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Abstract

We deal with the problem of cross-task and cross-domain

knowledge transfer in the realm of scene understanding for

autonomous vehicles. We consider the scenario where su-

pervision is available for a pair of tasks in a source domain

while it is available for only one of the tasks in the target

domain. Given that, the goal is to perform inference for

the task in the target which is devoid of any training infor-

mation. We argue that the only reported work in learning

across tasks and domains (AT/DT) [26] faces the problem

of domain shift between the source and target domains, hin-

dering predictions on the target domain when the transfer of

knowledge is learned on a statistically different yet related

source domain. As a remedy, we develop a novel frame-

work called ADA-AT/DT based on the adversarial training

strategy to ensure that the domain-gaps are minimized for

the common cross-domain supervised task. This, in effect,

helps in realizing a domain-independent task-transfer func-

tion that eventually helps in performing improved inference

in the target domain. We demonstrate that our proposed

method significantly outperforms [26] by using models with

81% fewer trainable parameters. In addition, we perform

experiments on a transformation mapping similar to U-Net

to ensure maximum exploitation of features for task transfer.

Extensive experiments have been performed on four differ-

ent domains (Synthia, CityScapes, Carla, and KITTI) for

two visual tasks (depth estimation and semantic segmenta-

tion) to confirm the superiority of our method.

1. Introduction

Deep learning frameworks have played a significant role

in creating revolutionary technologies such as self-driving

vehicles, chat-bots, recommendation systems, etc. Most

technologies that function on deep learning models are re-

quired to perform multiple tasks in order to understand se-

mantics and geometry of the environment in which they op-

erate. Within the paradigm of computer vision, scene under-

Figure 1: We describe the motivation for generating a

domain-invariant representation for domain A (red) and do-

main B (green). Domain shift in abstract features needs

to be addressed for smoother domain transfer. Our frame-

work ADA-AT/DT tackles this problem by generating a do-

main indistinguishable deep representations.

standing by means of monocular depth estimation, semantic

segmentation of visual stream, etc. are crucial for many vi-

sual inference tasks, notably the effective operation of self-

driving cars. Generally speaking, majority of the vision-

related tasks performed by self-driving cars can be realized

by training dense and complex convolutional networks on

synthetic and real-life datasets simultaneously. Moreover,

recent works have proven that many visual tasks are highly

correlated and performance for these tasks can be enhanced

by training them together instead of designing stand-alone

models for each of them.

Multi-task learning [28] is the area of machine learn-

ing involving improvement of generalization capacity of a

task by leveraging domain-specific information from other

closely related tasks. In [39], the taxonomical structure of a

certain set of visual tasks has been studied to reuse supervi-

sion among strongly related tasks. Semantic segmentation

and monocular depth estimation are both examples of su-

pervisory tasks that perform dense pixel to pixel mapping

to represent both the semantic and geometrical information

of a scene. Rather than addressing these tasks separately,

it was studied that incorporating knowledge from these two

strongly correlated tasks reciprocally promotes the perfor-

mance of both the tasks [3, 25, 16, 4]. Most multi task learn-

ing studies presume that all tasks use a single representation
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before learning task-specific parameters. Therefore a con-

figuration consisting of a single encoder and multiple task-

specific decoders is allowed to mutually refine the results of

all the tasks [23, 12, 17, 22, 19, 21, 35].

Transfer learning [41] aims to enhance the learners’ out-

put on target domains by transferring the information found

in different but linked source domains. A domain is de-

fined as D = {X ,P(X )} where X denotes the feature

space with a marginal probability distribution P (X ). We

define a source domain A, consisting of a sufficient amount

of annotated data A = {xi, yi}, where xi ∈ XA, P (XA)
and yi ∈ YA. The target domain B = {XB,P(XB)}
consists of unlabeled data sampled from a marginal dis-

tribution closely related to the source domain distribution

such that P (XA) 6= P (XB). For a specific domain, a

task T comprises of a label space Y and an objective func-

tion f(X ), which learns the conditional probability distribu-

tion P (Y|X ) in a supervised manner from available labeled

data. Deep Domain adaptation [36] is a newly emerging

field which aims to abate the compulsion of large amounts

of labeled data for a particular domain. The core princi-

ple of domain adaptation is to obtain a transferable rep-

resentation over multiple domains and learning to extract

domain-invariant features to reduce the shift in the domains

on a deeper abstract level [38, 31, 34, 29]. Several studies

[18, 2, 14] have focused on employing generative models

as a combination of a generator and discriminator trained

in an adversarial setup to predict the domain labels of input

images through a domain confusion loss [33, 32, 7, 30, 8].

