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Abstract

Accurately estimating the position of static objects, such

as traffic lights, from the moving camera of a self-driving

car is a challenging problem. In this work, we present a

system that improves the localization of static objects by

jointly-optimizing the components of the system via learn-

ing. Our system is comprised of networks that perform:

1) 5DoF object pose estimation from a single image, 2)

association of objects between pairs of frames, and 3)

multi-object tracking to produce the final geo-localization

of the static objects within the scene. We evaluate our

approach using a publicly-available data set, focusing on

traffic lights due to data availability. For each compo-

nent, we compare against contemporary alternatives and

show significantly-improved performance. We also show

that the end-to-end system performance is further improved

via joint-training of the constituent models. Code is avail-

able at: https://github.com/MedChaabane/

Static_Objects_Geolocalization .

1. Introduction

Many self-driving vehicle systems rely on a high-

definition (HD) map to ensure safety, driving comfort and

legal conformance. Unlike a standard navigation map, an

HD map contains detailed 3D structure such as LiDAR

point clouds, as well as the precise position and semantics

of traffic signs, lights, lanes, and other road markings. One

challenge when using an HD map is some portion or set

of objects in the map may be out-of-date with changes that

occur in the world. The safety of self-driving systems is im-

proved when on-board perception systems not only detect

and track dynamic actors in the scene, but also perceive the

static traffic-control objects. This allows the system to com-

bine the benefits provided by both perception and mapping

for traffic-control features – timeliness of real-time percep-

tion, human-verified accuracy of the map.

In this work, we present a method for 3D detection,

tracking, and localizing spatially-compact static objects

(such as signs and traffic lights) from a single camera of a

self-driving car. We assume that each frame of video can be

associated with a reasonable ego-pose of the camera, as is

readily available in open-source self-driving data sets. Our

method consists of neural networks that address each of the

main components of the system, combined to allow joint-

optimization via learning to improve overall performance.

Given the problem domain, we constrain the solution space

to online methods.

The top-level model takes a pair of geo-located video

frames as input and outputs a set of localized objects (5

Degree-of-Freedom, or “5D” poses). For each input im-

age, a sub-network performs 5D pose regression for each

detected object. Detected objects are represented with both

appearance and pose information for learning how to as-

sociate them between frames. We employ an existing ob-

ject detector, but propose new networks for single-image

object pose regression and cross-image object matching.

The system applies these networks in a multi-object track-

ing paradigm to produce robust 5D locations for the set of

tracked objects in a video sequence.

We evaluate the performance of the proposed approach

on traffic lights due to availability of data. In principle,

this method could be applied to other static object types as

well. In summary, our main contributions are: (i) a novel

pose regression network for estimating 5D poses of static

objects from geolocated RGB inputs, shown to outperform

contemporary methods, (ii) a novel method for matching

objects between pairs of video frames combining multi-

resolution appearance features and geometric features from

our pose regression network, (iii) the formulation of multi-

object tracking of static objects using these models, and

(iv) an evaluation comparing the performance of the indi-

vidual components against contemporary alternatives, and

also showing the benefit to the system-level performance of

jointly-optimizing the models with a multi-task loss func-

tion.
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2. Related Work

Localizing street-level objects using multi-view geome-

try has been the focus of important prior work. Hebbal-

aguppe et al. [8] proposed an automatic system to update

telecom inventory using stereo-vision distance estimation

with a SIFT feature matching algorithm, applied to Google

street view images. Krylov et al. [13] combined monocu-

lar depth estimation and triangulation to enable automatic

localization of static objects. The same authors extended

their approach by adding LiDAR data for object segmen-

tation, triangulation, and monocular depth estimation for

traffic lights [12]. Zhang et al. [36] proposed a method

for mapping roadside utility poles from street view images

using a CNN-based object detector followed by a line-of-

bearing method for object-localization.

In contrast to these works, we hypothesize that an end-

to-end trainable system will perform better when compared

to systems using disjoint components [26, 5]. Prior works

commonly use deep learning to detect objects in imagery,

but then employ distinct secondary processes to track or

otherwise associate observations across images, lacking the

full support of information from the object detection model.

