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Abstract

Skeleton-based action recognition has attracted research

attentions in recent years. One common drawback in cur-

rently popular skeleton-based human action recognition

methods is that the sparse skeleton information alone is

not sufficient to fully characterize human motion. This lim-

itation makes several existing methods incapable of cor-

rectly classifying action categories which exhibit only sub-

tle motion differences. In this paper, we propose a novel

framework for employing human pose skeleton and joint-

centered light-weight information jointly in a two-stream

graph convolutional network, namely, JOLO-GCN. Specif-

ically, we use Joint-aligned optical Flow Patches (JFP)

to capture the local subtle motion around each joint as

the pivotal joint-centered visual information. Compared

to the pure skeleton-based baseline, this hybrid scheme ef-

fectively boosts performance, while keeping the computa-

tional and memory overheads low. Experiments on the

NTU RGB+D, NTU RGB+D 120, and the Kinetics-Skeleton

dataset demonstrate clear accuracy improvements attained

by the proposed method over the state-of-the-art skeleton-

based methods.

1. Introduction

Human recognition [31, 28, 33, 8] is an active yet chal-

lenging task in the field of computer vision. Recently,

with the advancement in depth sensors such as Microsoft

Kinect and human pose estimation technology [4, 39], ob-

taining accurate human pose data is becoming much eas-

ier. Skeleton-based human action recognition has attracted

a lot of attentions and made significant progress over the

last decade. Human skeleton motion sequences retain use-

ful high-level motion signal by eliminating the redundant

information in the RGB video clips. Compared with the

original RGB video clip, a skeleton sequence, with the hu-
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(a) (b)

Figure 1. The motivations of the proposed method. (a) Sample

frames in the “shake head” sequence from NTU RGB+D [22],

where the skeletal joints of the head hardly capture the local sub-

tle movements. (b) Different actions with similar skeleton se-

quences. Sample frames are taken from “taking a selfie” (top row)

and “pointing to something” (bottom row).

man body joints in the form of 2D or 3D coordinates, is

sparse. Thus, neural networks designed for skeleton-based

action recognition can be lightweight and efficient. Recent

methods [36, 13, 27, 12, 25, 26, 32, 10, 23, 24, 7, 15, 34] fur-

ther exploit a variety of deep neural networks in the attempt

to fully excavate the internal characteristics of dynamic hu-

man skeleton sequences.

As the input of a single-modal action recognition net-

work, skeleton sequences can effectively describe the global

human body motion. However, the local subtle motion cues

are lost in the process of extracting human poses from video

frames. Due to its extreme sparseness, a skeleton sequence

can hardly capture subtle features in human motion. There

are obvious disadvantages in recognizing human action re-

lying solely on skeleton sequences.

Firstly, for action categories mainly characterized by lo-

cal subtle movements, such as “shaking head” (Figure 1(a)),

the difference between the skeletons extracted from two

successive frames are so subtle that it is hardly useful for

describing such actions. The lack of effective representation

makes it more challenging for the network to predict related

behavioral categories. Moreover, such local subtle move-
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ments are easily obscured by the noisy pose estimation,

when the body movement of the action is weak. Quantita-

tively, in regard to the actions such as “reading” and “writ-

ing”, the performance of the skeleton-based single-modal

methods seems to have encountered a bottleneck due to the

aforementioned drawbacks.

Secondly, skeletons alone may not be as distinctive in

describing certain action categories. For instance, as shown

in Figure 1(b), “pointing to something” and “taking a selfie”

have very similar skeleton sequence representations. Thus

these categories are easily confused with each other by a

skeleton-based single-modal method.

There exist methods that use multi-modal sources to

augment skeleton information with some additional inputs,

such as RGB features, depth maps, joint heat-maps, for ac-

tion recognition [5, 20, 9, 2, 17, 18, 6, 1, 40, 35]. By in-

troducing such visual information which contains rich mo-

tion information both in global and local domains, this kind

of multi-modal methods can describe human body motion

more completely, and help the neural network to recog-

nize human actions better. However, as the complexity of

the input increases, the number of network parameters and

the computing resource consumption increase substantially

compared to the single-modal counterparts.

To move beyond such limitations, we propose to aug-

ment the skeleton with the light-weight local visual infor-

mation surrounding skeletal joints in the form of Joint-

aligned optical Flow Patches (JFP). Considering the joint

coordinates as the anchors, the most relevant motion cues of

the human body can be located in input images. We extract

such most relevant motion cues around each human joint

from the video as JFP, and keep it light-weight by removing

the redundant background information.

