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Abstract

Removing undesired reflection from an image captured

through a glass window is a notable task in computer vi-

sion. In this paper, we propose a novel model with auxiliary

techniques to tackle the problem of single image reflection

removal. Our model takes a reflection contaminated image

as input, and decomposes it into the reflection layer and the

transmission layer. In order to ensure quality of the trans-

mission layer, we introduce three auxiliary techniques into

our architecture, including the edge guidance, a reflection

classifier, and the recurrent decomposition. The contribu-

tions and the efficacy of these techniques are investigated

and verified in the ablation study. Furthermore, in compar-

ison to the state-of-the-art baselines of reflection removal,

both quantitative and qualitative results demonstrate that

our proposed method is able to deal with different kinds of

images, achieving the best results in average.

1. Introduction

When taking a picture through a transparent medium

such as a glass window, reflection often appears and ruins

the photo. For instance, we may have attempted to shoot

the landscapes outside the window when traveling on train,

but fail to capture the picturesque scene due to the unde-

sired obstruction of the reflection. Such circumstances can

be alleviated via the image reflection removal (IRR) pro-

cess, as the examples shown in Figure 1. IRR attempts to

recover the transmission layer from a reflection contami-

nated image, which has attracted research attention from the

computer vision community and becomes an active research

area [2, 4, 27, 28, 33].

In the problem of reflection removal, the reflection con-

taminated image I is often modeled as a linear combina-

tion of the transmission layer T and the reflection layer R,

i.e., I = T + R [4, 27]. Our goal is then to decompose

the reflection contaminated image into a clean, reflection-

free image, i.e. the transmission layer, and the reflection

layer. This is extremely challenging since IRR is an ill-
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Figure 1: Reflection Removal methods attempt to recover

the transmission layer from a reflection contaminated im-

age. Given a reflection contaminated input image (the first

column), our method aims to decompose the reflection layer

(the last column) and generate the reflection-free transmis-

sion layer (the third column), which must be quite similar

to its corresponding groundtruth (the second column).

posed problem, there apparently exists infinite ways of de-

composing I into {T,R} if I is provided without additional

constraints or priors. Traditional methods thus use multi-

ple images with variations as input (e.g. taking images with

slightly different viewing angles) [6, 7, 8, 13, 23, 29, 30], or

employ a variety of hand-crafted priors to tackle this prob-

lem [11, 12, 16]. However, multiple images are often hard

to collect and not suitable for practical use, and hand-crafted

priors are not always generalizable to all cases of images

with reflection. Recently, as the deep-learning-based ap-

proaches has begun to flourish and the single image reflec-

tion removal (SIRR) task has attracted more and more atten-

tion owing to its simplicity for the practical use, a number of

methods were proposed to develop end-to-end deep models

for addressing single image reflection removal. Neverthe-

less, although these methods have reached state-of-the-art

performance on several benchmark datasets [25, 33], SIRR

remains unresolved across various imaging conditions and

diverse content of scenes.

In order to resolve the aforementioned problems, we pro-

pose to use several carefully-designed objectives as well

as the guidance in this paper for alleviating the difficulty
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of this ill-posed problem from different perspectives. We

introduce a deep convolution network with three auxiliary

extensions: Edge Guidance, Reflection Classifier, and Re-

current Decomposition. First, the edge guidance provides

supplementary edge information to benefit our reflection

removal method, exploiting the observation that the edges

on transmission layer and the ones on reflection layer often

present distinct distributions. Second, based on the assump-

tion I = T + R and the exploration of the shared struc-

tures/patterns between the reflection contaminated image I

and the reflection layer R, we train a reflection classifier

to provide novel objectives for benefiting our model learn-

ing. Third, by building upon the idea of sequential decom-

position proposed in [32] but with our novel modifications,

we introduce the recurrent mechanism to achieve better per-

formance in reflection removal without extra memory con-

sumption. Finally, our full model aggregates all the afore-

mentioned extensions, and decomposes a reflection contam-

inated image into the reflection and transmission layers. In

brief, our model is with holistic design to not only carefully

integrate the pros of prior arts but also introduce the novel

components, thus leading to superior performance with re-

spect to the state-of-the-art baselines.

