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Abstract

Gaze redirection aims at manipulating the gaze of a

given face image with respect to a desired direction (i.e.,

a reference angle) and it can be applied to many real life

scenarios, such as video-conferencing or taking group pho-

tos. However, previous work on this topic mainly suffers

of two limitations: (1) Low-quality image generation and

(2) Low redirection precision. In this paper, we propose

to alleviate these problems by means of a novel gaze redi-

rection framework which exploits both a numerical and a

pictorial direction guidance, jointly with a coarse-to-fine

learning strategy. Specifically, the coarse branch learns

the spatial transformation which warps input image ac-

cording to desired gaze. On the other hand, the fine-

grained branch consists of a generator network with con-

ditional residual image learning and a multi-task discrim-

inator. This second branch reduces the gap between the

previously warped image and the ground-truth image and

recovers finer texture details. Moreover, we propose a nu-

merical and pictorial guidance module (NPG) which uses a

pictorial gazemap description and numerical angles as an

extra guide to further improve the precision of gaze redirec-

tion. Extensive experiments on a benchmark dataset show

that the proposed method outperforms the state-of-the-art

approaches in terms of both image quality and redirection

precision. The code is available at https://github.

com/jingjingchen777/CFGR

1. Introduction

Gaze redirection is a new research topic in computer vi-

sion and computer graphics and its goal is to manipulate the

eye region of an input image, by changing the gaze accord-

ing to a reference angle. This task is important in many real-

world scenarios. For example, when taking a group photo,

it rarely happens that everyone is simultaneously looking at

the camera, and adjusting each person’s gaze with respect to

∗Tao Chen is the corresponding author.

the same direction (e.g., the camera direction) can make the

photo look better and user acceptable. In another applica-

tion scenario, when talking in a video conferencing system,

eye contact is important as it can express attentiveness and

confidence. However, due to the location disparity between

the video screen and the camera, the participants do not

have direct eye contact. Additionally, gaze redirection tasks

can be applied to improve few-shot gaze estimation [27, 28]

and domain transfer [11].

Traditional methods are based on a 3D model which re-

renders entire input region [1, 22]. These methods suffer

from two major problems: (1) it is not easy to render the

entire input region and (2) they require an heavy instrumen-

tation. Another type of gaze redirection is based on machine

learning for image re-synthesis, such as DeepWarp [6] or

PRGAN [8]. DeepWarp [6] employs a neural network to

predict the dense flow field which is used to warp the input

image with respect to the gaze redirection. However, this

method cannot generate perceptually plausible samples, as

only using the pixel-wise differences between the synthe-

sized and ground truth images is insufficient. PRGAN [8]

proposes a GAN-based autoencoder with a cycle consistent

loss for monocular gaze redirection and it can synthesize

samples with high quality and redirection precision. How-

ever, its single-stage learning causes the corresponding ap-

pearance to look asymmetric. Overall, the previous results

are still far from the requirements imposed by many appli-

cation scenarios.

In this paper, we propose a coarse-to-fine strategy and

we combine flow learning with adversarial learning to pro-

duce higher quality and more precise redirection results. As

shown in Fig. 1, our model consists of three main parts.

The first one is a coarse-grained model which is an encoder-

decoder architecture with flow learning and models the eye

spatial transformation. Specifically, this network is fed with

source images and with the angle-difference vector between

target and source. Second, in order to refine the warped re-

sults, we propose to use a conditional architecture, in which

the generator learns the residual image between the warped

output and the ground truth. The goal of the generator is to
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Figure 1. The pipeline of the proposed gaze redirection approach. The upper branch outputs a coarse-grained result x̃b. The encoder Enc

takes as input the eye region xa and the head pose h, while the decoder Dec takes as input the encoder latent code and △rs (provided

by the NPG module, not shown in the figure). The lower branch outputs fine-grained, final results. The generator G outputs the residual

image R, which is added to x̃b. The refined results x̂b and the ground truth xb are fed to the discriminator D.

reduce possible artifacts in the warped texture and the dis-

tortions in the eye shape. Finally, a discriminator network

with gaze regression learning is used to ensure that the re-

fined results have the same distribution and the same gaze

angles as the ground truth. Additionally, we propose an

NPG module which integrates the pictorial gazemap repre-

sentation with numerical angles to guide the synthesis pro-

cess. The intuitive idea is that the gazemap pictorial repre-

sentation can provide additional spatial and semantic infor-

mation of the target angle (shown in Fig. 2).