After a simple format conversion procedure, a JFP se-

quence can be represented as sparsely as the skeleton se-

quence. This locally dense but globally sparse representa-

tion makes it possible to capture the local subtle motion of

human body movement, while keeping the neural network

light-weight. The proposed JFP sequence encodes local

visual cues with a kinetically meaningful structure inher-

ited from the human pose skeleton. Therefore, same as the

skeleton sequence, JFPs can be aggregated by very sparse

graph connections via a GCN formulation. In this paper,

we propose a two-stream GCN architecture, JOLO-GCN,

to fuse local motion information from a JFP sequence with

global motion information from a skeleton sequence.

To demonstrate the effectiveness of our proposed

method, extensive experiments are conducted on three pop-

ular large-scale human action recognition datasets, namely,

NTU-RGB+D [22], NTU RGB+D 120 [14] and Kinetics-

Skeleton [5, 36]. Our method outperforms state-of-the-art

skeleton-based methods on these datasets. The main contri-

butions in this paper are summarized as follows:

• We propose a novel scheme to represent the visual

information surrounding each skeletal joint as JFP,

which contains rich local subtle body motion cues in

a relatively sparse format.

• We demonstrate that our JOLO-GCN which jointly

uses the local motion information from a JFP sequence

with the global motion information from a skeleton se-

quence, gains significant accuracy improvements com-

pared with the single-modal baselines.

• Extensive experiments are conducted on three large-

scale human action recognition datasets. Our method

obtains the state-of-the-art results on these datasets.

2. Related Work

In this section, we briefly review the approaches that

have utilized human skeletons as a key information source

for action recognition. These approaches can be di-

vided roughly into single-modal skeleton-based methods

and multi-modal skeleton-based methods.

2.1. SingleModal SkeletonBased Methods

Taking only the skeleton data as the input for the hu-

man action recognition task, several single-modal meth-

ods [36, 13, 27, 12, 25, 26, 32, 10, 23, 24, 7, 15] have been

proposed. These methods are usually light-weight and com-

putationally efficient.

Graph convolutional networks (GCN) use a general and

effective framework for learning representation of graph

structured data. Various GCN variants [24, 36, 25, 12, 26]

have achieved the state-of-the-art results on skeleton-based

action recognition. Yan et al. proposed ST-GCN [36],

a generic graph-based formulation for modeling dynamic

skeletons, which can capture the patterns embedded in the

spatial configuration of the joints as well as their temporal

dynamics. The topology of the graph employed in ST-GCN

is fixed and defined according to the human skeletal struc-

ture. Thus, it is not guaranteed to be optimal flexibly for

recognizing specific actions. In the attempt to address this

drawback, adaptive graph CNNs [25, 12, 24], which can

adaptively learn the graph topology, are used for automat-

ically inferring spatial dependency among pose joints. In

AS-GCN [12], the actional links (A-link) is inferred in a

data-driven manner to capture the latent dependencies be-

tween any pose joints. In 2S-AGCN [25], three parts –

a fixed physical structure graph, a data-dependent atten-

tion graph and a global learned graph – are designed in

the adjacency matrix of an adaptive graph, which increase

the model flexibility and also the generality. In addition,

the second-order information of joint coordinates (namely

”Bones”) is aggregated together with the “Joints” as a par-

allel source input for providing more motion cues.

The RNN and LSTM structures are effective for ana-

lyzing time series of streaming data. Different methods

2736



based on a RNN or LSTM framework are explored in re-

cent works [7, 13, 26, 27, 32, 15]. In IndRNN [13], the

neurons in the same layer are independent of each other,

which has great stability against gradient vanishing and ex-

ploding. Si et al. [27] proposed SR-TSL, which utilizes a

LSTM module in series with GCN for spatial reasoning and

temporal stack learning. AGC-LSTM [26] applies a graph

convolution operator to replace the fully connected operator

within LSTM, so as to explore the co-occurrence relation-

ship between spatial and temporal domains.

Since the skeleton input is sparse, these single-modal

skeleton-based methods are advantageous in terms of com-

putational complexity and the network scale. However,

subtle motion characteristics that cannot be well captured

by skeleton dynamics remain challenging for single-modal

skeleton-based networks to learn.

2.2. MultiModal SkeletonBased Methods

Multi-modal approaches are widely used in the field of

action recognition [5, 20, 9, 2, 17, 18, 6, 1, 40, 35]. Aug-

menting data sources, such as RGB images, optical flow,

depth maps, joint heat-maps, and pose skeletons, provide

richer semantic cues for neural networks to infer the human

action in the scene. Since a comprehensive literature re-

view is beyond the scope of this paper, here we only focus

on skeleton-based multi-modal methods.

