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Abstract

While accurate disease prediction from retinal fundus

images is critical, collecting large amounts of high qual-

ity labeled training data to build such supervised models is

difficult. Deep learning classifiers have led to high accu-

racy results across a wide variety of medical imaging prob-

lems, but they need large amounts of labeled data. Given

a fundus image, we aim to evaluate various solutions for

learning deep neural classifiers using small labeled data for

three tasks related to eye disease prediction: (T1) predict-

ing one of the five broad categories – diabetic retinopathy,

age-related macular degeneration, glaucoma, melanoma

and normal, (T2) predicting one of the 320 fine-grained

disease sub-categories, (T3) generating a textual diagno-

sis. The problem is challenging because of small data size,

need for predictions across multiple tasks, handling image

variations, and large number of hyper-parameter choices.

Modeling the problem under a multi-task learning (MTL)

setup, we investigate the contributions of each of the pro-

posed tasks while dealing with a small amount of labeled

data. Further, we suggest a novel MTL-based teacher en-

semble method for knowledge distillation. On a dataset of

7212 labeled and 35854 unlabeled images across 3502 pa-

tients, our technique obtains ∼83% accuracy, ∼75% top-5
accuracy and ∼48 BLEU for tasks T1, T2 and T3 respec-

tively. Even with 15% training data, our method outper-

forms baselines by 8.1, 3.2 and 11.2 points for the three

tasks respectively.

1. Introduction

Eye diseases significantly impact the quality of life

for patients. Four of such diseases are glaucoma, dia-

betic retinopathy (DR), age-related macular degeneration

(AMD), and uveal melanoma. Glaucoma incidence world-

wide is 64.3M in 2013 and projected to 76M in 2020 [1].

The disease affects ∼2M people in USA1. In 2015, ∼415M

people were living with diabetes, of which ∼145M have

1https://doi.org/10.1016/j.pop.2015.05.008,

https://www.ncbi.nlm.nih.gov/pubmed/20711029
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Figure 1: Multi-Task Learning (MTL) combined with

Multi-Teacher Knowledge Distillation (KD) for eye disease

prediction. Each of the seven teachers is trained on a subset

of three tasks. KD is then used to distill “dark knowledge”

from all the teachers to the MTL student using both labeled

as well as unlabeled instances making our model robust in

small labelled data scenarios.

some of DR2. Macular degeneration incidence worldwide

is 196M in 2017 and projected to 288M by 2040 [2]. Al-

though it is a relatively rare disease, uveal melanoma is the

most common primary intraocular tumor in adults with a

mean age-adjusted incidence of 5.1 cases per million per

year3.

Early diagnosis of these eye diseases can help in effective

treatment or at least in avoiding further progression of these

diseases. Limited availability of ophthalmologists, lack of

awareness and consultation expenses restrict early diagno-

sis. Hence, automated screening is critical. Recently, there

has been a significant focus on applying deep learning tech-

niques for medical imaging. However, deep learning clas-

sifiers are known to require large amounts of labeled train-

2http://dx.doi.org/10.1016/S2214-109X(17)

30393-5
3https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5306463/
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ing data. Gathering labeled data for retinal imaging at a

large scale is difficult because of the extensive human label-

ing effort, especially by qualified ophthalmologists. Hence,

we explore different ways of obtaining high accuracy for

disease prediction using small amounts of labeled retinal

fundus images. Specifically, we explore three critical tasks

namely coarse-grained disease classification, fine-grained

disease classification, and detailed disease diagnosis gen-

eration. Given small labeled dataset L and large unlabeled

dataset U of fundus images, we aim to train a classifier such

that given a new fundus image, can predict with high accu-

racy, one of the following classes: DR, AMD, glaucoma,

melanoma, normal, One of the 320 fine-grained sub-disease

classes and a detailed textual diagnosis similar to that pro-

vided by ophthalmologist.

Disease prediction given fundus images is very challeng-

ing because of the following reasons: (1) Gathering large

amount of labeled fundus data is difficult. (2) Images have

a lot of heterogeneity because of use of different lighting

conditions, different devices, and different kinds of fun-

dus images (like single field of view versus montage im-

ages), and the field of view captured. (3) Sometimes, mi-

nor changes in images are indicative of particular diseases.