The main contributions of our work are:

1. We propose a coarse-to-fine eye gaze redirection

model which combines flow learning and adversarial

learning.

2. We propose an NPG module which integrates the pic-

torial gazemap with numerical angles to guide the gen-

eration process.

3. We present a comprehensive experimental evaluation

demonstrating the superiority of our approach in terms

of both image quality of the eye region and angle redi-

rection precision.

2. Related Work

Facial Attribute Manipulation, an interesting multi-

domain image-to-image translation problem, aims at mod-

ifying the semantic content of a facial image according to

a specified attribute, while keeping other irrelevant regions

unchanged. Most works [3, 30, 14, 17, 18, 25, 2, 31, 9, 34,

15, 21] are based on GANs and have achieved impressive

facial attribute manipulation results. However, these meth-

ods tend to learn the style or the texture translation and are

not good in obtaining high-quality, natural geometry trans-

lations. To alleviate this problem, Yin, et al. [26] proposed

a geometry-aware flow which is learned using a geome-

try guidance obtained by facial landmarks. Wu, et al. [24]

also exploits the flow field to perform spontaneous motion,

achieving higher quality facial attribute manipulation. Eye

gaze redirection can be considered as a specific type of fa-

cial attribute manipulation. To the best of our knowledge,

our model is the first combining flow learning and adversar-

ial learning for gaze redirection.

Gaze Redirection. Traditional methods are based on a

3D model which re-renders the entire input region. Banf

and Blanz [1] use an example-based approach to deform

the eyelids and slides the iris across the model surface with

texture-coordinate interpolation. GazeDirector [22] models

the eye region in 3D to recover the shape, the pose and the

appearance of the eye. Then, it feeds an acquired dense

flow field corresponding to the eyelid motion to the input

image to warp the eyelids. Finally, the redirected eyeball is

rendered into the output image.

Recently, machine learning based methods have shown

remarkable results using a large training set labelled with

eye angles and head pose information. Kononenko and

Lempitsky [13] use random forests as the supervised learn-

ers to predict the eye flow vector for gaze correction. Ganin

et al. [6] use a deep convolution network with a coarse-

to-fine warping operation to generate redirection results.

However, these warping methods based on pixel-wise dif-

ferences between the synthesized and ground-truth images,

have difficulties in generating photo-realistic images and
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they fail in the presence of large redirection angles, due to

dis-occlusion problems. Recently, PRGAN [8] adopted a

GAN-based model with a cycle-consistent loss for the gaze

redirection task and succeeded in generating better quality

results. However these results are still far from being satis-

factory. To remedy this, Zhang, et al. [29] developed a dual

inpainting module, to achieve high-quality gaze redirection

in the wild by interpolating the angle representation. How-

ever, also this method fails to redirect gaze with arbitrary

angles.

Compared to the previous methods, our approach ex-

ploits a coarse-to-fine learning process and it learns the

flow field for the spatial transformation. This is combined

with adversarial learning to recover the finer texture details.

Moreover, we are the first to propose utilizing the gaze map

(i.e., the pictorial gaze representation) as an input to provide

extra spatial and semantic information for gaze redirection.

Empirically, we found that this is beneficial in order to im-

prove the redirection precision.

3. Method

The pipeline of the proposed method is shown in Fig. 1.

