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Abstract

We propose a Bayesian approximation to a deep learn-

ing architecture for 3D hand pose estimation. Through this

framework, we explore and analyse the two types of uncer-

tainties that are influenced either by data or by the learn-

ing capability. Furthermore, we draw comparisons against

the standard estimator over three popular benchmarks. The

first contribution lies in outperforming the baseline while

in the second part we address the active learning applica-

tion. We also show that with a newly proposed acquisition

function, our Bayesian 3D hand pose estimator obtains low-

est errors with the least amount of data. The underlying

code is publicly available at: https://github.com/

razvancaramalau/al_bhpe.

1. Introduction

Hand Pose Estimation (HPE) is an important research

topic where a learning algorithm maps from images the co-

ordinates of the hand skeleton. With the recent advance-

ment in deep learning [19, 18, 2, 30, 17, 33, 28], pose esti-

mation has become one of the key ingredients in Robotics,

Augmented Reality (AR)/ Virtual Reality (VR), Human-

Computer Interaction (HCI) and to mention but a few. In

this work, we address the problem of Bayesian 3D hand

pose estimation in the active learning setting. We consider

a scenario where the hand skeleton is represented by volu-

metric information, captured by depth cameras where there

is a limited budget to annotate the hand skeleton. The down-

stream task is to estimate 3D coordinates of the pre-defined

key locations of the hands. The advantages of depth-

based representation being illumination and colour invari-

ant motivated development of multiple large-scale depth-

based benchmarks [37, 28, 29] and several international

challenges [36, 35, 1].

Most of the success stories on 3D-HPE [36, 35] are due
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GT GT GTaleatoric aleatoric aleatoricepistemic epistemic epistemic

Figure 1. Hand depth images and their corresponding skeleton an-

notation pairs in ICVL, NYU and BigHand2.2 data sets. (GT-

ground truth; aleatoric/epistemic - predicted 3D hand poses with

their corresponding uncertainties defined by joint circle radii)

to models with a large number of learnable parameters and

with the availability of large-scale annotated data (in the

order of 106) such as BigHand2.2 [37]. Annotating such

datasets requires a lot of effort, is expensive and also time-

consuming. Therefore, it is essential to develop method-

ologies that identify a small sub-set of the most influencing

and discriminative examples to annotate. Active Learning

(AL) frameworks [26, 9] have widely been used for such a

purpose.

The AL framework is a well-studied research domain ap-

plied for several tasks such as image classification [9, 3, 21],

semantic segmentation [26, 25], human pose estimation [4,

34]. However, it has not yet been applied to the 3D HPE. In

this paper, we systematically adapt the classical architecture

of DeepPrior[19] in a Bayesian Convolutional Neural Net-

work, Bayesian DeepPrior. Additionally, we present a novel

AL selection method, the key component of this framework,

optimised for the Bayesian learner. Finally, we evaluate it

on three challenging benchmarks for 3D HPE.

AL frameworks primarily consist of two major compo-

nents: learner and sampling technique. With the increasing

trend of deep learning algorithms usage, the learner is ap-

proximated by a large-scale standard CNN, DeepPrior [19].
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However, these frameworks ignore modelling important

uncertainties incurred due to either noisy acquired data

(aleatoric). and due to model’s lack of knowledge (epis-

temic). Modelling these uncertainties on discriminative

models for semantic segmentation [12] and depth regres-

sion [13], has proven to be effective. As AL frameworks

are principally designed to select the most influencing and

discriminative examples, it is crucial to model both uncer-

tainties. To this end, we propose to approximate the learner

by replacing standard DeepPrior with its Bayesian adapted

version, similarly to [12]. To the best of our knowledge,

this is the first work to employ a Bayesian 3D-HPE as a

learner in an AL framework. The sampling technique is an-

other important component to determine the fate of the AL

framework. Existing acquisition functions such as Core-

set [23] are widely and successfully used. However, the

major limitations of this method consists in relying only on

the fixed mean posterior probability while ignoring its epis-

temic variance. This mean value does not describe fully the

complete characteristics of the predicted skeleton. Hence,

we propose a novel sampling technique called CKE (a com-

bination between CoreSet and epistemic uncertainty) which

models both the upper and lower bound of the epistemic

variance of the averaged predicted skeleton. Figure 1 shows

some of the hand’s depth images and their skeleton annota-

tions together with their corresponding uncertainties (repre-

sented as circle radii). We describe in more details our idea

in Section 3.