(4) Presence of artifacts like specular reflection, periphery

haze, dust particle marks, fingerprints, blurred images, in-

correctly stitched montage makes modeling complicated.

(5) Absence of large corpus to learn robust embeddings for

rare diagnosis words. (6) Images vary wrt. macula position

– center, nasal, inferior, superior. Some images even have

disc/macula cut out.

The three proposed tasks are very related; hence we

model them using a deep learning based multi-task learn-

ing (MTL). Further, in presence of small labeled data, we

augment the MTL setup with Knowledge Distillation (KD).

In KD, a student model is trained to mimic a teacher model.

Fig. 1 provides a conceptual illustration of the proposed ap-

proach. Given small amounts of labeled data for the three

tasks, we train seven teacher models, one each for a subset

of the three tasks. Thus, four of these seven teacher models

are multi-task in nature. Further, we learn an MTL student

model by distilling the “dark knowledge” from the seven

teachers using both small-labeled as well as large-unlabeled

data.

Fig. 2 illustrates the detailed architecture of our proposed

approach. The MTL teacher model M1 jointly extracts im-

age description relevant to the three tasks using ImageNet-

pretrained ResNet-50 [3], a deep convolutional neural net-

work (CNN), fine-tuned on labeled data L. M1 is trained

end-to-end using gradient descent with a linear combina-

tion of cross entropy loss across the three tasks. A complex

model with small data can lead to overfitting which can be

avoided using regularization. Hence, we perform a two-

stage knowledge distillation (KD) [4]. In the first stage,

model M1 is finetuned to obtain model M2 such that the

cross entropy loss on labeled data is small and KL diver-

gence between M2’s output distributions and M1’s output

distributions across the three tasks is also minimized. In

the second stage, to harness large unlabeled data U , under a

semi-supervised setup, we further finetune M2 to obtain M3

by minimizing KL divergence between M2’s output distri-

butions and M3’s output distributions across the three tasks.

We extensively experiment with multiple design choices:

with and without MTL, with and without KD, with varying

temperature for KD, with teacher ensemble and also with

varying training data size. We are the only work focusing

on modelling multiple eye diseases with the same model,

leading to lack of good baselines. Our best method provides

an accuracy of 82.52% for task 1, 51.11 (top-1)/75.19 (top-

5) for task 2 and 48.1 BLEU for task 3, when 70% of the

labeled data is used for training, while demonstrating gains

for each task of 8.1, 3.2 and 11.2 points respectively, using

only 15% of the labeled data. Our results show the effec-

tiveness of the combined proposed MTL+KD architecture

for training retinal disease prediction models from small la-

beled data.

Overall, we make the following contributions:

• We explore retinal disease classification task using

small labeled training data.

• We propose a learning algorithm using MTL and

multi-teacher KD on different training data sizes. To

the best of our knowledge, this is the first work on us-

ing KD in MTL scenario for retinal images.

• Using a dataset of 7212 labeled and 35854 unlabeled

fundus images for 3502 patients from 2004 to 2017, we

show the effectiveness of the proposed methods. Us-

ing only 15% of the labeled data (1082 images), using

MTL+KD, we can perform comparably to single task

models trained with 70% data.

The paper is organized as follows. We discuss related

work on machine learning for eyecare, deep learning for

medical imaging, MTL and deep learning with small data

in Section 2. In Section 3, we discuss details of the pro-

posed methods. In Section 4, we present dataset details and

insights from analysis of results. We conclude with a sum-

mary in Section 5.

2. Related Work

Machine Learning for Eyecare. Work on applying predic-

tive analytics for eyecare includes the following: prediction

of post-operative surgery outcomes [5, 6, 7], disease predic-

tion (glaucoma [8, 9], AMD [10, 11], DR [12]), segmenta-

tion of eye parts and anomalies (blood vessels [13], retina

exudates, microaneurysms, drusen, cotton-wool spots), and
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Figure 2: Our model’s training phases are depicted in the figure. The loss functions used in each phase are shown above the

corresponding stages. CE stands for cross-entropy while KL stands for KL-divergence.

predicting if eye tumor will metastasize [14]. We focus on

the critical problem of screening patients concerning four

most important eye diseases using fundus images.