It is mainly split into two learning stages. In the coarse

learning stage, an encoder-decoder architecture is proposed

to generate coarse-grained results by learning the flow field

necessary to warp the input image. On the other hand,

the fine learning stage is based on a multi-task conditional

GAN, in which a generator with conditional residual-image

learning refines the coarse output and recovers finer tex-

ture details, eliminating the distortion in the eye geometry.

Moreover, we propose an NPG module to guide both the

coarse and the fine process (see Fig 2). Before introducing

the details, we first clarify the adopted notations.

• Two angle domains: source domain A and target do-

main B. Note that paired samples exist in the two domains.

• (xa, ra) ∈ A indicates the input eye image xa ∈
Rm×n×c from domain A and its corresponding angle pair

ra ∈ R2, representing the eyeball pitch and yaw [θ, φ].
(xb, rb) ∈ B are defined similarly. With m,n, c we in-

dicate, respectively, the width, the height and the channel

number of the eye image. xa and xb are paired samples

with different labeled angles. Our model learns the gaze

redirection from A to B.

• △r denotes the angle vector difference between an in-

put sample in A and the corresponding target sample in B.

• S ∈ Rm×n×2 denotes the two channel gazemap picto-

rial representation (the eyeball and the iris), which is gen-

erated from an angle pair r. S = Fs(r), where Fs is a

straightforward graphics tool used to generate pictorial rep-

resentations of the eyeball and the iris, as shown in Fig. 2.

Note that each instance xa with same angle from domain A

has the same S.

a
r

b
r

a
s

b
s

r s
rcMinus

s
F

s
F

( , )
a a
x r

( , )
b b
x r

Figure 2. A scheme of the Numerical and Pictorial Guidance Mod-

ule (NPG). The angle difference vector △r is concatenated with

two gazemaps [Sa, Sb] to get △rs. Sa and Sb correspond to the

input angles ra and the target angles rb, respectively. Note that the

gazemap has a dimension different from the numeric angle r, thus

a scale normalization is necessary. Fs is the graphic tool produc-

ing the pictorial representation.

3.1. Flow­Field Learning for Coarse­Grained Gaze
Redirection

To redirect xa with an angle pair ra from domain A to

domain B, our encoder Enc takes both xa and the corre-

sponding head pose h as inputs. Then, the decoder Dec

generates a coarse-grained output using both the encoded

code and △rs (provided by the NPG, see later). As shown

in Fig. 1, △rs is concatenated into different scales of Dec to

strengthen the guided ability of the conditional information.

This can be formulated as follows:

fa→b = Dec(Enc(xa, h),△rs), (1)

where fa→b is the learned flow field from xa to xb. Simi-

larly to DeepWarp [6], we generate the flow field to warp the

input image. In more details, the last convolutional layer of

Dec produces a dense flow field (a two-channel map) which

is used to warp the input image xa by means of a bilinear

sampler BS. Here, the sampling procedure samples the pix-

els of xa at pixel coordinates determined by the flow field

fa→b:

x̃b(i, j, c) = xa{i+ fa→b(i, j, 1), j + fa→b(i, j, 2), c},
(2)

where x̃b is the warped result representing the coarse output,

c denotes the channel of the image, and the curly brackets

represent the bilinear interpolation which skips those posi-

tions with illegal values in the warping process. We use the

L2 distance between the output x̃b and the ground truth xb

as the objective function which is defined as follows:

Lrecon = E[‖x̃b − xb‖2] (3)
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NPG with Gazemap. As shown in Fig. 2, we use the

NPG output as an additional condition of the generation

process. Jointly with the numerical gaze angle represen-

tation ra, the pictorial gazemap S is concatenated in a mul-

timodal term to provide additional spatial and semantic in-

formation about the angle direction.