2. Related Works

Prior research works of reflection removal can typically

be categorized into two types according to their data re-

quirement: multiple-image approaches and single-image

approaches. We organize and discuss related approaches as

follows, with focus on the recent deep-learning-based ones:

Multiple-image approaches. Owing to the harsh chal-

lenge of addressing ill-posed problem on single-image re-

flection removal, many prior works start with multiple in-

put images. They often take two or more pictures shot

in the same scene but from slightly different camera posi-

tions [6, 15, 7, 8, 23, 24, 30] or various polarization an-

gles [5, 19, 29]. Guo et al. [7] exploit the relative motion

cues between transmission layer and reflection layer, and

use homography to represent the motion of each layer in

order to estimate the transmission layer. A deep-learning

approach proposed by Wieschollek et al. [29] uses the po-

larization properties of light to separate the reflection and

transmission components of the recorded irradiance. There

are also some methods which require special conditions and

camera settings, such as input pair of images taken with

flash and without flash [1], different focuses [20], or two

images taken simultaneously by the front and back cameras

of a smart device [10]. However, most of these methods are

based on strict assumptions, and the multiple images are not

that easy to capture under those constraints.

Single-image approaches. Contrary to multiple-image ap-

proaches, single-image ones are more suitable for practical

use, and can be directly applied to any photographs. How-

ever, removing reflection from single image is an ill-posed

problem. Thus some traditional methods rely on addi-

tional priors, such as the gradient sparsity prior [11, 12, 13],

ghosting prior [21], or relative smoothness prior [16, 31].

However, the priors leveraged in these methods are usually

heuristic and limited to specific scenarios. Deep learning

approaches have been proposed in recent years [2, 4, 14,

17, 26, 27, 28, 32, 33]. CEILNet [4] is the first to tackle

single image reflection removal using deep-learning tech-

niques. They propose a two-stage framework which first

predicts an edge map of the transmission layer, then exploits

edge information to assist the CNN networks in decompo-

sition process. Zhang et al. [33] combine a fully convo-

lutional network with perceptual loss, adversarial loss, and

exclusion loss, which consider both pixel-level (low-level)

and feature-level (high-level) image information for driving

reflection removal. BDN [32] presents a cascade network

structure that the transmission and reflection layers are al-

ternately estimated between sub-networks. Wen et al. [28]

propose two networks, a synthesis network and a removal

network. The synthesis network predicts three non-linear

blending masks for three different types of reflection. Then

the removal network will be trained jointly with the synthe-

sized data. Wei et al. [27] propose a network (i.e. ERRNet)

which can be applied to misaligned training data based on

the properties on the feature maps extracted by VGG [22].

They also enhance their network with global information

by applying pyramid pooling module, and using hyper-

column features as the network input. IBCLN [14] utilizes

a cascaded refinement approach, where two convolutional

LSTM networks learn to predict the transmission and the

residual reflection simultaneously. Moreover, they propose

residual reconstruction loss to balance the error from the

two sub-networks while encouraging the model training.

However, as the ill-posed property of the single-image re-

flection removal, all the aforementioned approaches have

their pros and cons across different scenarios and condi-

tions. There still has not existed one-size-fits-all solution

towards this challenging problem. In this paper, we revisit

several ideas in the prior works as well as propose novel

extensions to push the research on this direction forward.

Benchmark datasets. Here we also briefly review the

datasets that are widely used for evaluation nowadays on the

problem of reflection removal. A benchmarking real-world

dataset for single image reflection removal, SIR2 [25] was

proposed few years ago. It is a dataset with ground truth

pairs of the transmission and reflection layers, which pro-

vides the users to evaluate their methods thoroughly. The

SIR2 dataset consists of three sub-datasets: postcard, solid

objects, and wild scenes. Zhang et al. [33] propose another

real-world dataset, which consists of 90 images as the train-

ing data, and 20 images for testing. Please note that due

to the difficulty of collecting a large amount of data with
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groundtruth for the transmission and reflection layers, most

deep learning methods use synthetic data to train their mod-

els, where the process of synthetic data generation is mostly

built upon the assumption of I = T +R [4, 33].

3. Proposed Method

As motivated in the previous sections, our model aims to

learn a reflection removal network which performs sequen-

tial and recurrent decomposition on a reflection contami-

nated image under the edge guidance of the transmission

image, where a novel reflection classifier is adopted to ben-

efit the overall model learning. In the following we will se-

quentially detail the base model used for decomposition, the

reflection classifier, edge guidance, as well as the extension

of decomposition via our proposed recurrent mechanism.

