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Abstract

We present DeepInversion for Object Detection

(DIODE) to enable data-free knowledge distillation for

neural networks trained on the object detection task.

From a data-free perspective, DIODE synthesizes images

given only an off-the-shelf pre-trained detection network

and without any prior domain knowledge, generator

network, or pre-computed activations. DIODE relies on

two key components—first, an extensive set of differentiable

augmentations to improve image fidelity and distillation

effectiveness. Second, a novel automated bounding box and

category sampling scheme for image synthesis enabling

generating a large number of images with a diverse set of

spatial and category objects. The resulting images enable

data-free knowledge distillation from a teacher to a student

detector, initialized from scratch.

In an extensive set of experiments, we demonstrate that

DIODE’s ability to match the original training distribution

consistently enables more effective knowledge distillation

than out-of-distribution proxy datasets, which unavoidably

occur in a data-free setup given the absence of the original

domain knowledge.

1. Introduction

Object Detection is a fundamental problem in computer

vision where the aim is to accurately localize instances of

objects in an image, out of a pre-defined set of classes.

The combination of advancements in convolution neural

networks [18, 39, 13] and availability of large and diverse

datasets [36, 20] has led to a steady improvement in the ac-

curacy of object detectors.

Accuracy improvement has come at the cost of ever in-

creasing model complexity, computation and latency re-

quirements. One way to decrease complexity without sac-

rificing performance is knowledge distillation (KD) [14].

Knowledge distillation allows us to train a compact model,

known as student network, from one-or-more large pre-

trained models, also known as teacher networks. Knowl-

edge distillation accomplishes this by guiding the student

Figure 1: Data-free knowledge distillation framework for

object detection. We first introduce DIODE that optimizes

noise into images xinv by inverting only a pre-trained ob-

ject detection model Φ, equipped with differential data aug-

mentation and a novel box sampling strategy to generate

targets Y. The synthesized dataset can then enable data-

free knowledge distillation from teacher Φ to a new student

detector Φstu.

using the teacher’s predictions, which contain rich inter-

class and object location information. The distilled student

attains its best accuracy when it has access to the teacher’s

original training data. However, this data may not be avail-

able due to its size or because its release poses privacy or

safety concerns.

DeepInversion [44] has recently emerged as an approach

for synthesizing data from neural networks to solve for the

absence of data. Contrary to generative approaches, Deep-

Inversion does not require a generator or adversarial train-

ing to synthesize images conforming to a data distribution.

Instead, it optimizes a batch of images, starting from noise,

by matching the statistics of deep feature distributions to

those stored in the batch-normalization (BN) layers of the

network. This allows for generating images which have vi-

sual characteristics similar to the training dataset. However,

DeepInversion is limited to synthesizing images only from

deep classification networks.
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In this paper, we propose a method for data-free knowl-

edge distillation of deep object detection networks that

consists of two main steps: a) image synthesis from a

pre-trained model via a model inversion process we term

DIODE, and b) an object detection task-specific knowledge

distillation method on the synthesized images.

For the first step, we develop DIODE, a set of improve-

ments on DeepInversion that allow us to synthesize high

quality images with localized and category conditioned ob-

jects from an off-the-shelf pre-trained object detector. The

key difference between DeepInversion [44] and DIODE is

replacing the classification loss with an object detection

loss, a set of extensive data augmentation strategies, and

a box sampling method to enable the generation of a large

number of images. We also introduce a tiling strategy and a

false positive aggregation strategy to expand the density of

objects in generated images. As a result, we are able to syn-

thesize a new dataset of images containing objects from all

predictable object categories in various locations at multiple

scales.

In the second step, we use a large dataset of syntheti-

cally generated images for knowledge distillation between

models. To this end, we formulate data-free knowledge dis-

tillation for object detection. Our formulation enables us

to distill the knowledge from an off-the-shelf detector into

another by only accessing images from a proxy dataset and

without requiring its labels. This is the only work that per-

forms data-free knowledge distillation tailored to object de-

tection networks to the best of our knowledge.