First, and differently from previous work in gaze redirec-

tion [6, 8], we compute the angle vector difference △r =
rb− ra, which is used as input instead of the absolute target

angle to better preserve identity, similarly to [23]. Next, we

generate the corresponding gazemap S of the angles ra and

rb by means of a synthesis process Fs (details can be found

below). Then, we concatenate Sa, Sb and △r into a single

term to get △rs:

△rs = [△r, Sa, Sb]. (4)

We detail below how we generate the gazemap (Fs). As

shown in [16], our gazemap is also a two-channel Boolean

image: one channel is for the eyeball which is assumed to be

a perfect sphere, and the other channel is for the iris which

is assumed to be a perfect circle. For an output map of size

m × n, with the projected eyeball diameter 2k = 1.2n,

the coordinates (µ, ν) of the iris center can be computed as

follows:

µ =
m

2
− k cos

(

arcsin
1

2

)

sinφ cos θ

ν =
n

2
− k cos

(

arcsin
1

2

)

sin θ,

(5)

where the input gaze angle is r = (θ, φ). The iris is drawn

as an ellipse with the major-axis diameter of k, and the

minor-axis diameter of r |cos θ cosφ|. Note that the synthe-

sized gazemap only represents the gaze angle, without iden-

tity details of the specific eye sample. More visual examples

of gazemaps can be found in the Supplementary Material.

3.2. Multi­task cGAN for Fine­grained Gaze Redi­
rection

The warped result is inevitably blurry when using only

the L2 loss. Additionally, it also suffers from unwanted ar-

tifacts and unnatural distortions in the shape of the iris for

large redirection angles. To remove these problems, we em-

ploy a generator G to refine the output of the decoder. In-

stead of manipulating the whole image directly, we use G

to learn the corresponding residual image R, defined as the

difference between the coarse output and the ground-truth.

In this way, the manipulation can be operated with modest

pixel modifications which provide high-frequency details,

while preserving the identity information of the eye shape.

The learned residual image is added to the coarse output of

Dec:

x̂b = R+ x̃b. (6)

where x̂b represents the refined output.

Conditional Residual Learning. Learning the corre-

sponding residual image R is not a simple task as it requires

the generator to be able to recognize subtle differences. Ad-

ditionally, previous works [35, 6] indicate that introducing a

suitable conditional information improves the performance

of G. For this reason, we employ the input image xa and the

head pose h as conditional inputs for G. We also take the

NPG output △rs as input to provide stronger conditional

information. The conditional residual image learning phase

can be written as:

R = G(x̃b, xa, h,△rs). (7)

Similarly to the coarse process, the image reconstruction

loss, based on the L2 distance, is defined as follows:

Lg recon = E [‖x̂b − xb‖2] . (8)

The L2 loss penalizes pixel-wise discrepancies but it

usually causes blurry results. To overcome this issue, we

adopt the perceptual loss proposed in [10]. We use a VGG-

16 network [19], pre-trained on ImageNet [4], which we

denote as Φ. The perceptual loss is defined as follows:

Lg per = E

[

1

hjwjcj
‖Φj(x̂b)− Φj(xb)‖2

]

+ E





J
∑

j=1

‖Ψj(x̂b)−Ψj(xb)‖2



 ,

where Φj(·) ∈ R
hj×wj×cj is the output of the j-th layer of

φ. In our experiments, we use the activation of the 5th layer.

Ψj denotes the Gram matrix (for more details we refer the

reader to [7]).

Multi-task Discriminator Learning. We use a multi-

task discriminator in our model. Different from G, which

is conditioned using multiple terms, the discriminator D

does not use them as input. Moreover, D not only performs

adversarial learning (Dadv) but also regresses the gaze an-

gle (Dgaze). Note that Dadv and Dgaze share most of the

layers with the exception of the last two layers. The regres-

sion loss is defined as follows:

Ld gaze = E [‖Dgaze(xb)− rb‖2]

Lg gaze = E [‖Dgaze(x̂b)− rb‖2] .
(9)

The adversarial loss for D and G is defined as:

min
G

max
D

Ladv = E [logDadv(xb)]

+ E [log(1−Dadv(x̂b))] .
(10)

