl via

∇φhφ(x, g) unimpededly. Therefore, parameters of the en-

tire DRNet can be optimized in an end-to-end manner by

gradient descent effectively.

During training, the temperature τ of Equation 4 regu-

lates the sparsity of the branch selection. A relatively higher

temperature forces the weights to distribute more uniformly

so that all the branches can be efficiently trained. While

a low temperature instead tends to sparsely sample one

branch from the categorical distribution parameterized by

the importance weights dynamically determined by Router-

Nets, and thus supports efficient inference by routing inputs

to only necessary branches. We thus propose a two-stage

training scheme for DRNets: (1) the first stage pretrains the

entire network with a fixed relatively high temperature till

convergence. (2) the second stage fine-tunes the parameters

with τ steadily annealing to a low temperature. The first

stage ensures that all the branches are sufficiently trained

and specialized for certain input instances; the fine-tuning

and annealing in the second stage help maintain the perfor-

mance of DRNets with dynamic routing during inference

for higher efficiency.

To further improve inference efficiency, a regularization

term is explicitly introduced during the fine-tuning stage,

which takes into account the expectation of the resource

consumption R in the final loss function L for the already

correctly-classified input instances:

L = LCE + λ1ŷ=y logE[R]

≈ LCE + λ1ŷ=y log

L∑

l=1

C∑

c=1

B∑

b=0

w̃l
c,b · R(F l

c,b(·))
(8)

where LCE denotes the cross-entropy loss (Equation 5), y

is the ground truth class label, ŷ is the prediction, λ con-

trols the regularization strength and R(·) calculates the re-

source consumption of each branch F l
c,b(·). The branch im-

portance weight w̃l
c,b represents the probability of the cor-

responding transformation F l
c,b(·) being selected during in-

ference, and thus the regularization term E[R] corresponds

to the expectation of the computational resource required

for each input instance. The resource regularizer can be

adapted based on deployment constraints, which may in-

clude the parameter size, FLOPs, and memory access cost

(MAC), and etc. In this paper, we mainly focus on the in-

ference time measured by FLOPs, where R(F l
c,b(·)) is a

constant and can be calculated beforehand. This indicates

that the regularizer R is also directly differentiable with re-

spect to w̃l
c,b during the optimization. We denote DRNets

trained with regularization strength λ as DRNet-R-λ.

As illustrated in Figure 1b, during inference, dynamic

routing for efficiency is achieved by passing the input to

3592

the top-k most important branches out of the B+1 branches

for each connection, whose overall importance weights de-

noted as slc just exceeds a predetermined threshold T . After

the selection, the recalibration weight w̃l
c,b of the selected

branch is rescaled by 1
slc

to stabilize the scale of the con-

nection output. Consequently, each RouterNet selects only

necessary branches for each instance depending on the input

difficulty and the computational cost of each branch to trade

off between LCE and R. In this paper, the same threshold

is shared among all connections for simplicity, and DRNets

inference with a threshold t is denoted as DRNet-T-t.

Under such an inference scheme, the backbone network

comprises up to (2B+1 − 1)L·C possible candidate subnets,

corresponding to each unique branch selection of all L · C
connections. For a small 10 cells DRNet, with 8 connections

per cell and 5 candidate operations per connection, there are

(25 − 1)8·10 ≈ 2 · 10119 possible candidate architectures of

different branch selections, which is orders of magnitudes

larger than the search space of conventional NAS [25, 20,

39, 4, 31].

4. Experiments

We mainly focus on the evaluation of the accuracy and

efficiency of DRNets on benchmark datasets. We compare

the results of DRNets against the best-performing expert-

designed, NAS-searched and dynamic inference architec-

tures. Experimental details are provided in Section 4.1, and

main results are reported in Section 4.2. We discuss and

visualize the dynamic routing process in Section 4.3.

4.1. Experimental Setup

Dataset. Following conventions [39, 20], we report the

performance of DRNets on benchmark datasets CIFAR-

10 and ImageNet-12, where the accuracy and inference

efficiency are compared with other state-of-the-art archi-

tectures. CIFAR-10 contains 50,000 training images and

10,000 test images of 32 × 32 pixels in 10 classes.

We adopt standard data pre-processing and augmentation

pipeline [20, 39] and apply AutoAugment [5], cutout [6]

of length 16. ImageNet contains 1.2 million training and

50,000 validation images in 1000 classes. We adopt a stan-

dard augmentation scheme following [20, 39] and apply la-

bel smoothing of 0.1 and AutoAugment. Results are re-

ported with a 224× 224 center crop.