To summarise the contributions:

• We formulate the 3D Hand Pose estimation problem

under the active learning framework.

• We propose to approximate in a Bayesian fashion the

DeepPrior 3D-HPE.

• Proposed a novel AL sampling technique incorporat-

ing both the predicted skeleton and its epistemic vari-

ance.

• We systematically evaluated active learning for both

standard and Bayesian DeepPrior on three challenging

3D-HPE benchmarks: BigHand2.2, ICVL and NYU.

• The proposed method consistently outperforms the

counter-part competitive baselines.

2. Related Work

3D Hand Pose Estimation. The first comprehensive re-

view in hand pose estimation that established the current

taxonomy is published in [6]. Together with the deep

learning popularity and easy access to depth camera sen-

sors, 3D HPE has gained a deep interest in the computer

vision community. In terms of methodology, theoretical

approaches have investigated 2D or 3D representations,

detection-based [17], hierarchical and/or structured mod-

els [33, 19, 28] over single or multi-stage processes. Earlier

state-of-the-art methods favoured combination of discrimi-

native (random forest [28] or CNN-based[19]) and genera-

tive solutions [2] as in [33, 18]. Due to the past concepts

from [5], volumetric representations [17] managed to out-

stand by compensating from the high non-linearity in di-

rect regressions. These recent works [17, 30, 32] have ob-

tained impressive results with average 3D joint errors be-

low 10 mm on datasets like NYU [29], ICVL [28] or Big-

Hand2.2 [37]. As we are tackling uncertainty exploration

and data representatives of the model, for simplicity and

efficient analysis we deploy a standard DeepPrior[19] ar-

chitecture. Even though the accuracy is lower than current

arts due to relatively lesser model parameters, our method

is generic, the insights obtained can be easily transferred to

deeper and generative models.

Bayesian Deep Learning. Recently, there have been sev-

eral investigations in quantifying and representing uncer-

tainty in CNNs. A novel approach is to approximate varia-

tional inference in a Bayesian implementation [7] for image

classification[9]. Furthermore, the types of uncertainties

(aleatoric or epistemic) and the ways to employ these uncer-

tainties in both regression and classification tasks are pre-

sented in [13, 14]. The novel approximation of Bayesian[8]

for deep learning by using the Dropout layers[27] reduced

the computational complexities of the naı̈ve Bayesian Neu-

ral Network implementation. An analysis of uncertainty for

the active learning framework is presented in [38]. How-

ever, the evaluation is conducted on small scale dataset such

as MNIST [16] classification . In contrast to this, our work

analyses a more difficult and large-scale experimental setup.

Another recent work on image classification [3] proposed

ensemble-based active learning and demonstrates outper-

forming the Dropout Bayesian approximation[8]. Again the

experiments are constrained on small scale scenarios. On

these premises, we further analyse the exploration of both

data and model-dependent uncertainties similar to [13], but

for the large-scale and more challenging problem i.e. 3D-

HPE. Furthermore, this will integrate the risk measurement

concerns presented in [20] through the aleatoric uncertainty.