Multi-task learning and domain adaptation are fields in

machine learning that focus on inter-task and inter-domain

knowledge transfer respectively. In several cases, supervi-

sion is available in a domain for limited number of tasks.

A cross domain and cross task knowledge transfer prob-

lem was first addressed in [26]. A technique to remove

the necessity of labeled data for a particular task in the

target domain, while utilizing information from available

data and related domains was introduced. Two domains and

two highly correlated tasks (depth estimation and semantic

segmentation) are considered: the source domain consist-

ing of data corresponding to both tasks and a target domain

for which annotations for one of the tasks is unavailable.

The training procedure introduced in [26] involves training

two task-specific base models on respective domains. The

key idea behind [26] is that the features required to obtain

the output of one task can be extracted from the features

corresponding to a strongly correlated task. This has been

demonstrated by training a mapping function to transform

deep features extracted from depth estimation to those ex-

tracted from semantic segmentation and vice versa for suit-

able domains. The details of the training procedure is dis-

cussed in subsequent sections. The base models in [26] are

concurrently trained on the union of two domains, which

may result in a profound difference in deep features of the

two domains. This becomes an issue when the datasets in-

volved are from synthetic and real life sources, as the trans-

formation mapping is learnt on data from a single domain

that provides supervision for both tasks. Therefore, if the

extracted features are highly disjointed, the transformation

mapping might not provide favorable results in the target

domain. In our work, we address the issues faced by the

method in [26] when applied for two domains comprising

data from dissimilar sources.

As aforesaid, we study the problem of cross task cross

domain learning fused with adversarial domain adaptation

along with a brief study of different transfer function archi-

tectures. As discussed earlier, domain shift in intermedi-

ate deep features can impede the transfer function to gener-

alise knowledge mapping across tasks on the target domain

as shown in Figure 1. With an adversarial domain adap-

tation framework, we tackle this problem to produce deep

features that are immune to domain shift. We introduce a

binary domain classifier to the base model trained on both

the domains to promote the generation of domain-invariant

deep features. We conduct several experiments to select the

optimal domain classifier and architecture of transfer func-

tions to obtain domain-invariant and task-discriminative

deep features from which knowledge can be exploited and

transferred on the target domain. In subsequent sections,

we show that employing a network with fewer number of

parameters along with adversarial domain adaptation and

more proficient transfer functions can outperform the exist-

ing method in most of the standard evaluation metrics. The

contributions and results of the paper are summarized as

follows:

• To the best of our knowledge, we are the first to em-

ploy adversarial domain adaptation in the cross task

and cross domain setting to address the problem of do-

main divergence of intermediate features. The addition

of this framework plays a key role in bridging the gap

deep features for two different domains, thus providing

superior results in generalization to target domains.

• We also perform extensive experiments to select the

optimal adversarial training setup for the domain clas-

sifier on the criteria of performance and domain-

invariance of features based on t-SNE visualization.

• We also conduct multiple experiments on the architec-

ture of different transfer functions designed in the form

of a U-Net with spatial attention and report an signifi-

cant improvement in performance for both depth esti-

mation and semantic segmentation.

2. Related Work

Minimizing domain discrepancy through generative

models: Adversarial training based generative models in-
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troduce domain-confusion by producing domain indepen-

dent embeddings. Extensive studies [34, 31, 7, 33, 32],

have been performed to obtain a representation that is both

domain-invariant and discriminative of the primary task.

The main focus is to minimize the task-specific loss while

maximising domain classification loss. This has been im-

plemented in the form of a model that consists of an en-

coder G, a task-specific decoder D, and a domain classifier

model ψ that predicts a binary domain label for inputs [31].