Overall Objective Functions. As aforementioned, we

use Lrecon to train the encoder-decoder Enc and Dec to get
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Figure 3. A qualitative comparison of different methods using redirection results with 10 different target angles (± 15◦ head pose). The last

row shows a magnification of the details marked with a yellow box in the previous rows, which correspond, from left to right, to DeepWarp,

PRGAN, CGR, CFGR and GT.

the coarse-grained results. The overall objective function

for D is:

LD = λ1Ld gaze − Ladv. (11)

The overall objective function for G is:

LG = λ2Lg recon + λ3Lg per + λ4Lg gaze + Ladv. (12)

λ1 λ2, λ3 and λ4 are hyper-parameters controlling the con-

tributions of each loss term. Note that LG is used only to

optimize G, but not to update Enc and Dec.

4. Experiments

We first introduce the dataset used for our evaluation,

the training details, the baseline models and the adopted

metrics. We then compare the proposed model with two

baselines using both a qualitative and a quantitative analy-

sis. Next, we present an ablation study to demonstrate the

effect of each component in our model, e.g., flow learning,

residual image learning and the NPG module. Finally, we

investigate the efficiency of our model. We refer to the full

model as CFGR, and to the encoder-decoder with the only

coarse-grained branch as CGR.

4.1. Experimental Settings

Dataset. We use the Columbia gaze dataset [20], con-

taining 5,880 images of 56 persons with varying gaze direc-

tions and head poses. For each subject, there are 5 head di-

rections ([−30◦,−15◦, 0◦, 15◦, 30◦]) and 21 gaze directions

([−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦] for the yaw angle and

[−10◦, 0◦, 10◦] for the pitch angle, respectively). In our ex-

periments, we use the same dataset settings of PRGAN [8].

In details, we use a subset of 50 persons (1-50) for train-

ing and the rest (51-56) for testing. To extract the eye re-

gion from the face image, we employ an external face align-

ment library (dlib [12]). Fixed 64 × 64 image patches are

cropped as the input images for both training and testing.

Both the RGB pixel values and the gaze directions are nor-

malized in the range [−1.0, 1.0]. Other publicly available

gaze datasets, e.g., MPIIGaze [33] or EYEDIAP [5], pro-

vide only low-resolution images and have not been consid-

ered in this evaluation.
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Figure 4. A quantitative evaluation of the gaze redirection results using three classes of head pose. First row: gaze estimation error. Second

row: LPIPS scores. Lower is better for both metrics. Note that we combine the results of ±15
◦ and ±30

◦ head poses into 15
◦ and 30

◦.

Training Details. CGR is trained independently of the

generator and the discriminator and it is optimized firstly,

followed by D and G. We use the Adam optimizer with

β1 = 0.5 and β2 = 0.999. The batch size is 8 in all the

experiments. The learning rate for CGR is 0.0001. The

learning rate for G and D is 0.0002 in the first 20,000 iter-

ations, and then it is linearly decayed to 0 in the remaining

iterations. λ1 = 5, λ2 = 0.1, λ3 = 100 and λ4 = 10 in our

all experiments. The details of our network architectures

can be found in the Supplementary Material.

Baseline Models. We adopt DeepWarp [6] and

PRGAN [8] as the baseline models in our comparison. We

use the official code of PRGAN∗ and train it using the de-

fault parameters. We reimplemented DeepWarp, as its code

is not available. In details, different from the original Deep-

Warp, which is used only for a gaze redirection task with a

single direction, we trained DeepWarp for gaze redirection

tasks in arbitrary directions. Moreover, DeepWarp uses 7

eye landmarks as input, including the pupil center. How-

ever, detecting the pupil center is very challenging. Thus,

we computed the geometric center among the 6 points as a

rough estimation of the pupil center.