Deep Learning for Medical Imaging. Motivated by im-

mense success of deep learning techniques in general vi-

sion, speech as well as text problems, there has been

a lot of focus on applying deep learning for medical

imaging recently [15, 16]. Specifically, deep learning

techniques have been applied to medical image data for

neuro [17], retinal [12], pulmonary [18], digital pathol-

ogy [19], breast [20], cardiac [21], abdominal [22], mus-

culoskeletal [23] areas. Specifically, problem areas in-

clude image quality analysis [24], image segmentation [25],

image/exam classification [26], object/lesion classifica-

tion [27], and registration (i.e. spatial alignment) of med-

ical images [28], image enhancement, and image recon-

struction [29]. Although another work has recently focused

on image classification and caption generation from retinal

fundus images [30] with noisy labels, we build models with

clean but small labeled data.

Multi-task Learning. MTL has been used successfully

across all applications of machine learning, from natural

language processing [31] and speech recognition [32] to

computer vision [33] and drug discovery [34]. MTL can

be done with soft [35] or hard parameter sharing [36]. Fur-

ther, recently, there has been some work [37, 38] on per-

forming knowledge distillation in the context of MTL for

Transformer-based architectures on the GLUE [39] which

is a set of NLP (Natural Language Processing) tasks. In

this paper, we perform hard parameter sharing based MTL

across three eye diagnosis tasks.

Deep Learning with Small Labeled Data. Previous

works have suggested various ways to handle small la-

beled data. Pre-training using transfer learning [40] from

models trained on similar tasks with rich data, is a com-

mon approach. Traditionally, self training [41] has been

the most popular semi-supervised approach to handle lack

of enough labeled data. But self training requires careful

threshold tuning for throttling to avoid label noise. Re-

cently, KD [42, 43] has been proposed as an approach for

model compression but we observe that it can also be used

as a semi-supervised technique [44]. In this paper we ex-

plore a combination of multitask learning, distillation, and

their combined efficacy when applied to small labelled data.

3. Approach

In this section, we explain the setup of the tasks using

deep learning architectures. Next, we describe our proposed

MTL architecture. Lastly, we discuss KD with MTL.

3.1. Task Description

For each disease, fundus images show symptoms (Ta-

ble 1). We attempt to diagnose such symptoms using deep

learning methods. Early detection is critical to avoid fur-

ther loss. We model task T1 as a multi-class classification

of with five classes (DR, AMD, melanoma, glaucoma and

normal). Task T2 is modeled as a 320-class classification

problem, where the broad five classes have been divided

further based on disease sub-types, disease severity, retinal

regions and other important symptoms. Tasks T1 and T2 are

modeled using ResNet-50 architecture. We initialize model

weights using ImageNet pre-training to get a 1024D rep-

resentation of every fundus image. ResNet output is con-

nected to two dense layers with ReLU and softmax activa-

tions respectively. Last layer is of size 5 for T1 and size 320

for T2). We use cross entropy loss for both the tasks.

We model task T3 (diagnosis generation) as an image

captioning problem, where given a fundus image, we out-

put the detailed disease diagnosis. The diagnosis generation

model consists of a single layered LSTM, which takes the

features generated by the CNN encoder (projected to a suit-

able latent representation using a dense layer) along with

the “start-of-sentence (SOS)” token, and trains a language

model conditioned on it. The hidden state of each timestep

is projected to a vocabulary sized vector, on which softmax

activation is applied. This vector is then sampled to gen-

erate the corresponding output word from the vocabulary.
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Disease Description Treatment on early detec-

tion

Symptoms in fundus images

DR damage to the retina due to dia-

betes mellitus

laser surgery, injection

of corticosteroids or

anti-VEGF agents

microaneurysms, exudates, cotton wool spots,

flame hemorrhages, dot-blot hemorrhages

AMD deteriorates the macula; distor-

tion and loss of central vision

anti-VEGF medications

and supplements

progressive accumulation of drusen in macula; ge-

ographic atrophy, increased pigment, and depig-

mentation

Glaucoma damage to the optic nerve and

cause vision loss

medication, laser treat-

ment, or surgery to slow or

stop the progression

analyzing cup to disc ratio, Inferior Superior

Nasal Temporal (ISNT) features of cup and disc,

and Optic Nerve Head atrophy

Melanoma cancer of the eye involving the

iris, ciliary body, or choroid

radiation therapy; Gamma

Knife therapy; Ther-

motherapy; Surgery

(resection or enucleation).