Active Learning Methods. This branch of machine learn-

ing was explored in the need of informative datasets that

are in most cases model-dependent. A survey of different

standard active learning schemes is in [24]. With the ad-

vances in deep neural networks, the research community

began to integrate the classical approaches despite the lack

of integration in online training (essential part of the active

learner methodology). The most common scenario used,

pool-based sampling, limits the live model refinement by

performing offline training[23, 10, 34, 26]. On the other

hand, pool-based active learning opened a new direction
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Figure 2. Schematic diagram showing the end-to-end pipeline of the proposed method. The depth image of the hand is pre-processed and

fed to the Bayesian DeepPrior Network. This network is trained to minimise objective function given in Equation.2. The aleatoric and

epistemic uncertainties of a sample that we obtain from M number of Monte Carlo Dropouts are passed on to the selection criteria for

querying unlabelled examples. The selection method is highlighted in the Algorithm 1. The switches in the Figure are present to indicate

the activation of Dropout in different Bayesian approximations.

of research for deep neural networks [9]. This has evalu-

ated with what minimum percentage of the training set the

model can achieve the same accuracy as the entire one. In

terms of pose estimation, a practical application of active

learning for hands has been conducted in [11], where KD-

trees are applied to guide the camera movement to a more

informative viewpoint. A theoretical approach has been ex-

plored in [4] over the human pose estimation problem by

actively collecting unlabelled data from the heat-map out-

put of the Convolutional Pose Machines (CPMs). However,

our methodology is driven independently from the output as

it relies directly on the predicted hand skeleton.

3. Method

We start this section with formulating the 3D-HPE prob-

lem as a Bayesian approximation inspired by [12, 13] for

semantic segmentation and depth regression. We adopt such

a framework (similarly to Kendall et. al. in [13]) to model

the two uncertainties: aleatoric and epistemic. These two

statistics characterise the important, but complementary as-

pect of the model when trained from data. In particular,

aleatoric uncertainty captures uncertainty due to noisy train-

ing examples which can not be eradicated from the model

even if there is plenty of the training examples. Whilst,

epistemic uncertainty quantifies the ignorant aspect of the

model parameters which can be addressed with the avail-

ability of training examples. For an AL application, the

aleatoric uncertainty plays a key informative role, to avoid

annotating difficult or noisy samples when acquiring new

data. Besides, the epistemic variance helps the AL sam-

pling method in indicating relevant unseen data for the

learner. In the second part, given the parameters inferred

from the Bayesian hand pose estimator, we further inves-

tigate an acquisition method, commonly known as a sam-

pler in the active learning scheme, by enclosing the uncer-

tainty variances. Hence, our contribution relies on the anal-

ysis of the Bayesian 3D-HPE approximation (comprises the

learner component in AL), together with a newly proposed

selection mechanism. Figure 2 summarises the proposed

pipeline.

3.1. Bayesian 3D Hand Pose Estimator

3.1.1 3D Hand Pose Estimator

In classification tasks, uncertainty is estimated by the pos-

terior probability of a class. However, the 3D hand pose

estimation, a regression problem, maps hand (depth) im-

ages to 3D coordinates of the hand joint locations. In our

scenario, hand depth-image and representative coordinates

to describe its skeleton are given. We describe the hand

skeleton following [6] in 21 joints. With this information,

we shortly describe a method to regress the skeleton coor-

dinates along with modelling the mentioned uncertainties.

In order to topologically evaluate the regression uncer-

tainties, we deploy a standard DeepPrior [19] architecture.

This comprises of a convolutional feature extractor and a

dense regression. Given x ∈ R
w×h, a 2D cropped hand im-

age with w width and h height is inferred through the CNN,

together with its corresponding ground-truth y ∈ R
21×3.

Structurally, the feature extractor is composed of three

block groups of convolution, max pool and LeakyReLU ac-

tivation. The flattened output of the feature extractor is re-

gressed in the end by 2 dense layers (see Figure 2). For sim-
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plicity, we exclude the final PCA layer from the initial de-

sign of [19] and directly predict the normalised UVD joint

coordinates ŷ (description of the pipeline in Fig. 2). Finally,

we optimise the parameters by Stochastic Gradient Descent

(SGD) to minimise the mean squared error. The objective

function is as below:

L(x,y; Θ) =
1

n

n
∑

i=1

( 1

K

K
∑

k=1

‖yi,k − ŷi,k‖
2

)

, (1)

where, n is the data size, Θ represent model parameters and

K is the number of joints.