Consequently, as the number of nearby objects increases,

geometric-only techniques can fail because of the inher-

ent spatial uncertainty of the features. In our approach, we

make the assumption that strong similarities can be derived

from complementary visual and geometric features, and that

jointly learning these features in a single end-to-end system

has additional performance benefits.

The prior work most closely related to ours is by Nas-

sar et al. [20], who proposed an end-to-end trainable ob-

ject geo-localization architecture. A pair of images is fed

to their architecture: objects are first detected in the im-

age pairs, then matching projections are learned, and finally

the geo-coordinates of the objects are predicted. Our work

shares a commitment to an end-to-end approach, but differs

significantly in implementation details. Also, our additional

multi-object tracking stage is novel and improves overall

performance.

Tracking static objects from a moving camera can be

considered a special case of the typical application of track-

ing moving objects (from either a static or moving camera).

Recent research of multi-object tracking primarily follows

the tracking-by-detection paradigm. Several different RGB-

based approaches belong to this category. One category re-

lies on exploiting re-identification modules [2, 32, 37, 38]

to accurately match objects between frames. Another cate-

gory uses motion and continuity cues [6, 10, 19, 31]. Other

approaches rely on the 3D properties as well such as shape

and approximate depth [27, 28]. However, when consider-

ing static objects, object poses can be exploited for tracking

in a stronger fashion that can be done when tracking dy-

namic objects. Our method incorporates the features from

jointly-learned pose and appearance features to track static

objects across video frames.

3. Proposed Approach

Our object localization method consists of two models.

The first is a pose regression network (§ 3.1) used to esti-

mate the 5D pose of objects present in an RGB image. The

second is an object matching network (§ 3.2) used to asso-

ciate objects across a sequence of frames.

Our approach is an online method, so it uses information

derived only from past frames, making it suitable for use in

self-driving vehicles and other streaming applications. At

each given frame t, the network produces a set of 2D object

detections in the image. For each detection, the 5D pose

is estimated. The current-frame detections are associated

with tracks of previously-detected objects using the object

matching network. For each tracked object, we aggregate

the estimated 5D poses over time to compute the final loca-

tion and rotation. Object locations are aggregated by apply-

ing an LSTM network. In this section, we provide details

on the two main components, the pose regression network

and the object matching network.

3.1. Pose Regression Network

Figure 1 illustrates the architecture of our object pose

regression model. Our approach is designed for online pro-

cessing of a stream of geolocated images, such as those that

might be produced by self-driving vehicles. The method

is for application to spatially compact static objects, such

as traffic lights or signs. We use the term “spatially com-

pact” to distinguish such objects from things like lane lines

or road edge boundaries. As static objects of interest are

tracked across frames, the per-frame pose estimates are

used not only to refine the final 5D pose of the object, but

also to help disambiguate matching objects across frames

(see § 3.2.2). Our network outputs 5D object pose vec-

tors p = [T,R] where T = (Tx, Ty, Tz) represents the 3D

translation vector of the center of the object in the camera

coordinate system and R = (Rx, Ry) represents the unit

vector orthogonal to the object (the direction in which traf-

fic light or sign is facing) with respect to the camera coor-

dinate frame. To estimate the pose, we train our network

using the euclidean loss Ltrans(T, T̂ ) = ‖T − T̂‖2 for the

translation regression, and the log hyperbolic cosine loss

Lrot(R, R̂) =
∑

a∈{x,y} log(cosh(Ra − R̂a)) for the rota-

tion regression, where p = [T,R] is the ground truth pose

and p̂ = [T̂ , R̂] is the estimated pose. Instead of regressing

the full translation vector T , our pose regression network is

trained to regress the Tz component and the object’s center

position c = (cx, cy) in image pixel space. This formu-

lation provides better invariance to camera parameters. We

use projective geometry to recover the full translation vector

Ta = (ca − pa)Tz/fa for a ∈ {x, y}, where fx, fy are the
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Figure 1. Single-image Object Pose Regression Our model first computes bounding boxes (crops) of objects of interest from geolocated

images. Each image crop is then processed with an encoder-decoder CNN to generate a feature map, F , which is processed by an attention

module to yield F̄ . Using average pooling, we create a fixed-size geometry embedding G, which is fed to the pose regressor to output the

5D pose.

camera focal lengths, and (px, py) is the camera principal

point offset.

Our pose regression network is a two-staged network.