The chained multi-stream network [40] computes and in-

tegrates several important visual cues in a Markov chain

model which adds complementary cues successively. The

C3D architecture [30] is used as the base architecture of

the multi-stream network. Hu et al. [9] proposed a novel

deep bilinear framework for learning multi-modal temporal

features. Multi-modal inputs include RGB images, depth

maps, and skeleton sequences. Note that the depth and

RGB input utilized in this work [9] are image patches

aligned with the skeletal joints. Luvizon et al. [20] pro-

posed a multi-task deep architecture to perform 2D and 3D

pose estimation jointly with action recognition. The idea is

to aggregate image visual features, joint probability maps

and the estimated pose sequence to infer the human ac-

tion in the recognition module. Joint heat-maps are utilized

in [17, 18, 6] to augment the sparse skeleton information.

High-dimensional heat-map sequences are compressed in

different representations. Additional motion cues might be

inferred from such probabilistic representations for recog-

nizing action.

Despite the benefits of bringing more cues to facilitate

the action recognition task, these multi-modal approaches

can only handle small temporal windows due to the sig-

nificant amount of network parameters and computing re-

sources required.
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t
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t+d
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Figure 2. The Joint-aligned optical Flow Patches (JFP) estimation

from two successive frames with corresponding 2D pose joints. (b)

Patches centered around body joints obtained for (a) a successive

frame pair are first cropped to form (c) JAP pairs. (d) Residual op-

tical flow is estimated from each JAP pair, followed by zero-mean

normalization to obtain the corresponding (e) JFP. Noted that the

zero-mean normalization is applied for eliminating the influence

of joint localization imprecision on the joint alignment.

3. Method

Given a video sequence, we denote the image frames

as I = {It ∈ R
H×W×3 | t = 1, ..., T}, where H is

the height of the video frame, and W denotes the frame

width. The corresponding skeleton sequence containing the

2D/3D coordinates of K joints in all T frames, is denoted as

J = {J t
k | k = 1, ...,K; t = 1, ..., T}. We first use JFP to

augment the 2D/3D pose skeleton sequence, and then use

GCN for feature embedding and learning.

3.1. JointAligned Optical Flow Patches (JFP)

As analyzed in the introduction, the sparse skeleton in-

formation alone is not sufficient to fully characterize human

motion. In the attempt to address this limitation, we treat

the human joint coordinates as anchor points in the image,

and explicitly describe subtle motion cues corresponding to

these locations in the form of optical flow patches.

Specifically, a local square-shaped patch W t
k is obtained

for each joint J t
k in frame It by a joint-centered (w.r.t. the

2D coordinates of the joint) cropping operation:

W t
k = Crop(It, J t

k, l) , (1)

where Crop(·) denotes the joint-centered cropping oper-

ation, and l is a custom parameter that denotes the side

length of the cropped patch W t
k. We term W t

k as Joint-

centered Appearance Patch (JAP), and the corresponding

JAP sequence for the skeleton sequence J is denoted by

W = {W t
k | k = 1, ...,K; t = 1, ..., T}.
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It is clear that the appearance of body parts can be ex-

plicitly captured in JAPs. In addition, a JAP sequence also

presents the local subtle motion of each body part. Intu-

itively, optical flow explicitly reflects the dense motion field

between successive video frames, and is a more effective

representation for subtle motion cues. Motivated by this, we

propose to estimate the optical flow between successive JAP

pairs of each body joint to obtain the Joint-aligned optical

Flow Patch (JFP) (see Figure 2). The JFP sequence corre-

sponding to J is denoted as F = {F t
k | k = 1, ...,K; t =

1, ..., T}.

Unlike the conventional dense optical flow, JFP only fo-

cuses on capturing the local subtle motion. For a clear

description of the local motion field captured in JFP, we

decompose the general motion field between consecutive

frames as follows. As illustrated in Figure 3(a), an object

(or a body part concerned in this work) moves from bottom-

left to top-right between two successive video frames It and

It+d, where d denotes a temporal interval. In this process,

the object may undergo translation, rotation and deforma-

tion. The motion vector Uf (p) of the matching pixels p and

p′ can be obtained by estimating the conventional optical

flow between these two full frames. In fact, the global dis-

placement of the object can be represented simply as the

movement of the object center, i.e., a motion vector Vj(c)
from the object center location c to its counterpart c′.

After center-aligning the JAP pairs W t and W t+d in

Figure 3(b), the global displacement is actually eliminated.