3.1.2 Bayesian DeepPrior

Here, we describe the Bayesian DeepPrior into details.

As we stated before, unlike in classification model, it is

not straight forward to model the uncertainties in regres-

sion model. In order to make the DeepPrior a probabilistic

model, we introduced Dropout [27] on its layers similar to

[8]. As in [13], we also propose to estimate and investigate

aleatoric and epistemic uncertainties for our task.

Bayesian Neural Networks (BNNs) set a Normal distri-

bution Θ ∼ N (0, I) of their weight parameters as prior.

To approximate the posterior distribution over the weights

f(Θ|x,y), we minimise the Kullback-Leibler (KL) diver-

gence of a variational inference distribution q(Θ) and its

posterior: KL(q(Θ)‖f(Θ|x,y)). To minimise the KL di-

vergence loss, we apply Monte Carlo Dropout (MCD) dur-

ing the variational inference and we minimise the mean

squared error of joint location’s prediction. This minimi-

sation is equivalent to the KL divergence minimisation. For

more details, we suggest readers to refer to [13]. Once

we keep Dropout active over the entire Θ we can obtain a

Bayesian approximation of the posterior’s mean and vari-

ance.

As stated in [20], the uncertainty variance of the BNN

consists of the Bayes risk rather than a systematic uncer-

tainty. Therefore, not only do we learn the outputs of the

final dense layer, but the aleatoric uncertainty that balances

the mean squared error objective function during training as

well. Specifically, we allocate an aleatoric variance for each

hand joint coordinate. Hence, the new objective function to

model such uncertainties is defined as in [13]:

LB(x,y; Θ) =
1

n

n
∑

i=1

( 1

K

K
∑

k=1

1

2
e−αi,k‖yi,k − ŷi,k‖

2+

+
1

2
αi,k

)

,

(2)

with the logarithmic variance αi,k = log σ̂2

al and σ̂2

al, the

aleatoric variance. Thus, the learnt numerically-stable log-

arithmic tracks the noise present in the data.

To summarise, by applying Monte Carlo Dropout

(MCD) we obtain a Bayesian DeepPrior that generates a

mean value for each joint coordinates. After variational in-

ferences we also evaluate its epistemic and learnt aleatoric

variances. For M times passes of a sample, the epistemic

uncertainty is estimated as below:

σ̂2

ep ≈
1

M

M
∑

m=1

ŷ2

m −
( 1

M

M
∑

m=1

ŷm

)2

(3)

Finally, the combined variances for a predicted skeleton ŷ

can be expressed as:

σ̂(ŷ) ≈
1

M

M
∑

m=1

ŷ2

m −
( 1

M

M
∑

m=1

ŷm

)2

+
1

M

M
∑

m=1

σ̂2

alm
.

(4)

In our experiments section 4.2, we present the study on

number of M vs the mean joint error stabilisation.

From an architectural perspective, the Bayesian Deep-

Prior contains Dropout layers after every convolutional and

dense layer. In practice [12, 13], it has been shown that this

model may suffer from strong regularisation. Thus, simi-

larly to [12], we propose different variants where Dropout

is applied to designated locations. These probabilistic vari-

ants of Bayesian DeepPrior are simulated through switches

in the proposed pipeline2 accordingly:

• A - only to all convolutional layers;

• B - centrally to the last convolutional layer and the first

dense layer;

• C - throughout the entire DeepPrior architecture.

To fine-tune the design of the Bayesian DeepPrior architec-

ture, we perform cross-validation study on the NYU Hand

dataset [29] in section 4.2.

3.2. Active Learning Framework

In this section, we briefly describe the active learning

process for deep learning together with the proposed acqui-

sition function adapted for the Bayesian DeepPrior.