The first stage is a typical 2D object detection network

[1, 25, 34]. We pad the bounding boxes of the detected ob-

jects by Np pixels for each side to include more context and

to take into account slight errors coming from the object de-

tector model. Features from within each padded bounding

box (“image crop”) are used in the second stage to estimate

object pose.

3.1.1 Geometry Embedding

The image crop is fed into an encoder-decoder network that

maps an image of size H × W × 3 into a feature map

F ∈ R
H×W×E . Each pixel of the feature map is an E-

dimensional vector representing the appearance information

of the input image crop at each pixel location. From the fea-

ture map F , we derive the embedding of the image crop as

follows. We employ a spatial attention mechanism to focus

the embedding on the most salient parts of the image crop.

The spatial attention distribution a ∈ R
H×W is learned us-

ing 1 × 1 convolutions from the extracted feature maps F .

The spatial attention map a is then normalized using soft-

max of the responses:

ā =
exp(a)

∑H

i=1

∑W

j=1 exp(ai,j)
(1)

The normalized spatial attention map ā is applied to weight

the feature map F to generate the attention-weighted feature

map F̄ = rep(ā) ⊙ F (we replicate ā for E times to match

the size of F ). Average pooling is then applied to F̄ to

obtain the geometry embedding G ∈ R
E .

3.1.2 Pose Regressor

The pose regressor transforms the geometry embedding G
into 5D pose estimates for each object crop in the input im-

age. The pose regressor is composed of a rotation and a

translation branch, each composed of fully connected lay-

ers. The rotation branch estimates the rotation vector R and

is normalized before computing the loss. The translation

branch estimates the Tz component of the translation vector

and the object’s center position c = (cx, cy). The network

is trained by minimizing the loss Lpose = Lrot + βLtrans.

3.2. Object Matching Network

The object matching network is responsible for associ-

ating objects between pairs of frames, allowing the system

to track objects through the video sequence. We employ

a network (Figure 2) that jointly learns object appearances,

geometries, and affinities in a pair of video frames in an end-

to-end fashion. We will refer to this as the “object matching

network.”

3.2.1 Data Preparation and Encoding

A pair of images n frames apart, It and It−n, are input to

the object matching network along with the sets of bound-

ing boxes of the detected objects, Bt = [bt1, b
t
2, ..., b

t
N1]

and Bt−n = [bt−n
1 , bt−n

2 , ..., bt−n
N2 ] respectively, with 1 ≤

N1, N2 ≤ N where N is the maximum number of allowed

detected objects in any frame. In order to provide more ro-
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Figure 2. Object Matching Network. A pair of images n frames apart, It and It−n, along with the detected 2D bounding boxes, are

input to the network. The feature sub-network extracts a d-dimensional vector encoding pose and appearance information for each detected

object in each frame. The affinity sub-network uses these to produce affinity estimations, matching objects across the two frames.

bustness during inference, the matching network is trained

using image pairs separated by a variable amount of time.

The lower bound of the interval is a single frame of sep-

aration. The upper bound is a number of frames repre-

senting a few seconds of time, to allow capturing the sit-

uation where the camera has moved significantly between

two observations of the same object. When generating

the training data, we sample uniformly from the range be-

tween the lower and upper time intervals (in number of

frames between image pairs), and the training data is ex-

pressed as Xtrain = {(It, It−n) | n ∈ [1, nmax]}, where

nmax is the maximum frames of separation between im-

age pairs. Each image in a pair is resized to a fixed-size.

For each training pair, we create the ground truth match-

ing matrix Mt−n,t ∈ {0, 1}(N+1)×(N+1) which contains

matching scores between N1 objects of frame It−n (in the

rows) and N2 objects of frame It (in the columns). We add

N − N1 nonexistent objects to It−n and N − N2 nonex-

istent objects to It in order to obtain a fixed-size match-

ing matrix. These additional rows and columns are filled

with zeros. An element Mt−n,t[i, j] from the matching ma-

trix encodes the association between the object observations

bt−n
i and btj . A value of 1 encodes an association, mean-

ing that the observations pertain to the same physical ob-

ject. Entities entering and leaving the scene are encoded

with Mt−n,t[N + 1, j] = 1 and Mt−n,t[i, N + 1] = 1,

respectively.