Through extensive experiments, we show that DIODE

improves the quality and generalizability of inverted im-

ages allowing them to effectively capture the model’s train-

ing data distribution. These images also yield distillation

efficacy on par with same-domain datasets, and consis-

tently outperform out-of-domain datasets by large margins.

DIODE alleviates the need of any prior domain knowledge

for distillation, where conventional proxy datasets may suf-

fer a performance drop due to a potential domain gap in-

curred from lack of apriori domain knowledge.

In summary, the contributions of this paper are twofold.

First, we propose DIODE, a deep inversion algorithm for

object detection. Our approach includes a new method to

generate bounding boxes and their category labels, and dif-

ferential data augmentation to improve image quality and

generalizability. We also develop tiling and false posi-

tive aggregation techniques to increase object density. Sec-

ond, we show how to transfer the knowledge from an off-

the-shelf pre-trained object detector to a student network,

without accessing its dataset. Extensive experiments show

that our generated dataset outperforms (0.450 mAP) out-of-

domain proxy datasets (0.313 mAP) by a significant margin

improvement for the task of distillation.

The rest of the paper is structured as follows. We first

summarize related works in Section 2. Then, in Section 3,

we describe our approach to invert images for object de-

tection. In Section 4, we introduce our data-free mimic

learning approach to distill the knowledge of a pre-trained

teacher detector to a student network. Finally, in Section 5,

we present our experimental setup and discuss results.

2. Related work

Object detection. Modern object detectors consist of

a backbone that is borrowed from state-of-the-art im-

age classification CNNs e.g VGG-16[39], ResNets[13],

EfficientNet[40] etc, and adding additional layers that pre-

dict boxes and labels from backbone features. Popular

methods can be broadly categorized as: (a) Two-stage de-

tectors which include an object proposal step to first extract

category independent features and then make box and cat-

egory predictions from them like RCNN [12], Fast-RCNN

[11] and Faster-RCNN [33]. (b) One-stage detectors which

combine object proposal and detection into a unified pre-

diction model such as SSD [21] and Yolo [30] and their

variants [31, 32]. The most popular detectors are one-stage

detectors since they are designed with efficiency and infer-

ence latency in mind. Specifically, Yolo-V3 [32] is popular

because it is faster than SSD and has accuracy that matches

two-stage detectors.

Knowledge distillation. Knowledge distillation is a

method to transfer knowledge from one-or-more pre-trained

teacher models to a single student model. Introduced by

[1, 14], the authors discover that a large model learns bet-

ter representations of the data and its outputs provide rich

inter-class information. They show that augmenting the

training of student with a distillation loss that matches the

predictions between teacher and student, improves its final

accuracy. Ba and Caruana [1] coin this method as mimic-

learning, however, Hinton et al. [14] refer to it as knowledge

distillation.

Knowledge distillation has also been applied to object

detection. Li et al. [19] mimic the ROI-pooled feature re-

sponses between student and teacher to learn an efficient de-

tector. Shmelkov et al. [37] mimic the logit responses from

roi-pooled features between student and teacher to combat

catastrophic forgetting during incremental learning. Chen

et al. [4] use mimic learning between the CNN backbones

of a teacher and student Faster-RCNN. Wang et al. [41] ap-

ply mimic-learning to imitate the responses of a teacher on

regions near the ground truth boxes. Mehta and Ozturk [24]

develop the approach objectness scaled distillation which

weights the loss incurred by each teacher predicted object,

by its confidence score. Unlike other methods, Mehta and

Ozturk [24] perform distillation on one-shot detectors. All

these methods rely on images from the teacher’s dataset,

which can become difficult to access.

Data generation. In recent years, generative adversarial
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networks (GANs) have become a popular paradigm to gen-

erate data [29, 46, 16, 17, 3]. They model data distribu-

tion using a generator which maps random noise to images

and a discriminator which distinguishes between real and

generated images. Recent works such as BigGan[3] and

StyleGan[17] enable generation of highly realistic images.