Pool-based Active Learning Strategy. As active learn-

ing has gained stronger interest in deep learning, a pool-

based scenario has become a standard methodology to over-

come the data-greedy models with their slow training pro-

cess [24]. Therefore, the pool-based active learning consid-

ers a scenario with an initial annotated set s0 and an avail-

able unlabelled dataset Upool. The goal is to find the least

amount of L annotated subsets s1, s2 . . . sL ⊂ Upool so that

we achieve the targeted mean squared joint error. Given an

acquisition function A, this can be summarised under the

following equation:

min
L

min
LB

A(LB ; s
1, s2 . . . sL ⊂ Upool). (5)
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Figure 3. Conceptual comparison between the sampling tech-

niques: Coreset[23] vs CKE. The blue dots represent the anno-

tated samples in the hand skeleton space while red are to be se-

lected. The circle radii in the CKE process stages are defined by

each samples’ uniform distribution.

In the next section, we analyse and propose a function A
suitable for our Bayesian DeepPrior architecture.

Combination of Geometric and Uncertainty Acquisi-

tion Function. Acquisition functions have been extensively

developed for classification tasks [10, 21] due to their prob-

abilistic output. However, in regressions, we either have to

derive statistics like in [4, 13] or develop separate data anal-

ysis through task-invariant methods [26, 34, 23]. The ben-

efit of our Bayesian approximation is that we can use the

epistemic and/or aleatoric uncertainties to filter out the un-

labelled pool of data. Apart from the uncertainty variances,

we also propose to revise the CoreSet [23] acquisition func-

tion under our Bayesian methodology.

In principle, CoreSet treats the minimisation of the geo-

metric bound between the objective functions of the anno-

tated set s0 and of a representative subset s from the un-

labelled examples. The bounding between the two losses

applied in our context can be expressed as:

∣

∣

∣
LB(xi,yi ∈ s)−LB(xj ,yj ∈ s0)

∣

∣

∣
≤ O(γs)+O

(

√

1

B

)

,

(6)

where γs is the fixed cover radius over the entire data space

and B is the budget of samples to annotate. It has been

shown in [23] that this risk minimisation can be approxi-

mated through the k-Centre Greedy optimisation problem

[31]. As it relies on ∆, the l2 distances between samples

of posterior distribution, we define the selection under the

following scope:

argmax
i∈s

min
j∈s0

∆(ŷi, ŷj). (7)

Considering the Bayesian DeepPrior architecture, we

extend the CoreSet solution by including the epistemic

variance in the distance computation from equation 7.

Moreover, the estimated 3D coordinates are averaged

after M MCD inferences. Therefore, when evaluat-

ing minj∈s0 ∆(ŷi, ŷj), we subtract their corresponding

standard deviations σ̂epi
and σ̂epj

so that closer un-

certain centres are highlighted. Implicitly, we extend

with σ̂epi
and σ̂epj

these minimum pairwise distances

(minj∈s0 ∆(ŷi, ŷj)) when we compute the maximum dis-

tance from the unlabelled. Finally, we add to the subset s0

the furthest uncertain sample to be annotated. The impact

of the epistemic uncertainty variance is adjusted with a pa-

rameter η. We repeat this number of steps according to a

budget.

We define this adapted combination between the k-

Centre Greedy algorithm and the epistemic variances as

CKE. The pseudo-code from Algorithm 1 presents the steps

for selecting a subset Bublb, given a budget B. Further-

more, we conceptually represent in Figure 3 the stages of

data selections for both CoreSet and CKE. We can denote

Algorithm 1 CKE

1: Input: labelled set xj ∈ s0, unlabeled pool xi ∈
Upool, query budget B, corresponding epistemic vari-

ances σ̂epi
and σ̂epj

2: Initialise s ⊂ Upool

3: repeat

4: ∆dubi = minj∈s0 ∆(ŷi +
η
2
σ̂epi

, ŷj +
η
2
σ̂epj

)
5: arglbi = argminj∈s0

∆(ŷi −
η
2
σ̂epi

, ŷj −
η
2
σ̂epj

)
6: b = argmaxi∈s

∆dubi(arglbi)
7: sublb = s0 ∪ {b}
8: until sublb = B + s0

9: Return: Bublb = sublb \ s0

that CKE benefits of the Bayesian model uncertainty σ̂2

ep

when minimising the global geometric cover γs. In this

manner, our proposed solution identifies hand poses furthest

from the labelled centres and with the highest epistemic un-

certainty deviation. Moreover, the new objective function

with learnt aleatoric uncertainties (see Equation 2) drops

the noisy samples making our estimations more robust.