3.2.2 Feature Sub-network

The feature sub-network extracts the compact features used

to associate objects between image pairs. The pair of frames

(It−n, It) are fed in parallel to the feature sub-network

where the two branches share the same set of weights. This

sub-network is composed of a geometry feature extractor

(yellow box in Figure 2) and an appearance feature extrac-

tor (green box in Figure 2). The underlying idea of our fea-

ture sub-network is that we can compute the affinity scores

between objects based on visual and geometric cues.

We are mainly focusing on autonomous driving scenes,

where the video frames are from a monocular camera

mounted on a car moving on the road plane, and the tracked

targets are static objects near the road. Thus, geometry fea-

tures that describe the location and rotation of objects can

be helpful to discriminate between objects. Benefiting from

reliable pose estimation, we expect that the same physical

object in the 2 frames It−n and It will have similar estima-

tions of location and rotation in a common reference frame.

Thus, from any frame It, we use our pose regression net-

work to output the estimated location and rotation of the

detected object. The estimated pose is then transformed

into the camera coordinates system of a common reference

frame Iref ; in our implementation we chose the reference

frame to be the first frame for each video.

The geometry embedding G used in the pose regression

network contains information about the geometry of the ob-

jects as well. Thus, we concatenate the features of G with

the 6 pose values described above to construct fg,i ∈ R
6+E

geometry feature descriptor for the ith detected object.

Given a monocular imaging system, the objects and

close surroundings are expected to maintain their visual ap-

pearance over short time spans. To extract appearance fea-

tures, we employ a convnet inspired by the increased perfor-

mance of CNNs with smaller filter size (3 × 3) and deeper
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architectures such as VGG [29]. It consists of 26 convolu-

tional layers and 7 max-pooling layers. Each convolutional

layer is followed by batch normalization [9] and a ReLu

activation function; see the supplemental material for more

details.

For each detected object, we extract feature vectors from

the object’s center location as regressed from our pose re-

gression network. We extract appearance features [fRi | i ∈
[1, 10]] from ten layers matching varying receptive fields.

The features are concatenated to construct appearance fea-

ture vector fa,i = fR1

⊕
fR2

⊕
· · ·

⊕
fR10 ∈ R

A for the

ith detected object.

This multi-resolution architecture helps to simultane-

ously capture fine geometric details as well as higher-level

semantics of the surroundings. We show that using a multi-

resolution feature vector outperforms those using a single

receptive field (see § 4.4).

After extracting appearance and geometry features for

each detected object, we concatenate both to obtain fi =
fg,i

⊕
fa,i ∈ R

d (d = A+ 6+E) which is a fused feature

descriptor for the ith detected object. For each frame, It, we

construct matrix Ft ∈ R
N×d, by padding by rows (filled

with zeros) for nonexistent objects to construct fixed-size

feature matrices.

3.2.3 Affinity Sub-network

Using the extracted feature matrices Ft−n and Ft, we build

the tensor Et−n,t ∈ R
N×N×2d where Ei,j,: = fi,t−n

⊕
fj,t

is the concatenation of the feature vectors of the ith object

of It−n and the jth object of It. The tensor Et−n,t contains

all possible N ×N concatenations of feature vectors of ob-

jects between the two frames. This formulation allows us to

compute object affinities in a single forward pass. Et−n,t is

fed to a similarity estimator network composed of 6 layers

of 1 × 1 convolutions. The output of the similarity estima-

tor network is similarity matrix St−n,t ∈ [0, 1]N×N where

each element Si,j represents the affinity between bound-

ing box bt−n
i and btj . Note that we use 1 × 1 convolu-

tions so that the computation of Si,j is computed using only

the feature vectors fi,t−n and fj,t and will not be affected

by other feature vectors. To consider objects entering and

leaving between the two frames, we construct two matrices

S1
t−n,t ∈ R

N×(N+1) and S2
t−n,t ∈ R

(N+1)×N where we

append a column and a row, respectively. These additional

rows and columns are filled with a basis value δ. Then,

we apply column-wise and row-wise softmax to S1
t−n,t and

S2
t−n,t respectively to obtain S̃1

t−n,t and S̃2
t−n,t which are

fed to the affinity loss layer.