When computing optical flow from the JAP pair, the result-

ing residual motion field Ur in the JFP F t as shown in Fig-

ure 3(c) only contains subtle local motion such as rotation

and deformation. Based on the local motion field Ur and the

global displacement Vj(c) by differencing the correspond-

ing joints’ coordinates, the full motion Uf (p) at pixel p can

be approximated as follows:

Uf (p) ≈ Vj(c) + Ur(p) . (2)

Around an object (or a body part concerned in this work),

Eqn. (2) gives an approximated expression on the relation-

ship of the residual local motion field Ur captured in JFP

with the full motion field Uf in the conventional optical

flow and the global displacement vector Vj(c). Please note

that JFP is estimated from the JAP pair directly, but not

computed as the approximated expression in Eqn. (2). The

residual local motion field Ur captured in JFP is the key

information used in our method for action recognition.

We observe that the proposed JFP representation has two

nice properties. Firstly, JFP provides only local subtle mo-

tion cues. As discussed above, the motion of human body

parts can be represented as the global joint displacement

plus the local subtle motion. The information captured by

JFP is orthogonal to that of skeleton coordinates, which

reflect the global joint displacement. Secondly, compared

(a)

(c)

c 
p 

l

l

p

cl

p

Ct+d

p 

p

Ct+d

p 

Vj

Uf
(p)

(c)

Ur 
(p)

l

F t

(  )b

W
t

W
t+d

I t  I t+d

Figure 3. Schematic diagram of Joint-aligned optical Flow Patch

(JFP) for two successive frames. (a) The object motion Uf from

frame I
t to frame I

t+d, including translation, rotation and defor-

mation. (b) The corresponding JAPs: W
t and W

t+d. (c) The

alignment of two JAPs and the local subtle motion field Ur , which

is computed to generate JFP F
t.

with general dense visual data, a JFP sequence encodes vi-

sual cues with a kinetically meaningful structure inherited

from the human pose skeleton, namely, JFPs have a one-to-

one correspondence with multiple skeletal joints. Although

there are alternative visual features with a similar property,

such as human pose heat-maps. Their data resolution is rel-

atively large or they need to be learned by a neural network

with substantially more parameters.

3.2. Graph Convolutional Networks (GCN)

In order to better capture the kinetically structured prop-

erty encoded in the JFP sequences, we adopt GCN as our

backbone network architecture. Given a K joints skeletal

graph with a node collection of V = {vk | vk = Jk, k =
1, ...,K}, the neighborhood of a node vi is defined as N (vi)

= {vj | d(vi, vj) ≤ D}, where d(vi, vj) is the shortest path

length from vj to vi. In a ST-GCN network setup [36],

the spatial graph convolution unit is the key component,

which is constructed to capture the spatial feature among

joints. More specifically, given the graph adjacency matrix

A ∈ R
K×K , A(j, i) = w if vj ∈ N (vi) and A(j, i) = 0

otherwise. The adjacency matrix is normalized using a de-

gree matrix Λ as:

Λ(i, i) =
K∑

j=1

A(i, j); Anorm = Λ−
1

2AΛ−
1

2 . (3)

For the spatial graph convolution can be written in terms

of the adjacency matrix as follows:

Yout = σ(W (Xin(A
norm ⊙M))) , (4)

where Yout ∈ R
dout×K , Xin ∈ R

din×K and d denotes

the feature dimension. M denotes a trainable mask for

the adaptive re-weighting on the Anorm, and ⊙ denotes the
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Waving hand

GCN for P-branch

GCN for S-branch

Video sequence

with 2D poses JFP sequence

Predicted scores 

Action class

ŷ

Skeleton sequence

Figure 4. Framework of the proposed JOLO-GCN. A two-stream GCN-based network architecture is used to process the skeleton sequence

(S-branch) and the JFP sequence (P-branch) independently. The predicted scores from these two branches are merged into the final

predicted scores for each action class by linear blending.

Hadamard product. The operation of (Xin(A
norm ⊙M))

guarantees the features corresponding to different skeletal

joints to interact by following the skeleton topology given

by A. W denotes a 1 × 1 convolution layer to expand the

feature dimension and σ(·) is a non-linear activation layer

(e.g., ReLU). We refer interested readers to [36, 21] for a de-

tailed discussion on GCNs for skeleton-based action recog-

nition and GCNs in the context of the spatial graph theory.

3.3. JOLOGCN

The framework of JOLO-GCN is illustrated in Figure 4.

We use a two-stream network architecture for process-

ing the skeleton sequence and the JFP sequence indepen-

dently. The skeleton sequence J is fed into the first GCN

branch (called S-branch) and the prediction scores are gen-

erated subsequently. In parallel, the precomputed JFP se-

quence F is fed into the second GCN branch (called P-

branch). We train S-branch and P-branch independently.