However, training the generator requires access to real data.

An alternative line of work generates images through invert-

ing pre-trained models. DeepDream [26, 8, 23, 38] back-

propagates gradients into inputs towards generating fea-

tures of the target classes. Through image prior regulariza-

tion such as total variation, DeepDream allows for noise-

to-image generation of smooth, category specific images.

Along the same lines, DeepInversion [44] introduces a fea-

ture map regularizer based on BN information and enables

synthesis of high fidelity images for deep networks trained

on ImageNet. Both these methods only work for the classi-

fication task.

Data-Free KD. Aforementioned methods have inspired the

recent emerging trend towards data-free knowledge distil-

lation. Bhardwaj et al. [2] use DeepDream with activa-

tion vectors from 10% of original data to generate images.

Lopes et al. [22] use a variant of the model inversion at-

tack [10] that maximizes the similarity between response

of original dataset and pre-computed activation statistics to

generate a proxy dataset. Nguyen et al. [28] use a pre-

trained GAN generator as a prior for performing a model

inversion attack. Alternatively, Chen et al. [5] and Mi-

caelli and Storkey [25] reformulate the classification net-

work as a discriminator and train an external generator net-

work to synthesize images that maximize the discrimina-

tor’s response. All these existing methods use either meta-

data, pre-computed activations or GAN generators to build

up the proxy dataset. In contrast, recent work has started ex-

ploring knowledge distillation without any prior knowledge

of the original dataset. Nayak et al. [27] generate a proxy

dataset by only modelling the inter-class information from

softmax layer. Yin et al. introduce DeepInversion [44] and

adaptive DeepInversion towards generating proxy dataset

for data-free KD with the latter having an additional com-

petition regularization term that encourages teacher-student

disagreement. All the aforementioned methods work only

for the classification task.

3. DIODE: DeepInversion for Object Detection

In this section, we introduce DeepInversion for Object

DEtection (DIODE), a novel image synthesis method to

generate synthetic data similar to the distribution used to

train a deep object detector. Our method only requires a

pre-trained model and does not rely on auxiliary informa-

tion (e.g. meta-data, feature activation) or additional net-

work (e.g. pre-trained generative networks).

Given a batch of N input images xinv ∈ R
N×3×H×W ,

and a pre-trained detection network Φ(x), we formulate

DIODE as a regularized minimization problem that starts

with every pixel initialized from random noise xi,c,u,v ∼
N (0, 1) and optimizes:

xinv = min
x

Ldetect(Φ(x),Y) +RDI(x), (1)

where RDI is a regularization term added to steer away

from adversarial examples and towards the distribution of

images presented while training the detector, and Ldetect

is a loss function between pre-trained detector’s predic-

tions and desired targets Y ∈ R
K×6. This loss function

is the same as the one used to train the object detector

and it is responsible for synthesizing category and loca-

tion conditioned objects in xinv . This is usually achieved

by combining a box category loss Lcategory , a box dimen-

sion loss Lbox and a grid location loss Lconf . Formulations

of Lconf ,Lbox,Lcategory vary across the detector architec-

tures. Common choices include binary cross entropy for

Lconf , cross entropy for Lcategory and either L1 or gener-

alized IoU (GoI) [34] for Lbox. The targets Y consist of

K boxes, where every kth box is defined by six parameters:

batch index (Yk,1), a bounding box category (Yk,2) out of

C categories and bounding box coordinates (Yk,3:6) x,y,w,h.

We use the regularizer RDI to govern on image fidelity.