On these premises, we consider that our AL method for

Bayesian DeepPrior is superior to the standard approach.

4. Experiments

4.1. 3D Hand Pose Estimation Datasets

ICVL [28]: This is one of the earliest depth-based hand

datasets. It consists of a total number of 17,604 (16,008

train, 1596 test) from 10 subjects with 16 joints annotations.

NYU[29]. Created from 2 subjects, NYU has 72,757 train-

ing images and an 8,252 testing set. The hand skeleton con-
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Bayesian DeepPrior variants A B C

NYU Testing MSE [mm] 22.48 22.94 22.65
Table 1. Ablation evaluation of Bayesian DeepPrior

sists of 36 3D coordinates.

BigHand2.2[37]. The largest benchmark to date, it consists

of 2.2M frames from 10 different hand-models. For practi-

cality, we decide to uniformly sub-sample every 10 frames

due to the insignificant accuracy gain over the entire set as

analysed in [37]. Hence, we train our model with 251,796

frames and test 21 hand key-points on 39,099 frames.

For all the datasets, we standardise the number of joints

to 21 3D locations. We use pre-trained UNet [22] to detect

hand and centre cropped it to the dimension of 128×128.

4.2. Bayesian DeepPrior Architecture

Ablation Studies on Architecture. To approximate a

Bayesian Neural Network using MCD as described in Sec-

tion 3.1.2, we propose three probabilistic variants by drop-

ping out different combinations of layers. We applied these

three strategies: A - convolutional feature extractor; B - cen-

trally, on the last convolution and first dense layer; C -

throughout the entire DeepPrior and evaluated the perfor-

mance on NYU data set. The comparison of the perfor-

mance on these configurations is summarised in Table 1.

Accordingly, when applying MCD only on the feature ex-

tractor (A), it yields the best performance. This is because

in C Dropout brings too much regularisation, while B locks

low-level features in the first convolutional layers. The

trend we observe is similar to one reported in the Bayesian

SegNet [12]. We deploy the Adam[15] optimiser with a

learning rate of 10−3, a batch size of 128 and a total num-

ber of M = 70 MCDs. These parameters remain constant

for all three setups. Throughout all of our upcoming exper-

iments, we maintain the Bayesian DeepPrior variant where

Dropout is present after the convolutional layers.

After identifying the optimal configuration of Dropouts,

we played with the number of variational inferences M un-

der the same hyper-parameters setting. We observed that

increasing the value of M does not impact the performance,

however, adds computational complexity. Lowering the

value of M to 40 does not impact the performance. Hence,

we keep this value for the rest of the experiments.

Bayesian DeepPrior vs Standard DeepPrior To demon-

strate the effectiveness of our Bayesian DeepPrior ap-

proach, we conduct a quantitative comparison against the

standard DeepPrior baseline proposed in [19]. We eval-

uate the average MSE for both train and test sets of the

three compared benchmarks. The performance comparison

is summarised in Table 2.