The loss function is designed in a way that backpropagat-

ing its gradients [7, 8] through the model leads to G pro-

viding an intermediate representation indistinguishable for

both the domains similar to a min-max optimization. An ad-

versarial domain adaptation methodology was adopted by

[33, 32], employing a domain discriminator and a source

representation mapping trained in a min-max fashion to re-

duce the distance between the source and target mapping

distributions. Several other studies in the same spirit are

[11, 10, 24, 8, 40, 2, 37]. In our work, we employ a similar

method resulting in a domain-invariant deep feature repre-

sentation.

Learning across Tasks and Domains: In AT/DT (Across

Tasks Domain Transfer) [26], a transfer function G1→2 is

learnt in the domain for which supervision is available for

all tasks and partial supervision for a target domain. The

knowledge transfer between two tasks is realised by learn-

ing this transformation mapping between task-specific ab-

stract representations. Their approach aims to boost perfor-

mance on a single task by extracting information from re-

lated tasks and similar domains. The authors perform their

experiments two synthetic datasets: Synthia and Carla, and

two datasets from real life sources: CityScapes and KITTI.

Their contribution supplements existing domain adaptation

methods as their focus is on task transfer across domains,

instead of classical domain adaptation frameworks. Our

work uses a similar methodology, integrating adversarial

domain adaptation along with a extensive study of transfer

function architectures.

3. Proposed Methodology

3.1. Preliminaries

To ensure notation consistency, we adopt the nam-

ing conventions introduced in [26]. Apparently, we con-

sider two dense predictions tasks for scene understanding:

monocular depth estimation and semantic segmentation re-

spectively. The two tasks are denoted by T1 and T2 inter-

changeably. Besides, the source domain is denoted by A,

for which supervision is available for both T1 and T2. On

the other hand, we have access to the supervised informa-

tion only for T1 in the target domain B. Under this setup,

the goal is to predict the outputs for T2 in B. In this regard,

let {X
A/B
j ,Y

A/B
j } (j ∈ 1, 2), denote the domain and task-

specific training samples (for T1 and T2 for A and T1 for

B).

To implement knowledge transfer across tasks [26], the

first step is to train task-specific models on corresponding

domains in order to learn optimal intermediate features. In

terms of the proposed model architecture, we consider a

deep neural network N k
j trained for task Tj and domain

k = {A,B,A ∪ B}, consisting of an encoder Ek
θj

and a

decoder Dk
φj

. The output of the neural network for a do-

main k is denoted by ŷkj = Dφj
(Eθj (x

k)). The main aim

of this paper is to learn the parameters θj such that the en-

coder becomes domain-invariant and φj such that the de-

coded output resembles the ground truth. For practical no-

tations, we refer to the encoder and decoder as Ek
j and Dk

j .

The networks are trained on task-specific losses on available

annotated samples. The next step is to learn a knowledge

transformation mapping across tasks. We learn a transfer

function G1→2, which will transform deep features for T1
to deep features corresponding to T2.

3.2. Training Procedure

In this section, we will discuss the steps to train all the

components on our proposed model. The entire training

procedure in [26] along the modifications proposed in this

paper are mentioned below in brief in three steps:

1. In [26], two neural networks are trained to solve T1
and T2 on their respective domains. The task T1 is solved

by a neural network that is trained on the union of the two

domains. Uncomplimentary results can be obtained on the

target domain if the intermediate features belonging to re-

spective domains are disjoint. Our work focuses on altering

the training procedure of the network for which supervision

is available for both domains A and B with the addition of

a domain classifier resulting in domain-invariant features at

an intermediate level.

2. Training a transformation mapping across tasks for A.

In addition to a transfer function performing normal recon-

struction [26], we have also experimented with the archi-

tecture of the transfer function. We train a mapping archi-

tecturally similar to U-Net and promote finer extraction of

features by the addition of spatial attention.

3. Obtaining output on target domain B from the learnt

transfer function.

Training the base models: The first step is to train the neu-

ral networks N1 and N2 on their respective tasks. The base

network NA∪B
1

is trained for task T1 on both domains A
and B, while the network NA

2
is trained for task T2 only on

domain A.

In contrast to [26], our work makes modifications in the

training procedure of N1 trained on both the domains. We

introduce a binary domain classifier C to the base model

NA∪B
1

that performs classification on the abstract represen-

tations EA∪B
1

(xk) where xk is an image from either A or
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Figure 2: Overview of the ADA-AT/DT framework. (1) We introduce a novel architecture for NA∪B
1

consisting of a binary

domain classifier CA∪B , trained in a min-max optimization setup. (2) We train NA
2

on domain A using available labeled data.