3.2.4 Joint Loss Function

To train the object matching network, we use the loss func-

tion LAff as the average of losses L1 and L2 where L1 is the

error of matching objects detected in It−n to the objects in

It and L2 is the error of matching objects detected in It to

the objects in It−n. The expression of the losses are given

by:

Lk∈[1,2] = −
1

Nk

Nk∑

i=1

N+1∑

j=1

mi,j log(s̃ki,j), (2)

LAff =
L1 + L2

2
, (3)

where mi,j , s̃1i,j and s̃2i,j are the elements in the ith row

and jth column of matrices Mt−n,t, S̃
1
t−n,t and S̃2

t−n,t re-

spectively. In inference, the similarity score between ith ob-

ject of It−n and the jth object of It is given as the average

of s̃1i,j and s̃2i,j .

Training optimizes the joint affinity and pose estimation

losses as defined in Eq. (4). The loss of the pose estimation

task is computed as the average of the pose losses of all

object detected in both frames. Pose and affinity losses are

traded-off with a scalar λ.

Ljoint = LAff + λ(
1

N1 +N2

N1+N2∑

i=1

Li
pose) (4)

3.2.5 Multi-Object Tracking

Our Multi-Object Tracking (MOT) approach follows the

tracking-by-detection paradigm. Given a new frame with

the bounding boxes of the detected objects, the tracker com-

putes the similarity scores between the already tracked m
targets (each target consists of multiple instances from dif-

ferent frames) and the n newly detected objects using the

object matching network. The score matrix is defined as

S = [sji | 1 ≤ i ≤ m and 1 ≤ j ≤ n+m], where sji repre-

sents the similarity between the ith target and jth detection

and it is computed as the maximum over the similarity be-

tween the instances of the ith target before frame t − 1 and

the jth detection at current frame t, si+n
i for 1 ≤ i ≤ m

represents the likelihood of ith target to not being matched

to any of the new detected objects at frame t and is com-

puted as the average of the values at last column in S̃1
t−n,t

for the instances of ith target and sji = −∞ for j > n and

j 6= i. Finally, the widely-used Hungarian algorithm [14] is

adopted to derive the optimal assignments.

4. Experiments

4.1. Datasets

We constructed the Traffic Lights Geo-localization

(TLG) data set.1 TLG is derived from nuScenes [4], a

1The code used to construct this data set will be made available upon

publication.
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popular open-source data set for autonomous driving. The

nuScenes data contains 1000 scenes of 20 seconds (at 12Hz

video rate), filmed in two cities (Boston and Singapore), in

both night and day, and with three weather conditions (rain,

sun and clouds). Each scene comes with data from six cam-

eras placed at different angles on the car.

We selected those scenes within road intersections con-

taining traffic lights (TLs). For each scene in the nuscenes

data set, and for each video clip from one of the six cam-

eras, we iterated through key frames (2Hz), selecting TLs

within 100 meters of the camera location. Each TL location

was transformed from world coordinates to camera coor-

dinates, and then into 2D homogeneous image coordinates,

using the provided extrinsic and intrinsic camera calibration

parameters. We filter TL locations not visible to the camera.

Finally, scenes are selected only if, at least one TL is visible

in 5 different key frames in one of the six cameras. With

this process, we ended up with 348 scenes for training and

56 scenes for testing. On average, two traffic lights appear

per image.

In the TLG data, each video clip (from different cam-

eras) in each scene contains 240 RGB images (including

40 key frames) with resolution of 1600 × 900. Images are

augmented with camera pose information and camera meta-

data, including information about each visible TL: unique

ID, 5D pose in world coordinates, 5D pose in the camera

coordinates of the first frame, and TL type (horizontal or

vertical).

We created three sub-datasets for our main tasks, one

each for pose, matching, and tracking. The “Traffic Lights

5D Pose” data contains around 66,000 snippets of TLs

(60,000 for training and 6,000 for testing) along with their

5D poses. The “Traffic Lights Matching” data contains

200,000 pairs of images (170,000 for training and 30,000

for testing) along with bounding boxes of TLs and ground

truth matching matrices between the two images. Aver-

age elapsed time between image pairs in the Traffic Lights

Matching data set is 1.4 seconds (the maximum frames of

separation between image pairs nmax is set to 35) and on

average, four traffic lights appear per image. The “Multi-

Traffic Lights Tracking” (MTLT) data provides a detection

and annotation file for each video following the format of

[18].