The Bayesian DeepPrior brings a clear advantage over

Standard by yielding the lower testing error on all the three

benchmarks. This shows how effectively we can generalise

Hand Dataset DeepPrior Bayesian DeepPrior

ICVL
train 7.1633 7.5261

test 10.6233 10.0988

NYU
train 4.7034 7.7566

test 25.0754 22.4838

BigHand2.2
train 12.7731 7.7566

test 22.2353 21.4649
Table 2. Bayesian DeepPrior vs DeepPrior - averaged MSE [mm]

Hand Dataset aleatoric var epistemic var

ICVL
train 1.057 0.004

test 1.016 0.0039

NYU
train 1.169 0.0142

test 1.512 0.0066

BigHand2.2
train 1.964 0.0132

test 2.1594 0.0174

Table 3. Averaged epistemic and aleatoric variances at ×10
−2 on

ICVL, NYU and BigHand2.2

overall testing sets, while the standard DeepPrior over-fits

the training sets. In addition to the performance improve-

ment, the Bayesian DeepPrior also generates uncertainty

metric for the hand poses.

Epistemic and Aleatoric Uncertainties For every co-

ordinate of the hand skeleton, our model estimates their

aleatoric and epistemic deviation. Table 3 enlists the aver-

age of both uncertainties for all the three benchmarks. The

values are in the range of 0 to 1. Please note, we predict the

normalised UVD coordinates of the hand joints.

As deducted in Kendall et al. [13], we consistently obtain

higher aleatoric variances than the epistemic ones. Hence,

the noise present in the hand data tends to overcome the

model’s learning capability. Apart from BigHand2.2., the

testing epistemic variance seems lower than on the training

set. Furthermore, we notice an increased aleatoric variance

on BigHand2.2 compared to the other sets. High noise dur-

ing annotation could be the reason for it.

4.3. Active Learning Evaluation

Active learning has shown to be an effective tool [23, 26,

23] in acquiring representative data for a learning model.

Given the proposed Bayesian DeepPrior architecture, we

presented in Section 3.2 the CKE query method. While our

pipeline gets an advantage from reducing the noisy samples

through learnt aleatoric variances, we gather both geometric

and epistemic information regarding new unlabelled poses.

We shortly describe the active learning selection baseline

used for both Bayesian and standard DeepPrior architecture:

Random sampling: The typical approach of annotating

data just by uniformly sampling the unlabelled pool Upool.

Uncertainty sampling: Although for 3D HPE regression

there is no confidence measurement like in classification

tasks, we apply this method only on the evaluated epistemic
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Figure 4. Empirical comparison I: Quantitative analysis of the proposed CKE method with Bayesian DeepPrior against the other methods

applied on the standard version. Evaluated datasets: ICVL (Left), BigHand2.2 (Middle) and NYU (Right).
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Figure 5. Empirical comparison II: AL performance comparison of the proposed CKE method against other MCD adapted samplers on

ICVL(Left), BigHand2.2(Middle) and NYU(Right) data set.

uncertainties. The unlabelled examples are inferred through

the Bayesian DeepPrior and their epistemic variances result

after 40 MCDs. For each predicted skeleton, we sum up all

their corresponding epistemic deviations and we select to

annotate the topmost uncertain hand poses.

CoreSet: It is one of the current state-of-the-art geomet-

ric acquisition function. Also, it has been widely used due

to its task-agnostic properties relying either on the model’s

extracted features or on the output space. In our evaluation,

we apply CoreSet directly on the predicted skeletons of both

labelled and unlabelled sets.

CKE: This is our proposed method that extends the Core-

Set functionality by including the epistemic deviations in

the risk minimisation between the loss of the newly selected

samples and the loss of the available labelled set.

4.3.1 Quantitative Results of Selecting Methods

In this part, we evaluate on three hand pose datasets: ICVL,

NYU and BigHand2.2, under the pool-based scenario. We

perform a quantitative comparison between the random

sampling and CoreSet on the standard DeepPrior learner

followed by CKE, our proposed selection method, on the

Bayesian 3D HPE. We follow the standard pool-based pro-

tocol, where there is a large pool, Upool of unlabelled data.

A small size initial set seed annotations s0 are made avail-

able for the first offline training of the target model. After

this, we follow the same practice as in [3, 34] and randomly

create a smaller pool s ⊂ Upool. Thus, we efficiently deploy

the selection methods on s under the budget B. We repeat

this systematically over 10 stages. As a quantitative metric,

we quantify the performance in averaged MSE. Also, due

to the variation in the initial selected set s0 and new random

subsets s, we average our results over 5 trials and while also

computing the standard deviation.