(3) The transfer function GA
1→2

is utilized to transfer deep features from task T1 (green) to deep features for task T2 (red). (4)

The transformed features provided by GA
1→2

are decoded to obtain data for task T2 on domain B without any supervision.

B. The classifier predicts dk such that dk = 1 if k = A
and dk = 0 if k = B. The domain classifier C and the en-

coder EA∪B
1

are trained using a min-max objective while

the decoder DA∪B
1

is trained to minimise a task-specific

loss. However the parameters of NA
2

are learnt to minimize

only a task-specific loss. For NA∪B
1

, we define the domain

confusion loss for abstract features and the task-specific loss

as follows:

LA
adv(x) = Ex∼A[logC(E

A∪B
1

(x))]

LB
adv(x) = Ex∼B[log 1− C(EA∪B

1
(x))]

Ladv(x) = LA
adv(x) + LB

adv(x)

Ltask(x, y) = LT (x, y)

(1)

Here, x is an image from either of the two domains.

Ltask is the loss function specific to the task: cross entropy

for semantic segmentation and the mean absolute error for

depth estimation. We define a hyper-parameter α which

weights the two losses for adversarial training. Therefore,

the optimization setup for NA∪B
1

is defined as:

min
E1,D1

max
C

(1− α)Ladv + αLtask (2)

Figure 2 shows the sharing of EA∪B
1

into the domain

classifier and the task-specific decoder. The aim of min-max

optimization is to constraint the encoder to learn a represen-

tation of source images that are maximally task-descriptive

and domain-invariant at the same time. The parameter α

decides the contribution of each term in the adversarial op-

timization.

Training the transfer function: Once the two base mod-

els are individually trained on their respective domains and

tasks, a transfer function G1→2 is learnt to transfer between

tasks by learning a mapping function from T1 to T2. The

transfer function trained on domain A under the supervi-

sion of the abstract deep features of both the tasks. We de-

fine the loss function for obtaining optimal parameters for

the transfer function as the mean absolute error between the

transformed representation and the target task features as

shown in Equation 3

LG = |GA
1→2

(EA∪B
1

(xA))− EA
2
(xA)| (3)

In contrast to [26], our work also comprises of a detailed

study on different architectures of the transfer function. The

main idea behind the analysis of different types of transfer

functions is to exploit the information provided by the ab-

stract representation efficiently for better generalization on

target domains and tasks. Our primary focus lies in experi-

menting with the U-Net architecture with spatial attention.

Testing the transfer function on B: To solve the task T2
on B, we use GA

1→2
to transform features from the abstract

representation produced by EA∪B
1

for xB.

ŷB
2
= DA

2
(GA

1→2
(EA∪B

1
(xB))) (4)

The output of this encoder is then passed throughG1→2 and

the decoded by DA
2

to obtain the output of the target task on

B for which labeled data was unavailable.
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4. Experimental Details

4.1. Datasets

We conduct our experiments on four datasets, with the

aim of benchmarking our methodology on data sets col-

lected from real-life sources. Regarding tasks for which

labeled real-life data is scarce, the availability of a huge

amount of labeled data from synthetic sources may be

exploited. We consider the synthetic datasets to be the

Synthia-SF dataset and the data acquired by the Carla sim-

ulator. For real datasets, we use images from the KITTI

and CityScapes datasets. The Synthia dataset [15] consists

of 2224 images for which labeled data for both depth esti-

mation and semantic segmentation is available. The Carla

dataset is collected from the simulator [6] for sunny, cloudy

and rainy weather to ensure diversity comparable to real life

conditions. For Cityscapes [5], we have used all the im-

ages in the validation and training split to benchmark our

proposed method. The KITTI dataset [9] consists of 200

images for both semantic segmentation and depth estima-

tion. We used only 11 labels of the 19 training ids used

in Cityscapes and 22 training ids in Synthia because we

wanted to align our tests results also with CARLA which

provided only 11 semantic classes. We implement data

augmentation by performing a random brightness and color

augmentation with a probability of 50 % on the RGB input

images.