3.1. Base Model of Decomposition

We adopt a state-of-the-art network of reflection re-

moval, bidirection network (BDN) proposed by Yang et

al. [32], as the basis for building up our proposed model.

We choose BDN as our base model not only because of its

superior performance but also because of the unique archi-

tecture, in which BDN explicitly utilizes the assumption be-

tween the reflection contaminated image I , reflection layer

R and the transmission/background layer T (i.e. I = T+R)

into its model design. Basically, BDN is a cascaded deep

neural network composed of three sub-networks: G1, G2,

and G3, where they are all built based on U-Net [18].

The first sub-network G1 straightforwardly takes a reflec-

tion contaminated image I as input to predict the transmis-

sion layer T̃1; the second sub-network G2 then estimates the

reflection layer R̃1 based on the input of I and T̃1; eventu-

ally, the third sub-network G3 takes I and R̃1 to output the

final estimation of transmission layer, which is denoted as

T̃2. The overall computation of BDN can be written as:

T̃2 = G3(G2(G1(I), I), I). (1)

The main idea behind G2 and G3 stems from the assumption

I = T + R, such that it is easier to estimate the transmis-

sion layer T when the information of the reflection layer

R is provided in addition to I , and vice versa. Originally

in [32], BDN is trained by using the objectives based on the

L2 distance between {T̃1, R̃1, T̃2} and their corresponding

groundtruths, as well as the adversarial loss applied on T̃2.

While in our implementation, we add another L1 loss in

addition to the L2 for improving the sharpness of the re-

sultant estimation of transmission layer, and remove the ad-

versarial loss in order to alleviate the complexity for model

training. Furthermore, we step forward to apply the percep-

tual loss proposed in [9], penalizing the Euclidean distance

between the deep features extracted from T̃2 and the ones

from its corresponding groundtruth. By adopting the per-

ceptual loss, we consider the error of the predicted results

not only in the low-level/pixel-level but also in the high-

level/feature-level, and thus our objective function in learn-

ing the base BDN model becomes:

Lbase
rec = λ1L1 + λ2L2 + λfeatLfeat, (2)

where {λ1, λ2, λfeat} are used to balance {L1,L2,Lfeat}
and we have λ1 = 1, λ2 = 4, λfeat = 150 in our experi-

ments. {L1, L2, Lfeat} are defined as:

L1 =
∑

‖T̃1 − T‖1 + ‖R̃1 −R‖1 + ‖T̃2 − T‖1, (3)

L2 =
∑

‖T̃1 − T‖2 + ‖R̃1 −R‖2 + ‖T̃2 − T‖2, (4)

Lfeat =
∑∑

l

λl‖Φ
l(T̃2)− Φ

l(T )‖2, (5)

where λl are the balancing weights. T and R denote

the groundtruth for the transmission and reflection lay-

ers respectively, and Φ
l(·) denotes the features obtained

from the l-th layer of a pretrained VGG network, basically

conv1 1, conv1 2, conv2 1, conv2 2, and conv3 1

layers are used in our implementation. Please note that sum-

mation
∑

used in this paper is performed over all the train-

ing data, unless otherwise specified. With such a simple

modification on the objectives, the performance of our base

model already has the improvement in comparison to the

original BDN [32], as what will be shown in Section 4.1.

3.2. Extensions for Improving Decomposition

As the reflection removal problem (i.e. decomposition of

both transmission and reflection layers from a single input

image) is ill-posed, in order to ease the complexity for net-

work to learn such a difficult task, we propose three exten-

sions, i.e. edge guidance, reflection classifier, and recurrent

decomposition, which are equipped to the base model and

benefit the learning as well as the final performance.

3.2.1 Edge Guidance

The first extension we propose is to have the edge guid-

ance, where the base model now takes not only the reflec-

tion contaminated image I as the single input, but also the

edge map T̃edge of the transmission layer T estimated by

an edge estimator E . In other words, now the decomposi-

tion procedure is guided by the additional modality T̃edge

which helps to reduce the difficulty for the model to pre-

dict the transmission and/or reflection layers. The motiva-

tion to leverage the information of image edges/gradients

comes from the empirical observation that the gradients of

transmission and reflection layers usually exhibit different

distributions, where the reflection layer often tends to be

more blurry and unclear. The idea of having edge guidance

to benefit reflection removal is actually not new, several re-

search works [4, 17, 23] have explored the similar idea in
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Figure 2: Illustration of our proposed method together with the training objectives. (a) The training procedure of edge

estimator E , which takes reflection contaminated image I as input and predicts edge map T̃edge of the transmission layer