tumors (2.5mm thick) look like pigmented dome

shaped mass that extends from the ciliary body or

choroid; orange lipofuscin pigmentation or sub-

retinal fluid

Table 1: Disease description, treatments on early detection and visual symptoms in fundus images [9, 11, 12, 45]

.

The generated word is then fed into the next timestep as an

input. We use teacher forcing to prevent training biases with

ratio to 0.5. We use the cross entropy loss summed across

all generated words.

3.2. Multi­Task learning (MTL)

A simple approach is to model the three tasks as three

independent multi-class classification problems using neu-

ral networks. Such an approach would result in the model

parameters growing as a factor of the number of tasks, and

does not exploit task dependencies. To address these, we

apply MTL by sharing hidden layers between all tasks,

while keeping several task-specific output layers. Hence,

we use a shared convolutional neural network (CNN) to

obtain a latent representation for the input image. Few

CNN architectures are popular like: AlexNet [46], Incep-

tion v3 [47], VGGNet-19 [48] and Resnet-50 [3]. Since

ResNet-50 outperformed other architectures for multiple of

our early experiments, we choose to use it to produce our

shared encoded representation. Task specific layers for each

task are conditioned on this output from ResNet-50. A de-

tailed architecture diagram of the MTL model is provided

in the supplementary material.

We use the small labeled data L to train a MTL-based

deep ResNet-50 model M1 (as shown in Fig. 2). Each

instance in L consists of an image I along with a label

s = (s1, s2, s3). Note that s actually consists of three la-

bels: broad classification label (s1), fine-grained classifica-

tion label (s2), and diagnosis (s3). Further, each instance

〈I, s, s′〉 is scored against the model M1 to obtain a predic-

tion vector s′ = (s′
1
, s′

2
, s′

3
). s′

1
is of size 5. s′

2
is of size

320 . s′
3

is a prediction matrix of size |s3|x|V | (where V

is the vocabulary) and stores predictions for each time step

of the LSTM. Thus, now, for every image I ∈ L, we have

hard labels s as well as M1 predicted soft labels s′. The fi-

nal loss for the MTL M1 model is computed as the weighted

combination of the individual losses as shown in Eq. 1.

LM1(〈I, s, s′〉) =

3∑

t=1

λt
1
CE(st, s

′
t) (1)

where CE represents cross-entropy loss, and {λt
1
}3t=1

are

tunable hyper-parameters for model M1.

3.3. Knowledge Distillation (KD) with MTL

KD (or student-teacher networks [42]) is a model com-

pression method in which a small model (student) is trained

to mimic a pre-trained, larger model (teacher), or an ensem-

ble of models. In our paper, the student model has the same

capacity as the teacher model. We adapt the KD approach

for improved regularization and semi-supervised learning.

KD with Labeled Data. KD uses the predicted distribu-

tions from the teacher and the student to define a KL diver-

gence loss for training the student. These predicted distribu-

tions are obtained after the softmax activation which takes

a hyper-parameter called temperature τ (usually τ > 1).

Our student model M2 has the same architecture as teacher

M1. Loss for M2 is a linear combination of cross entropy

loss with respect to hard labels (between s and s′) and KL-

divergence loss with respect to soft labels (between s′ and

s′′) where s′′ = (s′′
1
, s′′

2
, s′′

3
) is output prediction from M2

as shown in Eq. 2.