4.2. Network Architecture

The main aim of this paper to perform adversarial do-

main adaptation on intermediate abstract representations by

introducing a domain classifier to create confusion between

the domains. Major problems in training GANs are van-

ishing gradients, non-convergence, mode collapse etc. The

model trained by [26] for depth estimation and semantic

segmentation collapses to a non-optimal mode and faces

vanishing gradients when combined with the adversarial do-

main adaptation framework. The model proposed in [26]

consists of an encoder with a large number of learnable

parameters along with the usage of operations like max-

pooling which is known to hinder the convergence and per-

formance of a GAN. Therefore, we focus on employing

a model that not only generates superior and meaningful

representations but also tackles the challenges faced by ad-

versarial training. We employ the model architecture used

in [40] for unpaired image to image translation due to its

ability to generate optimal deep features for transforma-

tion across tasks. The major merit of our proposed method

is that we use fewer parameters for both base models and

transfer functions while simultaneously enhancing perfor-

mance on target domains. Table 1 presents the total number

of parameters in our model compared to [26]. As seen from

Table 1, our base model operating with the domain classi-

Model Number of Parameters (in million)

Base model [26] 90.1

Base model (Ours) 7.8

Base model with

CA∪B (ours)

16.8

GA
1→2

[26] 226.9

GA
1→2

(U-Net) 53.2

GA
1→2

(U-Net +

att.)

71.8

Table 1: A comparative study of number of parameters in

networks used by our method and [26].

fier CA∪B consists of only 16.8 million parameters which

is 81 % less than the base model in [26]. We show that ar-

chitecturally smaller networks face the problem of domain

shift at deeper abstract levels which can be overcome using

adversarial domain adaptation and more efficient transfer

functions, making our framework less computationally ex-

pensive and superior in terms of performance.

4.3. Study of Transfer functions

To extract and transfer adequate information from deep

features of task T1 suitable for T2, our aim is to search for a

network that captures contextual information relevant to the

task. To accomplish this, we obtain better results by em-

ploying a transfer function with an architecture similar to

U-Net introduced in [27] apart from the conventional con-

volution and deconvolution networks. The U-Net is known

to produce better deep features that combines the localiza-

tion information from downsampling network and abstract

information from the upsampling path. We also experi-

ment with attention modules combined with U-Net transfer

functions which has reported superior results in most cases.

Therefore we present our results for three transfer functions:

• A conventional transfer function, consisting of convo-

lution and upconvolution layers. The network consists

of three convolution and three upconvolution layers to

obtain the original size of the feature space. We denote

this transfer function as ‘conv’.

• A U-Net like transfer function transferring features

from the downsampling encoder to the decoder. The

function contains three downsampling levels and and

three upsampling levels. The bottleneck layers con-

sists of two ResNet blocks. We denote this transfer

function as ‘U-Net’.

• A U-Net transfer with attention module. The architec-

ture of this network is similar to the previous function

except for the addition of spatial attention. This trans-

fer function has been denoted by ‘U-Net + att.’

In [26], the transformation of deep features is performed

for 2048 channels, leading to a huge number of trainable pa-
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rameters in the transfer function. We reduce the number of

parameters by employing transfer function that utilize the

extracted features proficiently at a comparably smaller di-

mension of 256. Please refer to Table 1 for a comparison of

number of parameters in transfer functions.

4.4. Evaluation Metrics

To compare results with available ground truth, we re-

port scores for a variety of evaluation metrics for both the

tasks to compare our results with [26]. For semantic seg-

mentation, we report pixel wise accuracy and Mean Inter-

section Over Union (mIoU). In order to examine the seg-

mentation in more detail, we also report the intersection

over union per class. For depth estimation, we use the met-

rics: Absolute Relative Error (Abs Rel), Square Relative

Error (Sq Rel), Root Mean Square Error (RMSE), logarith-

mic RMSE. Lower values of these quantities indicate better

performance and accuracy. We also report three accuracy

scores: δα being the percentage of predictions whose max-

imum between ratio and inverse ratio with respect to the

ground truth is lower than 1.25α.