RDI consists of two parts: A prior term Rprior as in Deep-

Dream [23] that acts on image priors, and the BN regular-

ization term RBN as in DeepInversion [44] that regularizes

feature map distributions:

RDI(x) = Rprior(x) +RBN (x), (2)

where Rprior checks on total variation, RTV , and L2 norm

of the input:

Rprior(x) = αTV RTV + αl2 ||x||
2
2. (3)

Total variation encourages adjacent pixels to have the same

intensity by minimizing their L1 distances:

RTV =

N∑

i=1

3∑

c=1

W−1∑

u=1

H−1∑

v=1

|xi,c,u,v − xi,c,u+1,v|+

|xi,c,u,v − xi,c,u,v+1|.

(4)

This makes synthetic image conform to the fact that nat-

ural images are “smooth”, effectively acting as a prior for

natural images that has been widely shown to improve fi-

delity [23, 26, 44]. The second term, ||x||22 prevents the

generated images from saturating during the optimization

process.

Akin to DeepInversion [44], DIODE utilizes the regu-

larization RBN to take advantage of the average feature

statistics of training data that are cached in the BN layers of

the detector. This pushes to valid feature distribution from
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Variable Sampling distribution Variable description

Yk,1 - batch index k, fixed

Yk,2 Cat.(C, (1/C...1/C)) object category

Yk,3 U [0,W ) box x-center

Yk,4 U [0, H) box y-center

Yk,5 U [Wmin,Wmax) box width

Yk,6 U [Hmin, Hmax) box height

Table 1: Bounding box sampling space for DIODE image

synthesis. We sample one object Yk out of C categories for

every image xk. The min. and max. box dimensions are

set to Wmin/Hmin = 0.1W and Wmax/Hmax = 0.75W .

Cat. - categorical distribution; U - uniform distribution.

low- to high-levels of network embedding for the synthetic

data. To this end, RBN matches the feature statistics, i.e.,

channel-wise mean µl(x) and variance σ2
l (x) of the current

batch, to those stored in BN layer µBN
l /σ2 BN

l , l = 1...L,

with L being the total number of BN layers:

RBN (x) = αBN

L∑

l=1

||µl(x)− µBN
l ||2+

||σ2
l (x)− σ2 BN

l ||2

(5)

A combination of prior terms Rprior and BN regularization

RBN pushes the generated images closer to the teacher’s

training distribution. The weights αBN , αTV , and αl2 con-

trol their relative importance.

3.1. Bounding box sampling

In this section we propose a bounding box sampling

strategy to automatically sample the targets Y required for

generating images. These targets could be potentially pro-

vided manually, however, it becomes infeasible to repeat-

edly query the user for generating a large dataset.

To make this process data-free, we propose an alternate

sampling strategy that samples one object Yk ∈ R
6 for each

image in the batch xk ∈ R
3×H×W . This allows us to effec-

tively and efficiently sample a large set of bounding boxes

and category labels to guide the generation of images with

a high degree of diversity. Table 1 summarizes the details

of the sampling process.

This box sampler generates one object per image. To in-

crease the object density, we propose two techniques: (1)

tiling strategy and (2) false positive prediction sampling

(YFP sampling). The tiling strategy grids multiple one-

label generated images to create a multi-object image. Al-

ternatively, YFP sampling is developed as a by-product of

our observation that during DIODE, RBN (x) causes the

emergence of context relevant objects in addition to the ini-

tialized targets Y. These false positive objects YFP are

eventually suppressed to minimize the task loss in eq. 1.

However, we can aggregate YFP that appear with high con-

fidence to build complex targets that are semantically con-

sistent with the label space of teacher’s dataset.

As a result of our sampling strategy, DIODE is com-

pletely independent of detection labels from available

datasets. Augmented with either tiling or YFP sampling,

as we will show in our experiments in section 5, DIODE

can yield objects of varying dimensions, counts, and cate-

gories in a single image to facilitate downstream tasks, e.g.

distillation.

3.2. Differentiable augmentations for DIODE

Given the need to simultaneously satisfy bounding boxes

and category labels during inversion, we observe that

though eq. 1 improves image quality and imposes strong

feature constraints on inputs, it converges quickly in the op-

timization process, and hence, leads to early saturation of

image fidelity and generalizability.