LM2(〈I, s, s′, s′′〉) =
3∑

t=1

λt
2
[CE(st, s

′
t) + KL(s′t, s

′′
t )]

(2)

3986



DR AMD Glaucoma Melanoma

1
-g

ra
m retinopathy, diabetic,

edema, macular, prolifera-

tive

macular, degeneration, age-

related, nonexudative, retina

glaucoma, open-angle,

stage, primary, severe

melanoma, malignant,

choroidal, uvea, ciliary

2
-g

ra
m

macular edema, diabetic

retinopathy, diabetes mel-

litus, proliferative diabetic,

type 2

macular degeneration, age-

related macular, of retina, se-

nile macular, degeneration of

glaucoma suspect, open-

angle glaucoma, primary

open-angle, severe stage,

glaucoma severe

malignant melanoma,

choroidal malignant,

melanoma of, of uvea,

ciliary body

3
-g

ra
m

proliferative diabetic

retinopathy, type 2 dia-

betes, 2 diabetes mellitus

age-related macular degenera-

tion, senile macular degener-

ation, degeneration of retina,

nonexudative senile macular

primary open-angle glau-

coma, glaucoma severe

stage, glaucoma moderate

stage

choroidal malignant

melanoma, melanoma of

choroid, melanoma of

uvea, melanoma of ciliary

Table 2: Most popular unigrams, bigrams and trigrams per disease, from the diagnosis provided by ophthalmologists.

where CE and KL represent cross-entropy and KL diver-

gence loss respectively, and {λt
2
}3t=1

are tunable hyper-

parameters for model M2.

Learning from Unlabeled Data. Further, we adapt the KD

approach for improved semi-supervised learning as follows.

Images I from unlabeled set U are scored against the model

M2 to obtain a soft prediction s′′. These predictions s′′ are

then used to further fine-tune model M2 to obtain model

M3 using the KL-divergence loss between M3’s predicted

class/ diagnosis distributions (s′′′) and s′′ as shown in Eq. 3.

LM3(〈I, s′′, s′′′〉) =
3∑

t=1

λt
3
KL(s′′t , s

′′′
t ) (3)

where KL represents KL divergence loss, and {λt
3
}3t=1

are

tunable hyper-parameters for model M3. Given that models

M1 and M2 have been trained on a relatively small set L,

we hope that the addition of soft labels from U , will ensure

that model M3 generalizes better than the prior models.

Learning from Multiple Teachers. In the MTL setup,

different tasks may need variable amounts of data as well

as number of steps to generalize adequately. Combina-

tions of tasks may improve or hinder the learning process.

We train models for every sub-combination of the three

tasks, namely {T1, T2, T3, (T1, T2), (T1, T3), (T2, T3),
(T1, T2, T3)}. We use these models as the teacher ensem-

ble to guide learning. Specifically, during training, a stu-

dent model with task Ti will distill knowledge (using KL-

divergence) from teacher models which have learned task

Ti. Each teacher captures a different aspect of dynamics

between tasks and provides the same as supervision to the

student model. As discussed above, teachers are also trained

on the labeled set L and fine-tuned on U .

4. Experiments

4.1. Dataset and Experimental Settings

Our dataset consists of 7212 labeled and 35854 unla-

beled fundus images corresponding to 3502 patients who

visited the hidden-for-review institute from 2004 to 2017.

Fundus images have been captured using Topcon 50X with

Ophthalmic Imaging Systems (OIS) capture station. The

images vary in resolution and field of view. We resized all

the images to a standard size of 224x224x3. We also nor-

malized the pixel values to be between −1 and 1. The la-

beled images are assigned to either normal category or to

one of the four broad disease categories: DR, AMD, glau-

coma or melanoma. Labeled data is almost balanced. Our

cleaned dataset contains 320 fine-grained sub categories of

diseases. Each image is also labeled with a diagnosis de-

scription provided by ophthalmologists, with an average

length of 7.69 words and mode of 4 words. We filtered

out diagnosis that occur less than 10 times. These diagnosis

contain a vocabulary of 237 words. Disease specific diag-

nosis vocabulary sizes are as follows: DR 130, AMD 59,

Glaucoma 71, and Melanoma 15. Fig. 3 shows the diagno-

sis caption length distribution in words. Of these 237 words,

we retained the most frequent 193. Also, we set maximum

caption length to 14 and truncate longer captions. Table 2

shows top most popular unigrams, bigrams and trigrams per

disease.