We evaluated several other potential sources of data that

we hoped could be used to evaluate our static object lo-

calization approach. Unfortunately, beyond nuScenes, we

were unable to find other useful data sets.

4.2. Implementation details

We implement our proposed approach using PyTorch

[23]. All experiments were run on an Ubuntu server with

an Nvidia TitanX GPU with 12GB of memory. The perfor-

mance comparison of contemporary methods for all tasks

evaluated in this work were produced using the original au-

thors’ publicly-available code. Source code for this work

will be released upon publication.

In the pose regression network, our 2D object detector

is the same as used in PoseCNN [33]. It is pre-trained on

COCO [16] and Mapillary [21] datasets. The bounding box

padding, Np, is set to be between 5-25 pixels, scaled based

on the bounding box. The architecture used to extract fea-

ture map F is composed of a Resnet-18 encoder followed

by 4 up-sampling layers as decoder. The geometry embed-

ding dimension E is set to 128. The weight factor β is set

to 0.1. Our pose regression network is trained using SGD

for 40 epochs with a momentum of 0.9, and a weight decay

of 0.0005.

For the object matching network, the maximum number

of tracked objects, N , is set to 30 and δ is set to 8. The

frames were resized to 896 × 896. By experimental eval-

uation, the optimal dimensions of the appearance features

vectors fR1, fR2, . . . , fR10 are set to 100, 80, 70, 60, 50,

40, 30, 30, 20 and 20 respectively, which results in a 634-

dimensional (500 + 6 + 128) feature descriptor for each de-

tected object. The object matching and pose regression net-

works are jointly trained for 130 epochs with a momentum

of 0.9, a weight decay of 0.0008, and λ is 0.005. The pose

network is initialized to pre-trained weights.

4.3. 5D Pose Estimation

Many state-of-the-art methods for object pose estimation

[15, 22, 24, 30, 35] use 3D models of the objects. These

methods do not work well for our application because of

the presence of multiple types and sizes of TLs (and other

static objects of interest) in real-world scenarios. Thus, we

compared our model to those which take RGB images as in-

put and regress directly 5D poses such as PoseNet [11] and

PoseCNN [33]. To make the comparison fair, all methods

use the same object detector [17] as in PoseCNN, and we

fine-tune both PoseNet and PoseCNN on our training data

with the same loss function used to train our pose regression

network. Table 1 presents a comparison of our pose regres-

sion model against PoseNet and PoseCNN on the Traffic

Lights 5D Pose data.

Our single-image pose regression network outperforms

both PoseNet and PoseCNN. As expected, TLs far away

from the camera can be challenging to locate accurately. All

methods have considerably lower pose errors when evaluat-

ing only on TLs within 20 meters. In the full data set, TLs

can be up to 100 meters away from the camera. We show in

a later discussion of end-to-end performance (see Table 4)

that most of the translation error is concentrated in the depth

axis, Tz .

To understand the effects of the attention module and

joint training strategy, we compared the performance of

three variants of our pose regression network as shown in
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Model 5D Pose Errors (mean/median) Run time

All objects Near (≤ 20m) objects sec/frame

Translation (m) Rotation (◦) Translation (m) Rotation (◦)

Ours (w/o Attention) 4.95 / 3.93 17.68 / 10.51 3.02 / 2.24 16.26 / 7.64 0.05

Ours (Baseline) 4.67 / 3.61 17.00 / 9.70 2.64 / 1.83 14.74 / 6.24 0.05

Ours (Joint Training) 4.43 / 3.39 15.97 / 9.16 2.51 / 1.70 14.21 / 6.08 0.05

PoseNet [11] 7.25 / 5.83 28.47 / 21.82 5.36 / 4.48 24.31 / 18.23 0.04

PoseCNN [33] 5.54 / 4.47 19.63 / 11.35 3.68 / 2.91 18.04 / 8.86 0.11

Table 1. Pose regression ablation study.