The cross-entropy loss L is used for the training:

L = −yT log(ŷ) (5)

where y denotes a one-hot label vector of the ground-truth

action class and ŷ denotes the predicted scores. The final ac-

tion class prediction scores are obtained by linear-blending

the predicted scores from the two GCN branches.

3.4. Data Format Conversion of JFP

A RGB video sequence I takes on a four-dimensional

format of T×H×W×3. Compared with the original video

sequence, the skeleton sequence J is in a smaller four-

dimensional format of T×K×3×N, with the dimension N

representing the maximum number of persons that may ap-

pear in the scene. The magnitude of K×N is much smaller

than H×W. As a consequence, though the scale of the neu-

ral network for a video sequence would be large usually, the

skeleton sequence can be processed with some lightweight

networks, such as RNNs or GCNs. Based on the earlier dis-

cussion, the proposed JFP sequence is considered as an or-

thogonal cue to the skeleton sequence. In terms of the data

format, the JFP sequence is designed to hold the sparsity

property as the skeleton sequence. This assures that it can

be processed in a lightweight network accompanied with

the skeleton sequence. Therefore, we downsample each

JFP using a bilinear interpolation function from the reso-

lution of l×l to a smaller one of µ×µ. Then, we convert the

data format of a JFP sequence similar to that of the skele-

ton sequence. As the format of the skeleton sequence is

T×K×3×N, the JFP sequence (T×K×µ×µ×2×N) is con-

verted to a four-dimensional format of 2T×K×µ2×N. This

design choice keeps a good trade-off between the strength

of the JFP representation and the computational complexity.

4. Datasets and Implementation Details

4.1. Datasets

We evaluate the performance of our method on three

benchmark skeleton-based action recognition datasets.

NTU RGB+D: “NTU RGB+D” [22] is a widely-used

benchmark dataset in the field of skeleton-based human ac-

tion recognition. In this dataset, 56,880 video samples cor-

responding to 60 action classes are provided. All samples

are performed by 40 distinct performers and recorded in 17

different indoor scene setups by three cameras from differ-

ent views. The provided data of each sample include an

RGB video, a 3D human skeleton sequence, a depth map

sequence and a IR video. Two official evaluation protocols

are adopted in our experiments, i.e., Cross-subject (X-sub)

and Cross-view (X-view).

NTU RGB+D 120: “NTU RGB+D 120” is the extended

version of the NTU RGB+D dataset by adding another 60

more challenging classes with another 57,600 video sam-

ples. All video samples are performed by 106 distinct per-

formers in a wide range of age distribution, and recorded in

32 different indoor scene setups by three cameras from dif-

ferent views. Two evaluation protocols are recommended:

Cross-subject (X-sub) and Cross-setup (X-setup).
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Method Pose Visual
NTU

X-sub (%)

NTU

X-view (%)

NTU 120

X-sub (%)

NTU 120

X-setup (%)

KS

Top-1 (%)

KS

Top-5 (%)

GCA-LSTM[16] X - 76.1 84.0 61.2 63.3 - -

SkeleMotion[3] X - 76.5 84.7 67.7 66.9 - -

Chained Net[40] X X 80.8 - - - - -

ST-GCN[36] X - 81.5 88.3 - - 30.7 52.8

Ind-RNN[13] X - 81.8 88.0 - - - -

SR-TSL[27] X - 84.8 92.4 - - - -

Deep Bilinear[9] X X 85.4 90.7 - - - -

2D/3D pose[20] X X 85.5 - - - - -

AS-GCN[12] X - 86.8 94.2 - - 34.8 56.5

2S-AGCN[25] X - 88.5 95.1 83.7* 85.8* 36.1 58.7

SGN[38] X - 89.0 94.5 79.2 81.5 - -

AGC-LSTM[26] X - 89.2 95.0 - - - -

MS-G3D[19] X - 91.5 96.2 86.9 88.4 38.0 60.9

Posemaps[18] X X 91.7 95.3 64.6 66.9 - -

Backbone Pose Visual X-sub(%) X-view(%) X-sub(%) X-setup(%) Top-1(%) Top-5(%)

Ours
ST-GCN X X 90.4 95.6 - - 33.7 57.6

2S-AGCN X X 93.8 98.1 87.6 89.7 38.3 62.3

Table 1. Quantitative comparisons of the validation accuracy on the NTU RGB+D, NTU RGB+D 120 and Kinetics-Skeleton datasets (re-

ferred to as “NTU”, “NTU 120”, and “KS”, respectively). The proposed JOLO-GCN is built and evaluated over two different GCN-based

backbones (ST-GCN [36] and 2S-AGCN [25]), and we report both end results accordingly. The second and third columns (“Pose” and

“Visual”) indicate whether a method under evaluation utilizes skeleton and/or visual data (e.g. images, depth maps, and optical flow),

respectively. * denotes the results obtained using the released codes.