To challenge the optimization process and generate im-

ages that are robust against label preserving transforma-

tions, we augment DIODE with a varied set of data aug-

mentations that have been widely shown to be beneficial for

training object detectors. This forces the semantic content

of inverted images to be invariant to augmentations and thus

conforming to natural images.

One key requirement for data augmentation in an inver-

sion setup, however, is differentiability. The transfer func-

tion must be differentiable to enable the propagation of gra-

dients from the final loss function to the input images. We

consider the following augmentation strategies that satisfy

this constraint: (1) random horizontal flips, (2) x-y trans-

lation jitter, (3) random brightness (4) random contrast and

(5) cutout [7]. Note that DeepInversion [44] adopts the first

two strategies, i.e., x-y jitter and horizontal flips, for in-

verting classification networks. We find that they are not

enough for the challenging task of object detector inversion,

and the enriched set of transformations is crucial to improve

the quality of generated images. As we will show in our

experiments, using all these augmentations yields a signifi-

cant improvement in the visual fidelity and generalizability

of xinv .

4. Data-Free Knowledge Distillation for Object

Detection

In this section, we propose a method to use a large

dataset of synthetically generated images for distilling a stu-

dent detector from a pre-trained off-the-shelf teacher detec-

tor. Unlike existing approaches for distillation of object de-

tectors [19, 37, 42], our approach does not require access

to images or labels from the teacher’s training data. Ad-

ditionally, unlike previous data-free distillation approaches

that only work on image classification models [2, 22, 28],

we distill deep object detector networks.
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For distilling deep object detectors, we make use of

the mimic learning knowledge distillation paradigm which

matches the predictions between student and teacher neural

networks in addition to training with ground truth labels [1].

However, we consider only the component which guides the

optimization of student detector using teacher’s predictions

on inputs x. These predictions encode rich inter-category

information and soft object proposals that can be transferred

to the student. More precisely, we formulate the distillation

loss as Lmimic which minimizes the L2 distance between

teacher’s and student’s predictions on a collection of input

images X :

Φ∗
stu = min

Φ

∑

x∈X

Lmimic(Φ(x),Φstu(x)) (6)

Lmimic(Φ(x),Φstu(x)) = ||Φ(x)− Φstu(x)||
2
2. (7)

The collection of images X can either be our synthesized

images XDIODE or belong to a proxy dataset Xproxy . Since

our approach is data-free, we make use of our synthesized

dataset from DIODE and its variants for minimizing objec-

tive (eq. 7) and optimizing the student. As we will show

later, this outperforms proxy datasets that suffer the domain

gap problem.

5. Experiments

We next demonstrate the ability of DIODE for image

synthesis from off-the-shelf deep object detection networks,

and then perform data-free knowledge distillation between

two deep object detection networks. We first show a wide

range of synthetic images, where we provide in depth ab-

lation studies to quantify the contribution of each individ-

ual proposed techniques. Then, we compare synthesized

dataset with DIODE to other proxy datasets for transferring

the knowledge between two networks.

5.1. Implementation details

We use a Yolo-V3 one-stage object detection network

[32] as the teacher and student networks in our experiments.

Both networks have same architecture since our goal is to

extract knowledge from pre-trained model and not network

compression. The teacher (Φ) is pre-trained on the MS-

COCO dataset and yields an accuracy of 0.608 mAP. For

the loss function Ldetect, we use the formulation by [15]

that uses binary cross entropy for Lconf and Lcategory and

generalized IoU [34] for Lbox. We use average precision

(AP@IoU=0.5) as our measure of detector accuracy.

We generate xinv by optimizing the cost function (eq. 1)

for 5000 total iterations. We utilize a multi-resolution image

generation approach as in [44] to enable large batchsize dur-

ing the inversion process. This enables a faster generation

of a large quantity of high resolution images. Check sup-

plementary material for DIODE hyper-parameter values.