Experimental Settings. All architecture and hyper-

parameters choices were based on cross-validation. We

choose to use Resnet-50 (initialized with pre-trained Ima-

geNet weight) for the architecture of our shared image en-

coder. The architecture is trained with stochastic gradient

descent (SGD) with Nesterov momentum. We set the learn-

ing rate for SGD to 0.01, with momentum value of 0.9. Our

experiments showed that Adam optimizer also performed

similar to SGD. We use early stopping, which on average
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Figure 3: Length distribution of captions (in words).

completes training in 30 epochs. All models are trained on

an Intel Xeon CPU machine with 32 cores and 2 Titan X

GPUs (each with 12GB RAM) with a batch size of 128. For

MTL, we set {λt
{1,2,3}}

3

t=1
to 1 so as to give equal impor-

tance to each task. We additionally use an L2 weight regu-

larization, whose coefficient we set to 10−6. For the LSTM

decoder, we use embeddings of size 256, hidden layer with

512 units and teacher forcing ratio of 0.5. We learn embed-

dings dynamically and initialize with random embeddings.

We use a fixed 15% of the labeled data for validation and

test each. We learn various models by varying the training

set percentages as p=[15, 30, 45, 60, 70]. All experiments

are conducted in PyTorch. We make the code publicly avail-

able here4.

4.2. Results

We attempt to answer the following questions: (1) How

does training data size effect the MTL? (2) Does KD help

individual tasks? (3) How do we find the optimal KD tem-

perature for each task? (4) Behavior of task combinations

with KD, and (5) Does using teacher ensemble for KD help?

To answer these, we need to experiment with these design

choices (with cardinality in brackets): (1) use KD or not

(two), (2) task combinations (seven), (3) training data size

(five), (4) temperature for KD (four), and (5) use of teacher

ensemble or not for KD (two). Overall, there are a total of

2x7x5x4x2=560 combinations of hyper-parameters. After

pruning hyper-parameters (as described in the subsections

below), we end up performing 121 experiments to answer

these questions. We are the only work focusing on mod-

elling multiple eye diseases with the same model, leading

to lack of good baselines.

Effect of varying training data size on MTL (M1 re-

sults). We investigate whether MTL helps with varying

amount of labeled data without any KD. Table 3 highlights

the performance on various tasks after training on a combi-

nation of tasks with varying dataset size p. Performance is

measured using multi-class classification accuracy for tasks

4https://github.com/SahilC/

mtl-kd-disease-recognition

T1 and T2, and BLEU [49] score for T3. Note that if we do

not include a task in the MTL combination for training, we

cannot use it for evaluation; hence some table cells appear

empty. Clearly, MTL leads to improved accuracies com-

pared to independently learning for either of the three tasks,

across most (dataset size, task) combinations. Comparing

with our best MTL model (last row from Table 3), T3 ben-

efits most with an average of 9.6% gain; while T1 and T2

have average gains of 1.4 and 4.8%. Also, benefits from

MTL are higher for larger dataset sizes.

MTL + KD with Labeled Data (M2 results). Comparing

the last row of Table 3 with row 4 of Table 5, we observe

that M2 improves over the M1 accuracy by 2.2%, 2.2% and

5.2% across the three tasks resp. For detailed performance

of model M2 across various task combinations, please refer

to the supplementary.

KD + Temperature Optimization for each task. For each

(task, data size) pair, we find the best temperature setting.

To manage the burden of extensive computation, we follow

a greedy exploration of τ , i.e., we select τ based on the

best performance on individual tasks rather than a combi-

nation. Intuitively, if we had a perfect teacher, we could

use an output distribution closer to a one-hot vector; if the

teacher is imperfect, we would prefer to use a softer output

distribution. This effect can be emulated by experiment-

ing with different temperature values τ as [0.5, 1, 5, 10].

Small τ implies sharper distributions, while larger τ im-

plies softer distributions. Balancing parameter α for clas-

sifier with hard+soft labels was set to 0.95 (for soft loss).

Table 4 shows that across various data fractions and across

tasks, we observe better results than in Table 3. Thus, KD

seems to be helpful across dataset sizes for retinal disease

prediction. The best τ across tasks is 10 for dataset size

p=15% while it is 5 for p=70% for most tasks. This leads to

an intuitive observation: when p is small, the task is harder

to learn and hence higher τ is desired. We show the analysis

for M3 only but we followed a similar approach for M2 as

well.