Kinetics-Skeleton: Kinetics [5] is a large-scale dataset

for action recognition. It contains around 300,000 video

clips. The actions cover 400 classes ranging from daily ac-

tivities, sports scenes, to complex actions with interactions.

A related dataset named Kinetics-Skeleton [36] is generated

for skeleton-based action recognition. Adopting the public

OpenPose toolbox [4], the authors estimated the 2D pose of

18 joints for every frame of the video clips, and also attained

each joint’s estimation confidence. Following the evalua-

tion method in [36, 25, 24, 12], the dataset is divided into a

training set (240,000 samples) and a validation set (20,000

samples). Top-1 and Top-5 accuracies are reported.

4.2. Implementation Details

Implementing JFP: In order to improve experimental

efficiency, the JFP sequences are estimated from video se-

quences and 2D pose sequences in advance. Following the

setting of [17, 18], we use the OpenPose toolbox [4] to ex-

tract the corresponding 2D pose sequence (i.e., 18 joints)

from videos. We remove the joints of eyes and ears to elim-

inate the redundancy of the patch overlap between adjacent

joints. As a result, a total of 14 joints are chosen for pro-

cessing the corresponding JFPs. In this work, we use the

classic TV-L1 algorithm [37] for the optical flow estimation

due to its simplicity and effectiveness.

For the NTU RGB+D and NTU RGB+D 120 dataset, the

scale of human bodies in the scene is relatively stable, so the

patch size l× l of JFP is empirically set to a fixed value i.e.,

l = 32. For the Kinetics-Skeleton dataset, because the scale

of the human body has a large variation, we use the average

bone length of each sample to define the patch size. Finally,

all of these JFPs are downsampled to a smaller resolution of

µ× µ, with µ = 8 in our experiment.

Two-Stream GCN-Based Network: In order to fully

verify the effectiveness and general compatibility of the

JOLO-GCN, we opt for two different GCN-based back-

bones in our experiments: 1) ST-GCN [36], and 2) 2S-

AGCN [25]. In our algorithm design, the joint number of

the JFP sequences is 14, while the skeleton sequences use

a different 25-joint skeleton structure. Therefore, different

graph structures following the respective skeleton structures

are constructed for the S-branch and the P-branch.

In the S-branch, an input skeleton sequence is required

to contain 300 frames in the original settings of ST-GCN

and 2S-AGCN. In the P-branch, the input JFP sequences

are downsampled by a temporal downsampling factor of 2,

and the sequence length of the corresponding JFP is 64. The

JFP sequence (T×K×µ×µ×2×N = 64×14×8×8×2×2) is

converted to 2T×K×µ2×N = 128×14×64×2.

The predicted scores from the two branches are added

with blending weights to obtain the final prediction. The

scores from the S-branch and the P-branch are merged by

linear-blending with the weights of 0.5 and 0.5.
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Backbone Data used X-sub (%)

Joints (S-branch) 81.5

ST-GCN JFP (P-branch) 86.6

Joints + JFP 90.4

Joints 86.6

Bones 86.2

2S-AGCN Joints + bones (S-branch) 88.5

JFP (P-branch) 88.1

Joints + bones + JFP 93.8

Table 2. Comparisons of the accuracy obtained by the S-branch,

the P-branch and their combination on the NTU RGB+D dataset.

5. Experiments and Analysis

5.1. Experimental Results

We evaluate the proposed JOLO-GCN on the NTU

RGB+D, NTU RGB+D 120, and Kinetics-Skeleton datasets

and compare our method with the state-of-the-art skeleton-

based action recognition methods. As shown in Table 1, our

best model based on the 2S-AGCN backbone obtains action

classification accuracy of 93.8% and 98.1% for the X-sub

and X-view protocols on NTU RGB+D, 87.6% and 89.7%

of classification accuracy for X-sub and X-setup protocols

on NTU RGB+D 120 dataset, and 38.3% and 62.3% of

Top-1 and Top-5 accuracy on Kinetics-Skeleton. These re-

sults validate the new state-of-the-art accuracy achieved by

the proposed JOLO-GCN on the three benchmark datasets.

In addition, when compared with the original GCN-based

baselines, i.e., ST-GCN [36] and 2S-AGCN [25], our pro-

posed method integrated with the JFP stream significantly

improves their accuracy by 8.9% and 5.3% on the NTU

RGB+D X-sub protocol, respectively.