Verifier detection network (Φverif ). We use a separate

Yolo-V3-Tiny pre-trained on the teacher’s dataset as a ver-

ifier network, following the paradigm of [44], to check on

the generalizability of the inverted images xinv . A batch

of inverted images is said to have generalized well if they

make highly accurate verifier predictions. This implies that

xinv have not overfitted to the pre-trained model Φ being in-

verted, since they contain visual characteristics that can be

independently recognized by a separate detection network.

Note that the verifier serves only as an experimental tool for

image generalizability analysis - it is not required during

image synthesis in DIODE’s loss computation (eq. 1).

Image tiling. Our bounding box strategy allows DIODE

to synthesize one object per image. However, real images

often contain multiple objects based on context. To increase

the object density of our inverted dataset, we utilize a tiling

strategy which merges (up to 25) synthetic images by tiling

them into a single multi-object image.

YFP sampling. An alternative way to increase object den-

sity is false positive prediction sampling (YFP sampling)

as described in section 3.1. In our experiments, we found

that due to constantly evolving targets Y, the quality of

generated image suffers. While we can choose to synthe-

size images twice, once for generating targets and then for

generating images with fixed targets, this takes consider-

able time and resources. To lessen this cost, we generate la-

bels with YFP sampling only once for the lowest resolution

(160), and then use them as fixed targets for multiresolution

DIODE.

5.2. Image synthesis using DIODE

In this section, we first provide qualitative results of the

generated images and then, ablation studies analyzing dif-

ferent components of DIODE.

Figure 2 shows representative examples of images gener-

ated using DIODE. As we can see, we can generate diverse,

high quality and generalizable images. In a closer look at

these generated images, we can observe that even though it

does not explicitly optimize for context, DIODE generates

context around targets. For example, the train is synthe-

sized on top of a track and the ship is placed in a reflective

surface of water. Importantly, these images have been gen-

erated without requiring any access to the teacher’s training

data, pre-computed activations or GAN generator.

Next, in Figure 3, we provide an example of YFP sam-

pling in DIODE. As shown, the image starts with a single

target (microwave) and during the DIODE iterations, we en-

counter context relevant false positive predictions such as

cup and bowl, and retain them as targets. As a result, the

generated image has a complex label space with semanti-

cally consistent and overlapping objects.

We now focus on quantifying the benefits of differen-

tiable data augmentation. Table 2 shows the individual and
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Figure 2: Images generated by DIODE on a Yolo-V3 off-the-shelf detector pre-trained on MS-COCO. The conditioning

targets Y for each image are represented by a red box and category label. Note that the DIODE depicts target objects in

contextually correct backgrounds with realistic details.

Figure 3: YFP sampling in DIODE. Image with its current

targets shown at DIODE optimization iterations: (top-left

→ bottom-right) 800, 1200, 1600, 2000, 2400, 2800, 3200

and 4000.

cumulative impact of each strategy on the verifier (Φverif )

accuracy. As shown, every individual data augmentation

improves over the baseline of no augmentation. Impor-

tantly, even though cutout by itself is a strong augmenter,

combining all augmentation methods yields significant im-

provements over any individual augmentations in terms of

accuracy and robustness against initialization (lower vari-

ance). This is because data augmentation challenges the

optimization process and results in images whose seman-

tic content is invariant to augmentation, just like real data.

Qualitative comparisons for this experiment are shown in

Fig. 4. In the figure, we can observe clearer boundaries on

the wine-glass and the emergence of class specific distinc-

Data Augmentation Φverif

DIODE flip jitter brightness contrast cutout (mAP)

w/o aug. - - - - - 0.49± 0.063

w/ aug.

X 0.52± 0.026
X 0.51± 0.017

X 0.53± 0.034
X 0.49± 0.025

X 0.70± 0.024

Ours X X X X X 0.71± 0.014

Table 2: Ablation study of the data augmentation based on

Φverif accuracy. We report mean and std of 5 runs with

different seeds, same targets.

tive patterns such as the ribs on an umbrella, wheels on the

car and layers of the burger. From these results, we can con-

clude that adding differentiable data augmentation improves

the quality and the visual fidelity of the generated images.