T . (b) The training procedure of reflection classifier C, which is used to distinguish whether the reflection exists. C takes

reflection layer R concatenated with transmission layer T or with the reflection contaminated image I as an input pair, and

then outputs the corresponding label of the pair. (c) The full model of our proposed method. We shade each sub-network in

different colors, where the gray-shaded ones are pretrained and fixed, while others are learnable in our full model training

procedure. Our full model takes I as input, first produce the estimated transmission layer T̃2, and then perform recurrent

decomposition to obtain the final estimation T̃ of the transmission layer. Note that Lreflect is computed on both T̃2 and T̃ .

different ways. For instance, [17] estimates the gradient

map of transmission layer T with two sub-aperture views

available on a dual-pixel sensor, then use the gradients in

their objective functions of reflection removal. However,

most of the camera APIs nowadays do not access to sub-

aperture view images, we would need specific cameras to

obtain the sub-aperture views, thus making this approach

slightly impractical. Instead, the work from [4] uses an es-

timation network which takes a reflection contaminated im-

age I and its corresponding map of image gradients as the

input for predicting the edge map of transmission layer.

Our approach to derive and use T̃edge in the decompo-

sition procedure is similar to the one in [4] but still with

few differences. Firstly, the groundtruth edge map Tedge

for a given transmission layer T used in our learning edge

estimator E is the normalized map of gradient magnitude:

Tedge = normalize(

√

∇xT
2 +∇yT

2), (6)

where normalize function performs min-max feature scal-

ing to bring all values into the range [0, 1], and {∇x,∇y}
compute the image gradients along horizontal and vertical

directions respectively. For [4] they directly apply filtering

on T by using a 3×3 Laplacian operator to obtain Tedge. In

other words, our groundtruth represents the probability map

for each pixel being the edge, while [4] considers the value

of edges in the absolute scale. In which the latter could

be problematic and confusing for the edge estimator E to

learn, when the strength of reflection has large variation in

the training dataset. Secondly, the edge estimator used in

our proposed method simply takes I as input, while [4] re-

quires the input pair of I and its corresponding edge map.

Our edge estimator E outputs T̃edge = E(I) ∈ [0, 1], i.e.

the edge map estimation of the transmission layer T . The

objective for learning E is defined as:

Ledge =
∑

‖T̃edge − Tedge‖1 + ‖T̃edge − Tedge‖2. (7)

Lastly, owing to the special design of our base model, which

performs decomposition in multiple stages, we not only use

the edge guidance in predicting T̃1 from I (i.e. our G1), but

also in estimating R̃1/T̃2 from {I, T̃1}/{I, R̃2} (i.e. our G2

and G3 respectively).

The network architecture of our edge estimator E is sim-

ilar to U-Net [18], which has five downsampling and up-

sampling blocks of convolution. The channel size of the

last downsample block is modified to 512, and we replace

the ReLU activation functions with LeakyReLU ones. Be-

sides, we add batch normalization after every convolutional

layer and before activation functions.

3.2.2 Reflection Classifier

Different from the edge guidance which provides more in-

formation as the input to the decomposition model, here we

propose an auxiliary component, i.e. reflection classifier C,
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for providing more constraints and objectives to further im-

prove the model learning. The basic intuition behind the

design of our reflection classifier is that: as I is an image

contaminated by the reflection R, there should exist some

structures or local patterns in I which are similar to the

ones shown in R; while the transmission layer T and reflec-

tion R are typically distinct from each other, there should

be no repeated patterns shared across T and R. Therefore,

we can train the reflection classifier based on the positive

pairs composed of {I, R} and the negative ones composed

of {T,R}. To be detailed, the network structure of the clas-

sifier C is based on VGG19 [22] framework, with modifi-

cations on the first convolution layer and the FC layer to

support the input size of {I, R}/{T,R}, and a sigmoid ac-

tivation function after the last layer to make the output label

between [0, 1]. Its training objective is defined as:

Lclass =
∑

−[lp log C(I, R)+(1− ln) log(1−C(T,R))],

(8)

where lp and ln are the groundtruth labels of reflection, lp =
1 for the input pair of {I, R} while ln = 0 for the one

of {T,R}. After training C, we can use it to distinguish

whether an estimated transmission layer T̃ still contains the

reflection R by checking the output of C(T̃ , R). In other

words, if the decomposition is perfect, then C(T̃ , R) should

be quite close to 0 as the reflection is no longer observable

in the estimated transmission layer by C, otherwise it would

be closer to 1. The reflection classifier C then can be used to

define an objective function for training our decomposition

network, which will be explained in the Section 3.3.