Object Matching Feature Extractor mAP Runtime

Resnet-50 [7] 0.744 0.1

VGG-16 [29] 0.824 0.08

AFE (RFs ≤ 213 only) 0.857 0.11

AFE (RFs > 213 only) 0.839 0.12

AFE 0.873 0.12

GFE (5D only) 0.825 0.08

GFE (5D + G) 0.831 0.08

AFE + GFE 0.912 0.14

AFE + GFE (Joint Training) 0.928 0.14

Table 2. Object matching network ablation study.

Table 1. The inclusion of the attention module reduces the

rotation and translation errors. This shows how focusing on

some regions in the image crop helps our model to extract

a better representation for 5D pose regression. We also see

that training the pose regression and object matching net-

works jointly improves pose regression performance.

4.4. Object Matching

To highlight the impact of the feature sub-network of the

object matching network, we report matching accuracy after

changing the feature extractor component in Table 2. In this

ablation study, we measure the impact of using only appear-

ance features, only geometric features, using both appear-

ance and geometric features, and joint training. Addition-

ally, we measure variants of the appearance features when

larger or smaller receptive fields are used, and we show vari-

ants of the geometric features when using only the 5D val-

ues or when combining the 5D values with the vector G
from the pose regression network.

In Table 2 and in the following text, “AFE” will indi-

cate using only appearance features and “GFE” will in-

dicate using only geometric features in the object match-

ing network. AFE outperformed single RF based architec-

tures (Resnet-50 and VGG-16) by more than 4.9 percentage

points, which demonstrates the benefit of multi-resolution

networks for our application. We found that appearance fea-

tures extracted from small RFs perform better than those ex-

tracted from larger RFs, as illustrated when comparing AFE

(RFs > 213) and AFE (RFs ≤ 213). This fact is supported

by comparing Resnet-50 (RF size = 483) and VGG-16 (RF

size = 212), where VGG outperforms Resnet-50. Combin-

ing features from both small and large RFs (AFE) results in

mAP gain of 1.6 percentage points. This can be explained

by the fact that features from small RFs will focus on low

level information such as color, texture, and shape, while

features from large RFs will have richer contextual infor-

mation that can be beneficial in some challenging cases.

By comparing performance of AFE and GFE, we can

conclude that appearance is more important than geometry

for our object matching network. However, including the

geometry cues helps to increase the mAP by 3.9 percentage

points over appearance alone. We argue that the advantage

gained from geometry features come when TLs look simi-

lar and are close in image space. In those cases, TLs will

also have similar backgrounds and thus produce similar ap-

pearance embeddings. The joint training strategy provides

the remaining improvements, increasing the object match-

ing network’s mAP by 1.6 percentage points when com-

pared to stand-alone training.

Figure 3 shows examples of the object matching net-

work’s output from our Traffic Lights Matching data. We

observe that the association appears robust to illumination

and weather conditions. Also, even with the existence of

multiple similar looking TLs at very close locations in the

image space, the network is able to correctly associate the

TLs. The chosen examples in Figure 3 are random. We

noted similar level of performance by the object matching

network for all the examples we tested.

Figure 3. Object matching examples. Each column of the figure

shows a pair of frames separated by n frames. Object matching re-

mains robust to illumination and weather conditions and existence

of multiple similar TLs in the frames.

4.5. Multi­Object Tracking

We evaluate the performance of our tracker using MOT

metrics and compare its performance with three contempo-

rary online MOT algorithms that are known to have repro-

ducible results with publicly available code (Table 3). By

only using appearance features (AFE), our tracker achieves

81.29 in terms of MOTA which is higher than appearance-

based trackers (DMAN and DeepSORT), demonstrating the

strength of our appearance features. By using only geom-

etry features (GFE), our tracker achieves 74.12 in MOTA.

By using both appearance and geometry features, the track-

ing accuracy is increased to 85.52 in MOTA, outperforming
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Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ IDS ↓ FPS ↑

DMAN [38] 80.79 82.40 61.12 12.91 103 3.3

DeepSORT [32] 77.69 77.81 56.34 9.41 69 17.2

Tracktor++ [2] 83.31 86.73 66.54 9.71 82 2.64

Ours (GFE) 74.12 75.32 51.17 20.64 162 9.7

Ours (AFE) 81.29 82.18 62.37 12.66 96 6.1

Ours (GFE + AFE) 85.52 85.14 69.57 10.79 61 5.3

Table 3. Comparison of our method and contemporary MOT track-

ers on the MTLT test sequences. We use standard MOT metrics

[3]. ↑ and ↓ indicate higher or lower values are preferred

Model TE along X-axis (m) TE along Y-axis (m) TE along Z-axis (m)