Temperature Annealing Scheme. In the pre-training

stage, the temperature τ is fixed to 3 till convergence. In the

fine-tuning stage, τ is reset to 1.0 and is further annealed by

exp(−0.0006) ≈ 0.999 every epoch to 0.5. The initial τ is

5 and exponentially annealed to 0.8 for ImageNet.

Candidate Operation Set. The following 5 candidate op-

erations (B+1=5) are adopted for demonstration, which can

be readily adjusted in deployment:

• 3× 3 max-pooling

• 3× 3 avg-pooling

• skip connection

• 3× 3 separable-conv

• 5× 5 separable-conv

In particular, skip connection is adopted as the fast-

forward branch that allows for efficient input forwarding;

pooling layers contain no parameter and are computation-

ally lightweight; separable-conv dominates the parameter

size and computation in each connection, which contains

separable convolutions of ReLU-Conv-Conv-BN. The three

types of transformations support trade-offs between model

capacity and efficiency for the branch selection of each con-

nection.

Architecture Details We adopt three DRNet architectures

of different size: (1) DRNet(S), a smaller network with L=5

cells and 15 initial channels; (2) DRNet(M), a medium net-

work with 10 cells and 20 initial channels; (3) DRNet(L), a

larger network with 10 cells and 32 initial channels.

All the architectures adopt N=4 intermediate nodes for

each cell and a plain node connection strategy where each

node is connected to n=2 preceding nodes, specifically

xl
i−1 and randomly xl

0 or xl
1 for simplicity. Further, nodes

directly connected to input nodes are downsampled with

stride 2 for the L
3 -th and 2L

3 -th cells. An auxiliary classi-

fier with weight 0.4 is connected to the output of the 2L
3 -th

cell for additional regularization.

Optimization Details. Following conventions [20, 39, 30],

we apply SGD with Nesterov-momentum 0.9 and weight

decay 3 · 10−5 for 250 epochs of 0.97 learning rate decay

for ImageNet. For CIFAR-10, we apply SGD with mo-

mentum 0.9 and weight decay 3 · 10−4 for 1200 epochs for

both training stages. The learning rate is initialized to 0.025

and 0.005 for the pre-training and fine-tuning stage respec-

tively. The batch size is set to 128 to fit the entire DR-

Net into one NVIDIA Titan RTX. We adopt higher struc-

tural level dropout for better regularization during training,

specifically, drop-connection linearly increased to 0.1, and

drop-branch to 0.7 for CIFAR-10. The learning rate is an-

nealed to zero with the cosine learning rate scheduler [21].

4.2. Performance Evaluation

Overall Results and Discussion. Table 1 summarizes the

overall performance of DRNets on CIFAR-10. In terms of

total training cost, DRNets take only 2.5 and 5.5 GPU train-

ing days for DRNet(S) and DRNet(M) respectively without

explicit architecture search. The training time of DRNet is

up to three orders of magnitudes less than evolution-based

NAS or RL-based NAS, thanks to the efficient end-to-end

gradient-based optimization scheme.

For inference performance, DRNets with dynamic rout-

ing considerably reduce the parameter size and FLOPs com-

pared with baseline networks. In particular, DRNet(S)-

R-0.1-T-0.8 takes 0.31M parameters and 43.82M FLOPs

on average during inference, specifically, only 13.48% and

3593

Table 1: Performance (Inference with All Branches/Dynamic Routing) of DRNets compared with representative expert-

designed, NAS-searched and dynamic inference architectures on CIFAR-10. Results marked with † are obtained by training

respective architectures with our implementation.

Architecture Test Error Params FLOPs Search Method Search Space Search Cost

(%) (M) (M) (GPU days)