3.2.3 Recurrent Decomposition

As described in Section 3.1, the BDN network uses three

cascade sub-networks G1, G2, and G3 to sequentially de-

compose a reflection contaminated image I into the trans-

mission layer T and reflection layer R. This sequential de-

composition process can actually be further extended by

adding more cascade sub-networks, as mentioned in the

BDN paper [32]. However, adding more sub-networks will

definitely lead to more expenses in computation and mem-

ory usage. Therefore, here we propose the idea of recurrent

decomposition in order to resolve this issue. Particularly,

instead of increasing the number of sub-networks with their

weights non-shared, we reuse the G2 and G3 networks again,

namely the second recurrence: G2 of the second recurrence

again takes the reflection contaminated I together with the

estimated transmission layer T̃2 from G3 in our base model

as the input, and outputs a reflection estimation R̃2; after-

wards, G3 of second recurrence takes the input of {I, R̃2}
to estimate the transmission layer, denoted as T̃3. Design of

such recurrent decomposition is then as:

T̃ = T̃3 = G3(G2(G3(G2(G1(I), I), I), I), I), (9)

where T̃ = T̃3 is the final estimation of the transmission

layer by our recurrent model. The objective function L2nd
rec

for training the second recurrence is quite similar to the first

recurrence (i.e. the base model), which is defined as:

L2nd
rec = λ1L

2nd
1

+ λ2L
2nd
2

+ λfeatL
2nd
feat, (10)

where L2nd
1

, L2nd
2

and L2nd
feat are defined as

L2nd
1

=
∑

‖R̃2 −R‖1 + ‖T̃3 − T‖1, (11)

L2nd
2

=
∑

‖R̃2 −R‖2 + ‖T̃3 − T‖2. (12)

L2nd
feat =

∑∑

l

λl‖Φ
l(T̃3)− Φ

l(T )‖2. (13)

By using the mechanism of our recurrent decomposition,

the gradients of L2nd
rec can contribute to update both G2 and

G3 twice along the backpropagation, thus improving the ef-

ficacy of our decomposition network to achieve better re-

flection removal, without requiring extra memory to han-

dle the additional sub-networks. Please note here the sec-

ond recurrence does not include the G1 network, since G1

considers solely the input image I , having it in the second

recurrence would imply to discard the intermediate results

obtained from the first recurrence (i.e. the base model).

3.3. Full Model

We now include all the aforementioned extensions into

the base model, and build up our Full Model: (1) we use

the edge extractor E to predict the edge map of transmis-

sion layer, and exploit it as an additional input for the base

model; (2) we use the novel reflection classifier C to “score”

the estimated transmission layer obtained during the proce-

dure of decomposition, and derive an objective based on

C to improve the model learning; (3) we extend the base

model to have the recurrent decomposition, by reusing sub-

networks to achieve better results for reflection removal.

3.3.1 Network Structure

The architecture of our full model is illustrated in Figure 2.

The sub-networks G1, G2, and G3 used in our full model are

almost identical to the ones in BDN [32], but with modifi-

cations on their first convolution layer to support the addi-

tional input channel from the edge guidance T̃edge = E(I).
To be detailed, in the first recurrence of our full model, the

computations below are sequentially performed:

T̃1 = G1(I, T̃edge)

R̃1 = G2(I, T̃edge, T̃1)

T̃2 = G3(I, T̃edge, R̃1)

(14)
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then the second recurrence follows to apply:

R̃2 = G2(I, T̃edge, T̃2)

T̃3 = G3(I, T̃edge, R̃2)
(15)

and we take T̃ = T̃3 as the final result of transmission layer

estimation produced by our full model.

3.3.2 Training Objectives

Our full model is trained in a stage-wise manner: first,

Ledge and Lclass are used to learn the edge estimator E
and the reflection classifier C respectively, as shown in Fig-

ure 2(a) and Figure 2(b); then, we keep both E and C fixed,

and train the sub-networks G1, G2, and G3 for the decom-

position, as shown in Figure 2(c). The objectives used for

training G1, G2, and G3 can be summarized into two kinds:

Reconstruction loss and Reflective loss, as detailed below.