DIODE is not limited to Yolo-V3 detector but can be

adapted to other object detectors. Figure 5 shows quali-

tative examples of DIODE applied to SSD300 [21] object

detector. Compared to Figure 2, we observe better color

distribution but worse object boundaries.

With DIODE, we are now able to very effectively gen-

erate a large set of synthetic images: we repeat the process

and generate 2500 batches via DIODE, each batch sampled

from a different random seed and set of targets, of batch size

48, resolution at 416×416, 120k images in total. In parallel,

we also generate a version of this dataset with YFP sam-

pling. Then, in the next section, we use these new synthetic

images for data-free knowledge distillation.
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Figure 4: Qualitative effect of data augmentation on DIODE

synthesized images from Yolo-V3 pre-trained on MS-

COCO with (bottom) and without (top) data augmentation

methods. left to right: wine glass, bench, umbrella, car,

microwave oven, burger.

Figure 5: Images generated by DIODE on SSD300 detector

pre-trained with MS-COCO 2017.

5.3. Datafree Knowledge Distillation for Object
Detection

We focus now on evaluating the synthetic images gener-

ated by DIODE in the context of data-free knowledge dis-

tillation (KD) for object detection. To this end, we consider

a pre-trained teacher model Φ and distill its information to a

student detector Φstu. We first quantify the distillation im-

pact of using images and labels from the teacher’s dataset.

Then, in a second experiment, we evaluate the effect of our

tiling approach on generalization, and, finally, we evaluate

our distillation approach compared to distilling using other

proxy datasets. For these experiments, we use mimic learn-

ing as distillation method. We provide details of hyperpa-

rameters for this experiment in the supplemental material.

First, we quantify the distillation impact of using images

and labels from the teacher’s dataset for inversion. In Ta-

ble 3 we first show the best case performance of mimic

learning, where it has access to images from MS-COCO.

Input images original image original label mAP

MS-COCO (original) X X 0.524

DIODE X X 0.462

DIODE X X 0.418 (data-free)

Table 3: Ablation study towards data-free knowledge distil-

lation from a pre-trained Yolo-V3 network (0.608 mAP) on

MS-COCO dataset as teacher, to a new Yolo-V3 network

initialized from scratch. mAP measured on MS-COCO val-

idation set.

#objects per image distribution mAP

1 – 0.418

1-25 random 0.433

1-25 uniform 0.426

1-25 MS-COCO like 0.435

1-25 VOC like 0.429

Table 4: Ablation study comparing the performance of stu-

dent distilled on tiled images generated by different objects

per image distributions. We tile between 1 - 25 synthetic

single-object images, depending on the target distribution.

mAP is measured on the MS-COCO validation set.

The difference in the accuracy of student (0.524 mAP) and

teacher (0.608 mAP) informs us that we are limited by the

current method of knowledge distillation. Then, we show

the best possible performance of DIODE, by using synthetic

images conditioned on MS-COCO labels. Next, we show

our data-free approach which uses neither images, nor la-

bels from training data. The difference between last two

rows reveals that there is significant information present in

the label space of MS-COCO, and our YFP sampling and

tiling strategies are an attempt to counter this difference.

Next, we perform a study to choose the objects per image

distribution for tiling synthesized images in Table 4. Real

datasets contain a variable number of objects per image, and

we generate four datasets of 120000 tile images, where the

objects per image distribution is chosen to be random, uni-

form or similar to an existing dataset like MS-COCO [20]

or VOC [9]. In the same table the first row shows the accu-

racy of a student distilled on synthetic images without tiling.

Results indicate the following: (1) tiling improves perfor-

mance over single object DIODE images (2) the best re-

sults are achieved by using a distribution similar to teacher’s

dataset and (3) random tiling works as a competitive al-

ternative when no information is available about teacher’s

dataset.