ResNet-110 [8] 6.43 1.73 255.3 manual – –

DenseNet-L190-k40 [14] 3.46 25.6 9345 manual – –

ShuffleNetV2 1.5× [22]† 6.36 2.49 95.70 manual – –

MobileNetV2 1.0× [28]† 5.56 2.30 94.42 manual – –

NASNet-A [42]† 2.65 3.3 505.1 RL cell 1800

AmoebaNet-A [26]† 3.12 3.1 514.9 evolution cell 3150

ENAS [25]† 2.83 4.7 767.8 RL cell 2.2

DARTS [20] 3.00 3.3 542.0 gradient cell 1.9

ConvNet-AIG-110 [32] 5.76 1.78 410 gradient layer-wise –

SkipNet-110-HRL [33] 6.70 1.75 150.6 RL layer-wise –

MSDNet [13]† 6.82 5.44 54.35 manual – –

DRNet(S)-R-0.1-T-0.8 3.66 / 4.21 0.57 / 0.31 84.65 / 43.82 gradient layer-wise –

DRNet(M)-R-0.1-T-0.8 2.84 / 3.44 1.86 / 0.89 267.3 / 119.6 gradient layer-wise –

DRNet(L)-R-0.1-T-0.8 2.27 / 2.84 4.41 / 2.16 603.1 / 265.8 gradient layer-wise –

Table 2: Inference performance of DRNet(L) compared

with representative expert-designed, NAS-searched and dy-

namic inference architectures on ImageNet.

Architecture Test Error Params FLOPs

(%) (M) (M)

1.0 MobileNet [11] 29.4 4.2 569

ShuffleNet 2× [40] 29.1 5.0 524

NASNet0-A [42] 26.0 5.3 564
DARTS [20] 26.9 4.9 595

ConvNet-AIG-50-t-0.4 [32] 24.8 26.56 2560
SkipNet-101 [33] 27.9 26.56 2147
DRNet(L)-R-0.01-T-0.8 29.8 3.8 351

46.41% of efficient network MobileNetV2 1.0× [28] with

1.35% higher accuracy; DRNet(M)-R-0.1-T-0.8 achieves

up to 3.71x and 4.53x parameter size and FLOPs reduc-

tion compared with DARTS [20], with a minor 0.44% accu-

racy decrease; further, DRNet(L)-R-0.1-T-0.9 achieves ac-

curacy comparable to the best NAS-searched architectures

(2.27% with all branches and 2.84% with dynamic rout-

ing) while takes only 265.8M Flops, which is around half

of their inference FLOPs. Compared with other dynamic

inference networks, in particular, SkipNet-110-HRL [33]

that dynamically determines to skip each residual layer with

an RL-trained hypernetwork, and MSDNet [13] that sup-

ports inference time accuracy-efficiency trade-offs by giv-

ing predictions with intermediate features, DRNet(S)-R-

0.1-T-0.8 achieves a notably lower test error rate of 4.21%

and meanwhile much more efficient inference with only

43.82M FLOPs on average.

We note that such a significant reduction in prediction

parameter size and FLOPs can be ascribed to the adoption

of efficient operations following MobileNets and NAS, and

the fact that not all instances need an expensive architecture

to be correctly classified. Therefore, dynamic routing inputs

to only necessary branches can reduce redundant computa-

tion considerably.

Table 2 reports the performance of representative archi-

tectures and DRNets with a thresholds of 0.8 on ImageNet.

The results show that DRNet(L) obtains competitive predic-

tion performance compared with expert-designed architec-

tures and lower accuracy than NAS-searched architectures.

The lower accuracy can be largely attributed to the simple

connection topology adopted in the backbone of DRNet, as

we focus on showing the effectiveness of the proposed dy-

namic routing mechanism in reducing unnecessary compu-

tation instead of obtaining state-of-the-art accuracy.

With the dynamic routing of RouterNet, one single

model of DRNet supports accuracy-efficiency trade-offs by

simply controlling the importance threshold T during infer-

ence. In particular, DRNet(L) inference with a threshold 0.8

reduces FLOPs by 27.63% with a minor accuracy decrease,

and can further reduce FLOPs with a lower threshold. These

results show that DRNets can also support applications that

require runtime accuracy-efficiency control.

Ablation studies. We further examine the effect of the hy-

pernetworks RouterNets and regularization strength quan-

titatively in Table 3. We train DRNets without hypernet-

works (DRNet(S)-w/o-RouterNet), which increases test er-

ror by 1.12% from 3.66% to 4.78% as compared with DR-

Nets trained with Gumbel-Softmax (DRNet(S)-Gumbel-

Softmax). We also find that DRNets trained with Gumbel-

Softmax obtain noticeably lower test error compared with

DRNets train with Softmax only (DRNet(S)-Softmax).

Further, DRNet(S)-Softmax only reduces a very limited

amount of 4.32% FLOPs with dynamic routing inference.

These findings suggest that RouterNet and the Gumbel-

Softmax recalibration are essential to obtain high accu-

3594

Table 3: Inference performance of DRNet(S) with different regularization strengths. The amount of reduction compared with

the respective full networks is given in parentheses.