For NYU and BigHand2.2, we set a budget (B) as well

as seed annotations s0 equal to 1000 samples. Whereas, for

ICVL, we set it 100 due to its smaller size. The intermediate

subset s size used for active learning selection is set to 10%

of the entire Upool which results in 20,000 of BigHand2.2;

7,276 of NYU; and 1,601 of ICVL. In our CKE query func-

tion, we identified the most informative samples when the

uncertainty influence parameter was set to η = 0.3.

Figure 4 compares the performance of the proposed

method with the default baseline (random sampling) and

one of the state-of-the-art methods (CoreSet) in three dif-

ferent challenging data sets. Referring to the same Figure,

we can clearly see that the proposed method consistently

outperforms the existing state-of-the-art. Specifically, after

10 AL passes we achieve the lowest averaged MSE on ev-

ery benchmark accordingly: 12.17 mm for ICVL, 23.48 mm

for NYU and 25.21 mm for BigHand2.2. This demonstrates

how effective the Bayesian AL is in obtaining top accuracy

with fractions of the entire datasets.

Similarly, Figure 5 illustrates the performance of the ex-

isting selection methods and our proposed sampling tech-

nique CKE when applied with the Bayesian DeepPrior.

Comparing the performance of Coreset when the learner is

DeepPrior (Figure 4) vs when the learner is Bayesian Deep-

Prior (Figure 5), we observe the improvement of the aver-

aged MSE on every dataset. This trend is followed even in
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Figure 6. Qualitative comparisons on the Active Learning methods at different selection stages (Left). The 3D joint aleatoric and epistemic

uncertainty variance (Right).

random sampling technique. Hence, this demonstrates that

modeling aleatoric and epistemic uncertainties while train-

ing learner in the AL framework is effective.

4.3.2 Qualitative comparison

We also evaluate the sampling methods qualitatively. We

compare the baselines (random and CoreSet) against our

proposed CKE function. To this end, we extract the pre-

dicted 3D hand skeletons on NYU test set and track their

structural representation in the first two initial stages as well

as in the last two AL stages. In the left part of Figure 6,

we can observe that CKE under the Bayesian DeepPrior

learner generates 3D hand poses quite closer to the ground

truth from the early stages. Whereas, the other two meth-

ods failed to do so. These characteristics are equally visible

even in highly articulated poses as shown in the last row.

From a qualitative perspective, we also evaluate the rel-

evance of the epistemic and aleatoric uncertainty values in

the context of 3D joint error locations. The last two columns

of Figure 6 depict these uncertainties. The extended vari-

ance present at the fingertips (proportional to the radius

of the circle) can be interpreted as high acquisition noise.

Moreover, we can observe that for occluded poses (middle

and last row), the bigger circle indicates that the model is

less confident in such cases. This happens when there are

not sufficient training examples in such extreme poses and

occlusions. To overcome this, a more powerful estimator

trained on annotated examples with such extreme poses and

occlusion needs to be deployed.

5. Conclusions

We have elaborated the first work of AL applied to the

3D hand pose estimation task. We successfully approxi-

mated the 3D-HPE DeepPrior as a BNN while deriving its

model and data-dependent uncertainties. We have shown

through qualitative and quantitative evaluation how the two

uncertainties play a critical role in the AL scheme. Fur-

thermore, by combining the geometric sampling from Core-

Set, we proposed a sampling technique, CKE, suitable for

Bayesian DeepPrior infrastructure. Under the pool-based

scenario, we achieve the lowest 3D joint errors with the least

amount of data for three well-know datasets. To conclude,

this work demonstrates the lack of representativeness and

redundancy that can be present when gathering a 3D hand

dataset. Therefore, a Bayesian approximation together with

the CKE acquisition method may help in building a holis-

tic and model-refined dataset while saving a considerable

annotation time.
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