It is clear to see that our method outperforms all the

single-modal methods [10, 29, 36, 13, 27, 11, 12, 25, 26, 24]

owing to the introduced JFP stream, which provides useful

local motion information. Meanwhile, the proposed JOLO-

GCN also outperforms all the multi-modal methods, which

utilize skeleton and/or visual data, such as human pose heat-

map [17, 18], depth maps [9], and optical flow [40].

5.2. Ablation Study

In this subsection, we examine the proposed JFP stream

in more depth, and in particular the performance improve-

ment brought by JFP and its advantage over other possible

modalities for action recognition.

Comparison between S-branch and P-branch: As

shown in Table 2, when ST-GCN is used as the GCN back-

bone, the result of the P-branch using the JFP input is better

than that of the S-branch using the skeleton sequence. Af-

ter combining two branches, the final recognition accuracy

is improved by 8.9% over the S-branch. When examined

on a stronger GCN backbone, 2S-AGCN, the proposed JFP

stream again shows its great value in improving the recogni-

Modality 2S-AGCN (%) ST-GCN (%)

JAP 83.8 81.1

JDP 85.9 82.9

JFP 88.1 86.6

Skeleton 88.5 81.5

Skeleton + JAP 92.0 87.7

Skeleton + JDP 92.1 88.2

Skeleton + JFP 93.8 90.4

Skeleton + JFP + JAP 93.9 91.2

Skeleton + JFP + JDP 94.1 91.8

Table 3. Comparisons of the accuracy obtained by different modal-

ities and their combinations evaluated on the NTU RGB+D dataset

using the X-sub protocol. When different modalities are com-

bined, their respective weights are set equal.

tion accuracy. Specifically, our proposed P-branch achieves

an X-sub accuracy of 88.1%, which is comparable to 88.5%

obtained by the S-branch (using joints and bones). Com-

bining the two complementary branches together is benefi-

cial and leads to a much better recognition result (93.8%)

than that of each single branch alone. The accuracy gain

brought by the JFP stream is around 5.3% over the orig-

inal S-branch. To put this in context, merging the “Joints”

stream and the “Bones” stream yields only an accuracy gain

of less than 2% in 2S-AGCN.

Evaluation of the JFP Gain over Each Action Class:

To appreciate the accuracy gain by including the JFP stream

in more depth, we compare the performances of differ-

ent branches on every action category. As shown in Fig-

ure 5, the performances of the single S-branch on 2S-

AGCN (“joint+bone”) backbone encounter an accuracy bot-

tleneck in the actions characterized primarily by local subtle

movements, due to the limitations of the sparse skeleton se-

quence discussed in Section 1. After merging S-branch and

P-branch, these actions mainly characterized by local sub-

tle movements, such as “clapping”(#10), “reading”(#11),

“writing”(#12), “play with phone/tablet”(#29), and “type

on a keyboard”(#30), have gained significant accuracy im-

provements, i.e., 11.3%, 16.1%, 19.8%, 6.9%, and 19.2%

for the experiments using the 2S-AGCN backbone, respec-

tively. This per-action class recognition accuracy compar-

ison shows clearly that the proposed JFP sequences effec-

tively capture the local subtle motion information and help

the network to make more accurate recognition.

Comparison of Using Different Patch Modalities: In

fact, it remains intriguing to find out whether other patch

modalities can possibly be better options over JFP, such as

JAP or JDP (Joint-centered Depth Patches). To this end, we

conduct a series of experiments to evaluate different patch

modalities, and their combinations with the input skeleton

stream. The results are reported in Table 3.

A few key observations can be found from Table 3. First,

when a single modality is used for GCN-based action recog-
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Figure 5. Class-by-class action recognition accuracy comparisons of the S-branch, P-branch and their combinations evaluated with the

X-sub protocol on the NTU RGB+D dataset.

Method Parameters GPU Memory Consumption Runtime FLOPS

ST-GCN 3.10M 341MB 93ms 16.3G

2S-AGCN 6.94M 704MB 138ms 37.3G

JOLO-GCN ( ST-GCN+P-branch) 3.10+3.10M 341+353MB 93+22ms 16.3+3.9G

JOLO-GCN ( 2S-AGCN+P-branch) 6.94+3.48M 704+468MB 138+29ms 37.3+4.5G

Table 4. Comparisons of the proposed JOLO-GCN and baselines in parameter, runtime, and resource consumption. The above statistics

report the average values for one forward inference on a Tesla K80 GPU. FLOPS denotes floating-point operations per second.