4.5. Training setup

We train our models on random crop of RGB images of

dimension 128 x 128. The deepest features i.e the lowest

spatial resolution of our model is 1/4 the size of the input

image. The binary domain classifier CA∪B for depth esti-

mation is trained using a least-square loss for stability and

better predictions. Therefore, when T1 is depth estimation,

the combined loss to train NA∪B
1

from Equation 1 is the

weighted sum of a L1 loss and least-squares loss. On the

other hand, binary cross entropy provides better results on

domain classification when T1 semantic segmentation. Fur-

ther details on choosing the training objective for GAN are

provided in Section 4.6. We also soften labels by a factor of

0.1 to prevent the discriminator from being overconfident.

For example, for the case A = Synthia and B = Carla,

we use a label of 0.1 for Synthia while training the encoder

and 0.9 while training the classifier using the loss defined in

Equation 2. We used the Adam Optimiser with a learning

rate of 5e-4 and is decreased by factor of 0.5 after every 10

epochs. We train the network for a total of 500 epochs.

4.6. Selecting the best domain classifier

Selecting the training setup for the domain classifier is

a crucial step to obtain domain indistinguishable features

which are also adequate for the specified task. As shown

in equation 2, the encoder and the domain classifier have

been trained in a min-max optimization fashion. The task

specific loss has been weighted by a parameter α, therefore

we have conducted extensive studies to choose the value of

this hyper-parameter. In case of a GAN, there are many

choices for the adversarial objective. We performed ex-

periments on different optimization objectives namely: Bi-

nary cross entropy, Mean square error and the Wasserstein

distance. Mean square error and wasserstein distance are

usually employed to tackle vanishing gradients and achieve

more stability while training. Therefore, it is necessary

to inspect the performance of these networks for different

training losses. We report our experiments for NA∪B for

semantic segmentation trained on the Synthia CityScapes

datasets. As mentioned in Section 4.5, we use soft labels

while training the domain classifiers. We experiment on

three choices for value of the parameter α: 0.4, 0.5 and 0.6.

In Figure 3, we present the t-SNE visualizations of features

at the lowest spatial resolution which are obtained by the

encoder and the Mean Intersection over Union for each of

the values of α and training loss. For this experiment, we

train the models for only 10 epochs to judge each training

setup by its capability of producing indistinguishable fea-

tures and considerably better mIoU. The three columns in

Figure 3 belong to the three values of α = 0.4, 0.5 and 0.6

respectively. The mIoU has been shown in the bottom left

corner of each of the plots. From Figure 3, it is clear that

for semantic segmentation the best features demonstrating

domain-invariance are obtained when the training objective

of the domain classifier is binary cross entropy. Although

the best predictions on semantic segmentation classes are

obtained by a mean-square error for domain classifier. But,

the features in this case are not as indistinguishable as de-

sired. We observe that similar distinguishable t-SNE vi-

sualizations are obtained for wasserstein distance. There-

fore, binary cross entropy is observed to superior compared

to other objectives for semantic segmentation. In terms of

mIoU, the value of α is chosen to be 0.4 as it provides bet-

ter predictions on the 11 chosen classes. Similarly for depth

estimation, it has been observed through experiments that

mean square error has provided superior results in terms of

both domain-invariance features and task-specific metrics.

Extensive experiments performed on the model architecture

of the domain classifier are reported in the supplementary

material.

5. Results

In this section, we discuss the results obtained by our

proposed methods and compare it with existing cross task

cross domain method [26]. We have compared the results

of our proposed method with five additional current state

of the art methods: pixel-level domain adaptation (denoted

by AT/DT (DA) ), training setup introduced in [40] for un-

paired image to image translation (denoted by Cycle-GAN),

domain adaptation methods like CYCADA [1], FCN in the

Wild [13] and Deep Adaptation networks (DAN) [20]. For

the last three methods, we train the models on 11 classes to

obtain metrics consistent with [26]. For each combination

of A and B, we present the performance of our method with
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Figure 3: We conducted a study on different types of GANs to choose the most optimized network which provides domain-

invariant as well as task-discriminative features. The hyper-parameter α in Equation 2 and optimization objective for domain

classifier has to be chosen carefully for stable training. The Mean Intersection over Union is shown in the bottom left corner

of each setup. We train the base model NA∪B on the Synthia(red) and CityScapes(green) datasets.

Figure 4: Qualitative results for ADA-AT/DT training setup.

three different types of transfer functions mentioned in Sec-

tion 4.3. We also present qualitative results for task transfer

across domains with our proposed method in Figure 4.