Mean Median Std Mean Median Std Mean Median Std

Ours 0.25 0.16 0.15 0.23 0.15 0.14 2.24 1.47 1.28

MRF-triangulation 0.31 0.24 0.12 0.35 0.27 0.15 4.75 3.89 1.92

SSD-ReID-Geo 0.64 0.51 0.37 0.51 0.45 0.33 3.77 2.85 1.68

Table 4. Translation Error (TE) along X, Y and Z axes

the other methods. Our tracker is twice as fast as Track-

tor++, which has somewhat similar performance for many

of the metrics. Among the compared methods, our method

leads not only in MOTA, but also in MT (mostly tracked)

and IDS (identity switches). Both MT and IDS are critical

metrics when the output of the tracker is used to generate

an aggregated pose estimate, as in our application, as we

present in the following section.

4.6. Object Geo­localization

The end goal for our application is geo-locating static ob-

jects for HD Maps. We evaluate performance in this regard

by comparing predicted and ground truth geo-locations of

traffic lights in the TLG data set. We compare our proposed

approach with MRF-triangulation [13] and SSD-ReID-Geo

[20]. By analyzing the errors of different methods (Table

4), we note that errors along Z-axis (depth) are consider-

ably higher than errors along X and Y axes, which is typical

for monocular vision-based systems. When localizing traf-

fic lights, errors along Z-axis are less troubling than lateral

or vertical errors. This is because the perception of whether

or not a traffic light pertains to the self-driving car (i.e., the

lane the car is in) is more affected by its horizontal position

above the road than the depth along the roadway. A lat-

eral error of 2m could cause confusion about which lane the

light controls. On the other hand, a depth error of a few me-

ters is unlikely to cause such confusion. Our method shows

a median error in the X and Y axes of less than 20cm, and

mean error within 25cm. The median depth error (Z axis) of

about 1.5m is well-within the accuracy bounds of the prob-

lem domain.

We computed object-based precision/recall at 3 units of

Mahalanobis distance. In this case, 3 units of Mahalanobis

distance is an ellipse with semi-axes: x=0.4, y=0.39, and

z=3.84 meters. The advantage of the Mahalanobis distance

over Euclidean is that it provides much tighter thresholds in

Figure 4. Comparison of the performance of our approach for

static object geo-localization against MRF-triangulation [13] and

SSD-ReID-Geo [20]. Methods marked with * use only key frames

(2fps) for testing, methods marked with † are tested with only

frame pairs, and “with rot” means that true positives must also

be within 20
◦ of the true orientation.

the X and Y axes while allowing more tolerance in depth,

making it more suitable for our application.

Figure 4 compares the precision/recall of our approach

against MRF-triangulation and SSD-ReID-Geo. Our ap-

proach leads to more accurate object locations than the other

methods. Our approach outperforms MRF-triangulation

thanks to the efficiency of our pose regression model over

the depth estimation in [13], and the joint learning em-

ployed by our approach. SSD-ReID-Geo uses only pairs

of frames when estimating object poses. For a fair com-

parison, we also tested our approach using only frame pairs

(Figure 4, denoted with †). Our approach outperforms SSD-

ReID-Geo, even with this restriction.

When adding a rotation error component to the defini-

tion of a true positive (i.e., within the distance threshold and

within the angular threshold of 20◦), there is only a slight

lowering of performance, indicating that our 5D regression

performs well for both translation and rotation components.

5. Conclusions

This paper proposes an end-to-end method for 5D detec-

tion, tracking, and localization of spatially-compact static

objects from a single camera of a self-driving car. We

showed jointly optimizing the pose regression and object

matching models improves 5D pose estimation, tracking

and geo-localization simultaneously. Future plans include

sharing features between the 2D object detector and the

object matching network, which will provide opportunities

for further joint optimization and inference speed-up. We

also aim to replace the Hungarian algorithm with a differ-

entiable network to allow complete end-to-end learning. In

this work, we were limited to evaluate performance of our

approach on traffic lights, application to other static com-

pact object requires creating or identifying new data sets.
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