nition, the input skeletons or the proposed JFP stream tend

to give better accuracies than JAP or JDP, as they capture

motion dynamics more important and direct. Second, if one

additional patch modality is added to complement the orig-

inal skeleton stream, JFP is again the best choice over JAP

and JDP, leading to the recognition accuracy of 93.83% on

the 2S-AGCN backbone. Such a combination actually cor-

responds to our proposed method evaluated earlier in Ta-

ble 1. Third, it can be found that including one more extra

patch modality besides JFP at the cost of increased network

complexity is not necessary, because the accuracy gain is

quite marginal, e.g., 94.1% (Skeleton + JFP + JDP) versus

93.8% (Skeleton + JFP). Also, depth maps are not always

available as the input to extract the JDP stream from.

Runtime Analysis: The following discussions are con-

ducted using the NTU RGB+D dataset. In our pro-

posed method, the JFP pre-processing includes loading full-

HD video, temporal downsampling, joint-centered crop-

ping of image patches (JAP), and TV-L1 optical flow es-

timation for computing JFP. The original videos of NTU

RGB+D have 80 frames on average, and we downsampled

them by a temporal factor of 2. Our JFP pre-processing

takes about 1.5 seconds for a video averagely on a lap-

top with a Intel i5-7300HQ CPU without using GPUs.

Our method using the 2S-AGCN backbone (three streams:

“Joints”+“Bones”+“JFP”) takes about 167 ms for a full pre-

diction using a Tesla K80 GPU.

Model Complexity Analysis: Table 4 shows the com-

parison of JOLO-GCN and baseline methods (ST-GCN

and 2S-AGCN) in model complexity. Compared with the

baseline methods, the computational complexity introduced

by the P-branch is relatively low. The difference of the

joints numbers and frames numbers between skeleton se-

quences (25 joints, 300 frames) and JFP sequence (14

joints, 64 frames) makes P-branch fast computationally

compared with both baselines.

6. Conclusion

In this paper, we proposed a novel approach of represent-

ing the visual information surrounding each skeletal joint as

Joint-aligned optical Flow Patches (JFP), effectively captur-

ing the useful local subtle body motion cues for skeleton-

based action recognition. The derived JFP sequence has

the advantage of a compact representation and inherits a ki-

netically meaningful structure from the human pose skele-

ton. Based on the proposed JOLO-GCN framework, we

jointly exploit local subtle motion cues from the JFP se-

quence and global motion cues from the skeleton sequence

for action recognition. The proposed method obtains state-

of-the-art results on the three large-scale action recognition

datasets. Our experiments further show that when applied

on two different GCN-based backbones (ST-GCN [36] and

2S-AGCN [25]), the proposed method improves both of

them by large performance margins. This validates the gen-

eralization ability of applying our scheme on different light-

weight single-modal skeleton-based networks.
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Cheng-Lin Liu. Action recognition by dense trajectories. In

CVPR 2011, pages 3169–3176. IEEE, 2011.

[32] Hongsong Wang and Liang Wang. Beyond joints: Learning

representations from primitive geometries for skeleton-based

action recognition and detection. IEEE Transactions on Im-

age Processing, 27(9):4382–4394, 2018.

[33] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-

works: Towards good practices for deep action recognition.

In European conference on computer vision, pages 20–36.

Springer, 2016.

[34] Zhikai Wang, Chongyang Zhang, Wu Luo, and Weiyao Lin.

Key joints selection and spatiotemporal mining for skeleton-

based action recognition. In 2018 25th IEEE International

Conference on Image Processing (ICIP), pages 3458–3462.

IEEE, 2018.

[35] An Yan, Yali Wang, Zhifeng Li, and Yu Qiao. Pa3d: Pose-

action 3d machine for video recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7922–7931, 2019.

[36] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[37] Christopher Zach, Thomas Pock, and Horst Bischof. A du-

ality based approach for realtime tv-l 1 optical flow. In Joint

pattern recognition symposium, pages 214–223. Springer,

2007.

[38] Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing,

Jianru Xue, and Nanning Zheng. Semantics-guided neural

networks for efficient skeleton-based human action recogni-

tion. In The IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2020.

[39] Kun Zhou, Xiaoguang Han, Nianjuan Jiang, Kui Jia, and

Jiangbo Lu. Hemlets pose: Learning part-centric heatmap

triplets for accurate 3d human pose estimation. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 2344–2353, 2019.

[40] Mohammadreza Zolfaghari, Gabriel L Oliveira, Nima

Sedaghat, and Thomas Brox. Chained multi-stream networks

exploiting pose, motion, and appearance for action classifica-

tion and detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2904–2913, 2017.

2744