Depth to Semantic: In this setup, labeled data is available

for both tasks in domain A and only for depth estimation

in B. We have compared the results of our framework with

the performance metrics reported in [26]. Table 2 reports

evaluation metrics as discussed in Section for domain B

for monocular depth estimation. The main problem faced

while learning across tasks to predict semantic segmenta-

tion is the lack of major information about small and com-

parably insignificant objects like Poles, Traffic lights learnt

for depth estimation, hence providing inadequate informa-

tion transfer for semantic segmentation. As seen from Table

2-(a), a major increment has been observed in accuracy and

mIoU for U-Net and U-Net + att. transfer functions. For

the classes Road, Poles, and Sky, our model is unable to

provide results better than [26] by small margins. However,

for classes Person, Vegetation, Vehicles and Traffic signs,

our model is almost 10 times more accurate. As seen in Ta-

ble 2-(b), our proposed method leads the existing methods

to a higher pixel accuracy and mIoU. Only the IoU values

of the classes Person, Poles, and Vegetation obtained from

the pixel level domain adaptation experiments performed in

[26] are greater than those obtained by our method. In this

case, the best performance is recorded by our method with

the U-Net transfer function. Figure 4-(b) shows the quali-

tative output of semantic segmentation on the Carla dataset

where task transfer is learnt on the Synthia-SF dataset.

Semantic to Depth: In this setup, labeled data is available

for both tasks in domain A and only for semantic segmen-

tation in B. We have compared the results of our frame-

work with the performance metrics reported in [26]. Ta-

ble 3 reports evaluation metrics as discussed in Section for
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(b)

Synthia CityScapes AT/DT [26] 85.77 29.40 1.23 0.00 3.72 14.55 1.87 8.85 0.38 42.79 67.06 23.34 64.03

Synthia CityScapes CYCADA [1] 72.89 21.74 0.00 0.00 0.77 21.03 0.00 16.66 1.34 32.67 46.71 16.23 69.03

Synthia CityScapes FCN in the wild [13] 60.23 30.33 0.48 0.00 0.53 3.64 4.30 39.44 2.72 53.48 59.06 19.51 65.93

Synthia CityScapes DAN [20] 54.09 3.67 0.00 0.00 0.00 0.00 2.23 18.88 0.00 1.79 41.59 9.87 51.65

Synthia CityScapes Ours (conv) 70.21 21.78 3.71 0.00 1.36 1.79 3.69 17.31 2.85 69.82 47.04 21.77 69.93

Synthia CityScapes Ours (U-Net) 77.30 29.51 7.67 0.00 4.74 4.63 7.37 27.36 6.01 72.44 51.08 26.19 73.99

Synthia CityScapes Ours (U-Net + att.) 84.39 38.56 10.71 0.00 9.11 8.14 11.15 41.86 8.95 77.94 58.69 31.78 79.68

(c)

Carla CityScapes AT/DT [26] 76.44 32.24 4.75 5.58 24.49 24.95 68.98 40.49 10.78 69.38 78.19 39.66 76.37

Carla CityScapes CYCADA [1] 73.94 47.53 0.00 2.50 1.61 0.00 56.64 21.85 0.63 18.46 52.03 24.56 68.68

Carla CityScapes FCN in the wild [13] 57.26 53.76 3.72 0.42 0.65 0.12 30.17 4.411 0.00 31.11 6.177 18.16 65.06

Carla CityScapes DAN [20] 68.61 23.89 0.00 0.00 0.00 0.00 40.08 42.11 0.00 3.52 52.53 17.82 62.37

Carla CityScapes Cycle-GAN [40] 81.58 39.15 6.08 5.31 30.22 21.73 77.71 50.00 8.33 68.35 77.22 42.33 80.93

Carla CityScapes AT/DT (DA)[26] 85.19 41.37 5.44 3.02 29.90 24.07 71.93 58.09 7.53 70.90 77.78 43.20 81.92

Carla CityScapes Ours (conv) 62.07 28.47 5.69 2.2 2.16 1.71 41.54 23.77 0.00 27.38 39.51 21.31 54.31