Finally, we compare distillation using DIODE gener-

ated images to other proxy datasets. For comparison we

consider two types: in-distribution and out-of-distribution

proxies. In-distribution datasets contain objects from cate-

gories similar to those of the teacher’s dataset (MS-COCO).

They represent the scenario where we are aware of the
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Dataset # required images dataset distribution performance (mAP)

original teacher

MS-COCO 117k original training set 0.608

distillation to student (reinitialized)

ImageNet [6] 120k same-domain 0.466

VOC [9] 22k same-domain 0.443

BDD100k [45] 160k out-of-domain 0.313

GTA5 [35] 50k out-of-domain 0.285

Data-free w/ DIODE (ours) 0∗ – 0.418

Data-free w/ DIODE+tiles (ours) 0∗ – 0.435

Data-free w/ DIODE+YFP sampling (ours) 0∗ – 0.450

Table 5: Knowledge distillation results from a pre-trained Yolo-V3 object detector to a new Yolo-V3 initialized from scratch.
∗: for a fair comparison, we report results based on 120k DIODE synthetic images and 120k DIODE tiled images (from Table

4). Note that this requires no access to any external image nor labels.

Figure 6: Proxy datasets for knowledge distillation, from

left to right by columns: (1) MS-COCO (2) Pascal-VOC

(3) ImageNet (4) GTA5 (5) BDD100k.

data used to train the the teacher and we select proxies

that are as close as possible. On the other hand, out-of-

distribution datasets have a minimum category overlap with

the teacher’s training data. In this case, they represent the

scenario where we are unaware of the original training data

and, therefore, we select proxy datasets randomly. In partic-

ular, in this experiment, we use VOC2007+2012 [9] and Im-

ageNet [6] that represent images of common objects as in-

distribution, and BDD100k [45] and GTA5 [35] that repre-

sent data for autonomous car scenario as out-of-distribution

proxy datasets. Note that we adjust the proxy datasets to

match the number of samples in teacher’s dataset.

Table 5 shows the accuracy comparison between stu-

dent’s distilled from DIODE generated images and the

proxy datasets. As shown, distilling using the images gener-

ated by our proposed approach with YFP sampling (0.450

mAP) outperforms the best out-of-domain proxy dataset

(0.313 mAP) and is competitive with distilling on same

domain datasets (0.466 mAP). These results are a conse-

quence of the amount of similarity between the original

training data and the proxy data. Fig. 6 shows that same

domain datasets are extremely similar to MS-COCO. They

contain objects from equivalent categories and thus are able

to achieve better distillation accuracy. In comparison, out-

of-domain proxy datasets such as GTA5 or BDD100k con-

tain objects from few of the training data categories and are

also contextualized differently, leading to worse results. We

also note that increasing object density by YFP sampling

leads to better generalization than tiling due to contextually

relevant targets. However, as noted in section 5.1, YFP

sampling requires more resources so tiling may be preferred

when compute is limited.

6. Conclusion

In this paper, we have proposed a method for data-free

knowledge distillation of deep object detection networks.

Our approach consists of two main components: DIODE,

a framework to synthesize images from a pre-trained de-

tection model via model inversion, and a data-free mimic

learning approach to distill the knowledge from a teacher

to a student on the synthesized images for object detec-

tion. Our qualitative and quantitative experiments demon-

strate the quality and and generalizability of the synthe-

sized images. Moreover, data-free distillation for object

detection using these synthesized images yields a signifi-

cant improvement (0.450 mAP) compared to out-of-domain

proxy datasets (0.313 mAP) and are competitive with same-

domain proxy datasets (0.466 mAP). Both DeepInversion

[44] and DIODE are limited to synthesizing images from

networks with batch-normalization layers. Further explo-

ration is required to extend these methods to other normal-

ization layers such as group-normalization [43].
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