Reconstruction loss. We penalize the reconstruction er-

ror in both pixel- and feature-levels between the estimated

transmission layers, i.e. {T̃1, T̃2, T̃3}, with respect to the

groundtruth of T , as well as the one between {R̃1, R̃2} and

the groundtruth of R. Therefore, the reconstruction loss

Lrec for learning the sub-networks is defined as:

Lrec = Lbase
rec + λ2ndL2nd

rec, (16)

where λ2nd is used to balance the importance between the

losses in the first and the second recurrence. Since we

expect that the results obtained by the second recurrence

should be better than the ones from the first recurrence, λ2nd

is set to 2 in our experiments.

Reflective loss. For leveraging the reflection classifier C
into our training procedure, we feed the transmission layers

estimated by G3 (i.e. T̃2 or T̃ ) together with the groundtruth

reflection layer R into the reflection classifier, and the corre-

sponding outputs (denoted as l̃base = C(T̃2, R) and l̃2nd =
C(T̃ , R)) can be considered as the indicator which shows

the degree of having reflection remained in the transmis-

sion layer estimation. Thus, by minimizing l̃base and l̃2nd,

we are able to update the sub-networks in order to make

estimated transmission layer as free from the reflection as

possible. The reflective loss Lreflect can then be written as:

Lreflect =
∑

l̃base + λ2nd
∑

l̃2nd

=
∑

C(T̃2, R) + λ2nd
∑

C(T̃ , R).
(17)

The full objective to train G1, G2, and G3 is defined as:

L = λrecLrec + λreflectLreflect, (18)

where λrec and λreflect are set to 1 and 0.5 respectively in

our experiments. We will make all our source code, mod-

els, and the dataset publicly available for reproduction upon

paper acceptance.

SIR2 [25] Zhang [33]
Method

PSNR SSIM PSNR SSIM

Base 22.62 0.873 21.32 0.782

Base + E 24.10 0.887 22.22 0.798

Base + C 23.05 0.874 21.83 0.791

Base + R 22.95 0.867 21.4 0.788

Full 24.33 0.884 22.86 0.810

E: Edge Guidance

C: Reflection Classifier

R: Recurrent Decomposition

Table 1: Ablation study.

4. Experiments

Training data. For fair comparison, we follow the similar

training data preparation as [4, 27, 33]. To be detailed, we

use both synthetic and real data in our training dataset. For

synthetic data, we synthesize 17k images from 2012 PAS-

CAL VOC training images [3] with the generation method

from CEILNet [4], and 2k images from images on Flickr

with the generation method from [33]. For real data, we use

90 real-world training images obtained from [33], and apply

typical data augmentation techniques (flipping and random

cropping). During training process, we randomly choose 6k

images for use in each epoch.

4.1. Ablation Study

To investigate the contribution of each component in

our model, we perform ablation study by using different

model variants: starting from the base model (built upon

BDN [32]), we sequentially add different extensions onto

it. The experiments are conducted on 453 images from

SIR2 [25] and 20 real-world testing images from Zhang et

al. [33]. The quantitative evaluation is based on PSNR and

SSIM metrics to assess the quality between the estimated

transmission layer and the corresponding groundtruth.

From the quantitative results in Table 1, we can see that

our base model already achieves better performance than

the original BDN (which is shown in Table 2), due to our

modifications on the objectives, where L1 loss contributes

to improve the sharpness of the results and perceptual loss

enhances the results with more realistic textures. Also, the

variants of equipping the base model with each of our pro-

posed extensions are able to provide boost with respect to

the base model, and finally our full model adequately inte-

grates these extensions, where the extensions benefit each

other and reaches the best result together. Several qualita-

tive examples are provided in Figure 3, where we can ob-

serve that each of our proposed extension contributes in dif-

ferent manners. Firstly, edge extractor tends to help elim-

inate the blur edges from the reflection layer, and empha-

size the contour of the transmission layer; secondly, train-

ing with reflection classifier lets our model better learn how
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FullBase

Base + EBase Base + CBase

Base + RBase

Figure 3: Example results for ablation study (cf. Section 4.1). For each block, input images, groundtruth transmission layers,

results generated by base model, and results produced by base model with extensions are sequentially provided from left to

right columns. “E”, “C”, “R” stand for edge guidance, reflection classifier, and recurrent decomposition respectively. We can

observe that these extensions contribute differently to the results, and our full model is able to aggregate the advantages of

each extension and produce favorable results.