MTL + KD with Unlabeled Data + Teacher Ensemble

(M3 results). Table 5 shows results when we combine MTL

with KD. (T1, T2, T3) is the best among all task combi-

nations. Compared to only MTL (Table 3) with all three

tasks together, MTL+KD shows massive gains especially

with smaller data fractions for each task. Finally, we en-

able teacher ensemble for KD, rather than learning from

a single teacher. Learning from teacher ensemble in an

MTL setup implies that a model with tasks (T1, T2, T3)
can distill knowledge from teachers which were trained

on task combinations (T1), (T2), (T3), (T1, T2), (T1, T3),
(T2, T3), (T1, T2, T3). Last line in Table 5 shows that

MTL+KD with teacher ensemble is the best method, sig-

nificantly better than the initial baseline. Comparing rows 4

and 6, M3 improves task accuracies by 1.7%, 3.3%, 14.1%
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# Test→ T1 (Accuracy) T2 (Accuracy) T3 (BLEU)

MTL Train↓ p → 15 30 45 60 70 15 30 45 60 70 15 30 45 60 70

1 T1 0.684 0.755 0.755 0.774 0.744

2 T2 0.382 0.417 0.434 0.392 0.415

3 T3 0.234 0.297 0.321 0.349 0.354

4 T1,T2 0.729 0.760 0.766 0.778 0.775 0.336 0.379 0.409 0.392 0.429

5 T1,T3 0.701 0.731 0.772 0.770 0.800 0.225 0.306 0.336 0.350 0.374

6 T2,T3 0.361 0.394 0.394 0.452 0.439 0.237 0.306 0.338 0.370 0.369

7 T1,T2,T3 0.693 0.765 0.754 0.769 0.781 0.386 0.407 0.435 0.461 0.447 0.258 0.314 0.337 0.411 0.387

Table 3: Test Accuracy for MTL on different combinations of tasks with varying dataset size p. No KD. Empty cells represent

cases where evaluation does not make sense. These are the results for model M1.

# Test→ T1 (Accuracy) T2 (Accuracy) T3 (BLEU)

τ ↓ p → 15 30 45 60 70 15 30 45 60 70 15 30 45 60 70

1 0.5 0.687 0.750 0.749 0.784 0.779 0.390 0.416 0.439 0.418 0.413 0.249 0.311 0.336 0.348 0.366

2 1 0.752 0.769 0.766 0.778 0.789 0.387 0.410 0.434 0.464 0.479 0.319 0.327 0.342 0.429 0.449

3 5 0.769 0.787 0.763 0.827 0.818 0.392 0.398 0.444 0.458 0.477 0.285 0.289 0.376 0.455 0.454

4 10 0.769 0.767 0.755 0.825 0.816 0.407 0.408 0.437 0.473 0.467 0.288 0.295 0.364 0.394 0.443

Table 4: Test Accuracy for KD on individual tasks (no MTL) with varying dataset size p and varying temperature τ . These

are the results for model M3.

# Test→ T1 (Accuracy) T2 (Accuracy) T3 (BLEU)

MTL Train↓ p → 15 30 45 60 70 15 30 45 60 70 15 30 45 60 70

1 T1,T2(M3) 0.740 0.752 0.783 0.800 0.774 0.384 0.399 0.422 0.411 0.474

2 T1,T3(M3) 0.732 0.733 0.750 0.777 0.783 0.330 0.338 0.394 0.413 0.454

3 T2,T3(M3) 0.365 0.408 0.459 0.491 0.462 0.333 0.315 0.390 0.438 0.428

4 T1,T2,T3(M2) 0.746 0.771 0.760 0.782 0.782 0.391 0.407 0.438 0.476 0.473 0.261 0.325 0.357 0.445 0.415

5 T1,T2,T3+Ensemble(M2) 0.760 0.779 0.759 0.803 0.782 0.397 0.411 0.438 0.480 0.481 0.258 0.333 0.353 0.447 0.421

6 T1,T2,T3(M3) 0.751 0.764 0.790 0.795 0.808 0.384 0.436 0.454 0.482 0.503 0.337 0.363 0.400 0.460 0.475

7 T1,T2,T3+Ensemble(M3) 0.765 0.782 0.789 0.803 0.825 0.414 0.441 0.487 0.507 0.511 0.346 0.371 0.432 0.473 0.481

Table 5: Test Accuracy for KD+MTL on different combinations of tasks with varying dataset size p. For each cell, τ is

the best temperature chosen for the (task combination, dataset size) pair from Table 4. Rows with “+Ensemble” correspond

to using teacher ensemble for distillation. The results of using the combination of all three tasks in M2 are shown for

comparison. The rest of the results are for model M3.