Carla CityScapes Ours (U-Net) 85.54 68.54 12.31 6.71 23.22 22.46 71.72 66.66 13.79 74.45 80.01 47.76 84.92

Carla CityScapes Ours (U-Net + att.) 81.41 58.42 12.45 4.08 14.8 13.54 63.81 56.05 12.09 69.45 81.09 42.69 84.52

Table 2: Quantitative results obtained from depth estimation to semantic segmentation task transfer across domains

Lower is better Higher is better

A B Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

(a)

Synthia Carla AT/DT [26] 0.316 5.485 11.712 0.458 0.553 0.785 0.880

Synthia Carla Ours (conv) 0.2126 1.9635 2.2695 0.3755 0.8029 0.9125 0.9538

Synthia Carla Ours (U-Net) 0.451 1.2699 1.122 0.2483 0.878 0.9638 0.9834

Synthia Carla Ours (U-Net + att.) 0.0796 0.19125 0.6885 0.1937 0.9128 0.9732 0.987

(b)

Carla CityScapes AT/DT [26] 0.394 5.837 13.915 0.435 0.337 0.749 0.899

Carla CityScapes Cycle-GAN [40] 0.943 27.026 21.666 0.695 0.218 0.478 0.690

Carla CityScapes AT/DT (DA) [26] 0.563 10.789 15.636 0.489 0.247 0.668 0.861

Carla CityScapes Ours(conv) 1.2016 19.893 7.599 0.7528 0.6334 0.8046 0.8754

Carla CityScapes Ours (U-Net) 0.3397 3.264 3.2385 0.5119 0.7233 0.8753 0.9275

Carla CityScapes Ours (U-Net + att.) 0.1894 0.9078 1.224 0.3169 0.8245 0.9303 0.9602

(c)

Carla Kitti AT/DT [26] 0.439 8.263 9.148 0.421 0.483 0.788 0.891

Carla Kitti Ours(conv) 0.5631 7.0686 3.2385 0.5325 0.7038 0.8681 0.9268

Carla Kitti Ours (U-Net) 0.233 1.8054 1.785 0.3845 0.7886 0.9208 0.9578

Carla Kitti Ours (U-Net + att.) 0.1389 0.5381 0.7905 0.2476 0.8655 0.9566 0.9781

Table 3: Quantitative results obtained from semantic segmentation to depth estimation task transfer across domains

domain B for monocular depth estimation. The integra-

tion of domain adaptation at an abstract level has signifi-

cantly improved the metrics. For all the three combinations

of synthetic and real datasets, the U-Net transfer function

along with attention boosts performance by a large margin

as compared to other transfer functions. As seen from Ta-

ble 3-(a), the values of errors have decreased by more than

50 %, in comparison to the existing method. The same

trend is followed in the cases in Table 3-(b) and Table 3-

(c), where knowledge transfer occurs across synthetic and

real domains. Despite only 200 data points being available

for the KITTI dataset, our proposed method is successful

in learning a domain invariant representation at an abstract

level, resulting in an notable enhancement in performance

in Table 3-(c). In most cases, our ADA-AT/DT model with

a convolution based transfer function outperforms the exist-

ing method by a significant margin, indicating that training

ADA-AT/DT models is suffice to surpass depth estimation

results from previous methods. Gradual increase in accu-

racy of predictions is observed with a U-Net transfer func-

tion. As observed from Table 3, the benefit of our proposed

method is that overall prediction of depth estimation has

been improved by models with substantially less number

of trainable parameters. Figure 4-(a) shows the qualitative

output of semantic segmentation on the CityScapes dataset

where task transfer is learnt on the Carla dataset.

6. Conclusions

We proposed a novel adversarial training driven ap-

proach for cross-domain and cross-task knowledge propa-

gation for visual scene understanding in this paper. In par-

ticular, we consider semantic segmentation and depth esti-

mation tasks where annotations are available for both the

tasks for a source domain while it is available for one of the

tasks in the target domain. Given that, the goal is to obtain

the outputs for the tasks which is devoid of any supervision

in the target domain. The rationale behind considering the

adversarial approach is to ensure that any domain-gap be-

tween the source and target can explicitly be reduced. Ex-

perimental results confirm the robustness of our model. We

are currently interested in extending the model for multi-

ple tasks where the correlation among the tasks may vary

substantially.
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