SIR2 [25]

Postcard Solid Objects Wild Scenes
Zhang [33] Average

Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CEILNet [4] 21.08 0.829 23.53 0.884 22.06 0.826 18.45 0.690 22.12 0.8463

Zhang et al. [33] 16.85 0.799 22.72 0.879 21.56 0.836 21.30 0.821 20.07 0.8381

BDN [32] 20.41 0.855 22.71 0.863 22.11 0.833 18.14 0.726 21.48 0.8501

Wen et al. [28] 19.28 0.803 19.48 0.772 23.71 0.855 21.28 0.818 19.96 0.7967

ERRNet [27] 22.04 0.876 24.87 0.896 24.25 0.853 22.89 0.803 23.53 0.8787

IBCLN [14] 23.39 0.875 24.87 0.893 24.71 0.886 21.86 0.762 24.10 0.8791

ours 22.73 0.860 25.61 0.905 25.41 0.892 22.86 0.810 24.26 0.8806

Table 2: Quantitative results on two real-world benchmark datasets. The best and the second best results are colored in red

and blue respectively. The “Average” scores are obtained by taking the average of all images from these two datasets.

to distinguish reflection from transmission layer, and there-

fore our model can further eliminate the remnants of the re-

flection layer; lastly, recurrent decomposition creates more

exquisite results, which preserve the details and colors of

transmission layers. Our full model gathers all advantages

of three extensions and reaches the greatest improvement.

4.2. Quantitative Results

Here we compare our method against previous works

which are based on deep-learning models. The experi-

ments are conducted on two real-world benchmark datasets:

20 real-world testing images from Zhang et al. [33], and

SIR2 [25] which has three sub-datasets (i.e. Postcard,

Solid objects and Wild scenes). The evaluation on the pre-

dicted transmission layer is based on both PSNR and SSIM

metrics, which are widely used in the related works. The

quantitative results are shown in Table 2. Our proposed

network outperforms other methods on SIR2 dataset ex-

cept on Postcard sub-dataset, and reaches the second best on

20 real-world images from Zhang et al. in terms of PSNR.

Overall, our method achieves the best performance in aver-

age, in comparison to other state-of-the-art methods.
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I T Zhang et al. [33] BDN [32] Wen et al. [28] ERRNet [27] IBCLN [14] ours

Figure 4: Qualitative examples on real-world images. The images are obtained from SIR2 [25] (rows 1-3) and Zhang et

al. [33] (rows 4-5). More qualitative examples are provided in the supplementary materials.

4.3. Qualitative Results

Figure 4 shows the example results obtained from

Zhang et al. [33], BDN [32], Wen et al. [28], ERRNet [27],

IBCLN [14], and our full model. Zhang et al. fail to produce

adequate results, showing deviation on the image color, and

could not well maintain the structure and details. BDN

fails to handle reflections with high intensity. Wen et al.

overly smooth the results and create spotty artifacts. This

phenomenon could be caused by the property of their syn-

thetic training data, which is likely to contain white pat-

terns. ERRNet shows decent results for most of the images,

however, as the estimation of reflection layer can provide

complementary information when recovering the transmis-

sion layer, it couldn’t well predict the transmission layer in

every case potentially because it does not estimate reflec-

tion layer. On the other hand, IBCLN removes most of the

undesirable reflections as it considers the reflection layer in

estimation, but it tends to overly remove the reflections with

high intensity, and there exists slight color shifts in some

results as well. Since our method considers both the edge

information and the remaining reflection in estimation, it

can handle the reflection of high brightness and get clearer

structure simultaneously. Moreover, by using the recurrent

decomposition, the efficacy of our model is boosted with

the aforementioned information twice, thus leading to the

results with better preserved details and correct color. More

qualitative examples are provided in the supplement.

5. Conclusion

We propose to improve the single-image reflection re-

moval via three auxiliary techniques, including edge guid-

ance, reflection classifier, and recurrent decomposition.

The proposed method adequately decomposes the reflection

contaminated input and generates reasonable estimation of

the transmission layer. Ablation study shows the contribu-

tion of each auxiliary technique. In comparison to the state-

of-the-art baselines, our method can remove undesired re-

flections as well as preserve details and color of the trans-

mission layer, producing favorable reflection-free image.
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