respectively over M2. Similarly, comparing rows 5 and 7,

M3 improves task accuracies by 2.1%, 6.9%, 17.6% respec-

tively over M2. This proves that distillation with unlabeled

data is extremely useful.

Detailed Analysis of our Best Model. Table 6 shows con-

fusion matrix for the best result for task T1. Interestingly the

precision and recall across all classes is between 0.71 and

0.97. Notably, recall for melanoma is as high as 0.97. Fig. 4

shows top-K accuracy values for the fine-grained disease

classification task across diseases for our best T2 classifier.

Top-5 accuracy values for task T2 are ∼96% for melanoma

but on average top-5 accuracy across all diseases is ∼75%.

Further, for task T3, BLEU scores across the diseases are
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Figure 4: Top-K accuracy achieved by our best model val-

ues for fine-grained disease prediction (T2) across diseases.
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Figure 5: Grad-CAM visualization for predictions using the model M1 versus the proposed MTL+KD model M3 across

different diseases and different training dataset sizes along with their corresponding model outputs for T1, T2, T3.

(Green∼Correct, Yellow∼Partially correct, Red∼Incorrect)

as follows: Melanoma (73.84), Glaucoma (50.62), AMD

(73.84) and DR (39.86). We achieve high BLEU scores for

Melanoma, AMD, moderate BLEU for Glaucoma and rela-

tively low BLEU for DR. Note that DR has the largest vo-

cabulary size of 130 words, making the captions associated

with the disease vary more than for other diseases, which

had smaller vocabulary sizes. BLEU scores remain simi-

lar across diseases even for longer captions. Detailed error

analysis can be found in the supplementary.

Predicted

Melanoma Glaucoma AMD DR Normal

A
ct

u
al

Melanoma 195 0 2 4 0

Glaucoma 0 177 9 3 0

AMD 3 5 178 5 23

DR 23 8 16 181 23

Normal 17 21 15 12 162

Table 6: Confusion matrix for broad disease prediction (T1).

As shown, we have a high correlation between actual and

predicted values, indicating our model is effective.

Grad-CAM Visualization. We used Gradient-weighted

Class Activation Mapping (Grad-CAM) [50] to visualize

the regions of fundus image that are “important” for dis-

ease predictions. It captures how intensely the input im-

age activates different channels by computing how impor-

tant each channel is with regard to the class. Fig. 5 shows

class activation mapping visualizations for four randomly

selected images, across the four diseases. The first col-

umn shows images with anomaly annotations by an oph-

thalmologist. The remaining columns show class activa-

tion mappings obtained using Grad-CAM for predictions

by model M1 (MTL but no KD) versus the best method

M3 (MTL+KD) for two different dataset sizes (15% and

70%). We show predicted outputs for all the three tasks:

T1, T2 and T3 (Green∼Correct, Yellow∼Partially correct,

Red∼Incorrect). We observe that the Grad-CAM activa-

tions highly correlate with expert annotations across all the

four images for a dataset size of 70%. However, for small

(15%) dataset size, activations generated using KD+MTL

have much higher correlation with expert annotations com-

pared to those generated using the basic classifier, and hence

lead to more accurate predictions.

5. Conclusion

We proposed the use of MTL and KD methods to im-

prove fine-grained recognition of eye diseases using small

labeled dataset of fundus images. Both KD and MTL re-

sult in massive boosts in performance across metrics. Tun-

ing softmax temperature is important. Teacher ensemble

method is more effective than just one teacher for KD. In

the future, we plan to experiment with additional auxiliary

tasks and images corresponding to more diseases.
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