Architecture Test Error Params FLOPs

(%) (M) (M)

DRNet(S)-w/o-RouterNet 4.78 0.46 77.34

DRNet(S)-Softmax 4.37 0.57 84.65

→֒ DRNet(S)-Softmax-T-0.8 5.27 (+0.90%) 0.55 (-3.51%) 80.99 (-4.32%)

DRNet(S)-Gumbel-Softmax 3.66 0.57 84.65

→֒ DRNet(S)-R-0.0-T-0.8 4.07 (+0.41%) 0.33 (-42.1%) 47.91 (-43.4%)

→֒ DRNet(S)-R-0.1-T-0.8 4.21 (+0.55%) 0.31 (-45.6%) 43.82 (-48.2%)

→֒ DRNet(S)-R-0.5-T-0.8 5.85 (+2.19%) 0.20 (-64.9%) 29.28 (-65.4%)

C0 C1 C2 C3 C4 C5 C6 C7
0.0

0.2

0.4

0.6

0.8

Se
le

ct
io

n
Ra

tio

max_pool_3x3
avg_pool_3x3
skip_connect
sep_conv_3x3
sep_conv_5x5

Figure 2: Branch selection ratio for each connection with

dynamic routing during inference in a representative cell of

DRNet(S)-R-0.1-T-0.8 on CIFAR-10.

racy and efficiency during inference. Specifically, Router-

Nets enable instance-aware branch selection, and Gumbel-

Softmax makes the selection process optimizable during

training and efficient during inference. We also train DR-

Net(S) with different regularization strengths. Results show

that a larger regularization strength effectively trades off

prediction accuracy for higher efficiency. E.g., with a

regularization strength 0.5, DRNets-R-0.5-T-0.8 only takes

29.28M inference FLOPs, a reduction of 65.4% FLOPs,

while the test error increases by 1.78% compared with the

full network DRNet(S)-Gumbel-Softmax.

4.3. Visualization of Dynamic Routing

Branch Selection Ratio. We visualize in Figure 2 the av-

erage branch selection ratio of one representative cell of

DRNet(S)-R-0.1-T-0.8 with dynamic routing, which shows

the ratio of each branch being selected by RouterNets dur-

ing inference. Figure 2 confirms that the transformations

required for different input instances vary greatly. In par-

ticular, lightweight pooling and skip connection branches

are commonly selected, and thus, a considerable amount of

computation can be saved.

Qualitative Difference between Instances. Denoting in-

stances that the network is confident with in prediction as

easy instance and uncertain about as hard instance, we can

then show the cluster of easy and hard instances in Fig-

ure 3 to help understand the dynamic routing mechanism.

We find that in DRNets, the confidence of the prediction

is highly correlated to the image quality. Specifically, easy

(a) Easy Instances (b) Hard Instances

Figure 3: Visualization of easy and hard instances of model

DRNet(M)-R-0.1-T-0.8 on CIFAR-10. Easy instances are

generally clearer and brighter, while hard instances are

darker and blurry.

instances are more salient (clear with high contrast) while

hard instances are more inconspicuous (dark with low con-

trast). We then compute the accuracy and average FLOPs

of these two types of instances. Easy instances achieve

higher classification accuracy with 23.1% fewer FLOPs on

average compared to hard instances. This suggests that al-

though instances from the same dataset are generally re-

garded as i.i.d., the prediction difficulty of different in-

stances still differs greatly, and thus a sizeable amount of

computation can be reduced by dynamically cutting off un-

necessary branches for relatively easier instances.

5. Conclusion

In this paper, we present DRNets, a general architecture

framework that supports input-aware inference by dynamic

routing. Lightweight hypernetwork RouterNets are inte-

grated to dynamically produce customized architectures for

different instances so that inputs can be dynamically routed

to only necessary branches for efficiency. We also intro-

duce Gumbel-Softmax and the reparameterization trick to

the routing process, which enables tractable and effective

gradient-based training, and more importantly, extremely

efficient inference. The inference efficiency is enhanced

with the resource-aware regularization. Experimental re-

sults with ablation studies and visualizations confirm the

efficiency of the dynamic routing architecture.

3595

References

[1] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil

Naik. Accelerating neural architecture search using perfor-

mance prediction. In 6th International Conference on Learn-

ing Representations, ICLR, 2018.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In International Conference on

Machine Learning, 2018.

[3] Andrew Brock, Theodore Lim, James M. Ritchie, and

Nick Weston. SMASH: one-shot model architecture search

through hypernetworks. In 6th International Conference

on Learning Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track Proceed-

ings, 2018.

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

7nd International Conference on Learning Representations,

ICLR, 2019.

[5] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

policies from data. arXiv preprint arXiv:1805.09501, 2018.

[6] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv

preprint arXiv:1708.04552, 2017.

[7] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-

ing both weights and connections for efficient neural net-

work. In Advances in Neural Information Processing Sys-

tems 28: Annual Conference on Neural Information Process-

ing Systems 2015, December 7-12, 2015, Montreal, Quebec,

Canada, pages 1135–1143, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[9] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.

Distilling the knowledge in a neural network. CoRR,

abs/1503.02531, 2015.

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. ICCV, 2019.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. MobileNets: efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017.

[12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018.

[13] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q Weinberger. Multi-scale

dense networks for resource efficient image classification. In

6th International Conference on Learning Representations,

ICLR, 2018.

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[15] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,

Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and

<1mb model size. ICLR, 2017.

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-

rameterization with gumbel-softmax. In 5th International

Conference on Learning Representations, ICLR, 2017.

[17] Diederik P. Kingma and Max Welling. Auto-encoding vari-

ational bayes. In 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, April 14-

16, 2014, Conference Track Proceedings, 2014.

[18] Louis Kirsch, Julius Kunze, and David Barber. Modular net-

works: Learning to decompose neural computation. In Ad-

vances in Neural Information Processing Systems 31: An-

nual Conference on Neural Information Processing Systems

2018, NeurIPS, pages 2414–2423, 2018.

[19] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), 2018.

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

differentiable architecture search. In 7th International Con-

ference on Learning Representations, ICLR, 2019.

[21] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient

descent with warm restarts. In 5th International Conference

on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings, 2017.

[22] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European Conference on

Computer Vision (ECCV), 2018.

[23] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The

concrete distribution: A continuous relaxation of discrete

random variables. In 5th International Conference on Learn-

ing Representations, ICLR, 2017.

[24] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In Computer Vi-

sion - ECCV 2016 - 14th European Conference, Amsterdam,

The Netherlands, October 11-14, 2016, Proceedings, Part

VIII, pages 483–499, 2016.

[25] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In Proceedings of the 35th International Conference

on Machine Learning, ICML, 2018.

[26] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the AAAI conference on artificial

intelligence, volume 33, pages 4780–4789, 2019.

[27] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer.

Routing networks: Adaptive selection of non-linear func-

tions for multi-task learning. In 6th International Conference

on Learning Representations, ICLR, 2018.

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

3596

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[29] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy

Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean.

Outrageously large neural networks: The sparsely-gated

mixture-of-experts layer. In 5th International Conference on

Learning Representations, ICLR, 2017.

[30] Yao Shu, Wei Wang, and Shaofeng Cai. Understanding ar-

chitectures learnt by cell-based neural architecture search. In

8th International Conference on Learning Representations,

ICLR, 2020.

[31] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios

Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-

culescu. Single-path nas: Designing hardware-efficient con-

vnets in less than 4 hours. arXiv preprint arXiv:1904.02877,

2019.

[32] Andreas Veit and Serge J. Belongie. Convolutional networks

with adaptive inference graphs. In Computer Vision - ECCV,

pages 3–18. Springer, 2018.

[33] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and

Joseph E Gonzalez. Skipnet: Learning dynamic routing in

convolutional networks. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 409–424,

2018.

[34] Ronald J. Williams. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. Machine

Learning, 8:229–256, 1992.

[35] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In

So Kweon. Cbam: Convolutional block attention module.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 3–19, 2018.

[36] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,

pages 10734–10742, 2019.

[37] Lingxi Xie and Alan L. Yuille. Genetic CNN. In IEEE

International Conference on Computer Vision, ICCV 2017,

Venice, Italy, October 22-29, 2017, pages 1388–1397, 2017.

[38] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-

ing He. Exploring randomly wired neural networks for im-

age recognition. CoRR, abs/1904.01569, 2019.

[39] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

SNAS: stochastic neural architecture search. In 7th Interna-

tional Conference on Learning Representations, ICLR, 2019.

[40] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6848–6856, 2018.

[41] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In 5th International Conference on

Learning Representations, ICLR, 2017.

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018.

3597