Metrics. How to effectively evaluate the appearance

consistency and the redirection precision of the generated

images is still an open problem. Traditional metrics, e.g.,

PSNR and MS-SSIM, are not correlated with the percep-

tual image quality [32]. For this reason, and similarly to

∗https://github.com/HzDmS/gaze redirection

Table 1. Gaze-redirection quantitative evaluation. The scores rep-

resent the average of three head poses over ten redirection angles.

Metric LPIPS ↓ Gaze Error ↓
DeepWarp 0.0946 14.18

PRGAN 0.0409 5.37

CGR 0.0565 9.19

CFGR 0.0333 5.15

PRGAN, we adopted the LPIPS metric [32] to compute

the perceptual similarity in the feature space and evalu-

ate the quality of redirection results. Moreover, we use

GazeNet [33] as our gaze estimator and we pre-trained

GazeNet on the MPIIGaze dataset to improve its gaze es-

timation.

4.2. Results

We first introduce the details of the qualitative and the

quantitative evaluation protocols. For each head pose, we

divide all the redirection angles into ten target groups by

means of the sum of the direction differences in both pitch

and yaw: 0◦, 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, 45◦,

50◦ (e.g., 0◦ indicates that the angle differences between

the target gaze and the input gaze are 0 in both the verti-

cal and the horizontal direction). The test results of every

group is used for the quantitative evaluation. Moreover, we

select 10 redirection angles as the target angles for the qual-

itative evaluation: [0◦, −15◦], [10◦, −15◦], [10◦, −10◦],

[10◦, −5◦], [10◦, 0◦], [10◦, 5◦], [10◦, 10◦], [10◦, 15◦], [0◦,
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Figure 5. A qualitative comparison used in the ablation study. Red boxes: artifacts. Yellow boxes: unnatural shapes.

15◦], [−10◦, 15◦].

Qualitative Evaluation. In the 5th row of Fig. 3, we

show the redirection results of CFGR. The visually plausi-

ble results with respect to both the texture and the shape,

and the high redirection precision, validate the effective-

ness of the proposed model. Moreover, compared to CGR

(without the refined generator module), we note that our re-

fined model provides more detailed texture information and

it eliminates unwanted artifacts and unnatural distortions of

the iris shape.

As shown in the 2nd and in the 4th rows of Fig. 3, we ob-

serve that both DeepWarp and CGR redirect the input gaze

with respect to the target angles, which demonstrates the

ability of flow field in representing the correct spatial trans-

formation. However, DeepWarp has several obvious dis-

advantages (marked with the yellow box in Fig. 3 and the

corresponding zoom-in shown in the last row). For exam-

ple, the generated textures are more blurry. In contrast, our

coarse-grained CGR performs better. We attribute this to

the fact that our encoder-decoder architecture with a bottle-

neck layer is better suitable for this task with respect to the

scale-preserving fully-convolutional architecture adopted in

DeepWarp.

As shown in the 3rd and in the 5th row of Fig. 3, both

PRGAN and CFGR achieve high-quality redirection results

with visual plausible textures and natural shape transforma-

tions for the iris. However, compared with CFGR, PRGAN

suffers from two critical problems: (1) Lower image quality

with a poor identity preservation (marked with a red box on

the left); (2) Incorrect redirection angles and blurry bound-

aries causing distortion of the eyeball (marked with the yel-

low box and shown in the last row).

Quantitative Evaluation. In Fig. 4, we plot the gaze

estimation errors and the LPIPS scores of different mod-

els. The three columns show the redirection results with

respect to 0◦, 15◦ and 30◦ head pose angle, respectively.

Note that we combine the results of ±15◦ and ±30◦ head

poses into 15◦ and 30◦. It can be observed from the 1st

row of Fig. 4 that CFGR achieves much lower gaze estima-

Table 2. Results of the user study using three different head poses

(with ten generated samples per pose). Every column sums to

100%. The rightmost column shows the overall performance.

Head Pose 0◦ ↑ 15◦ ↑ 30◦ ↑ Average ↑
DeepWarp 7.32% 10.18% 5.69% 7.73 %

PRGAN 30.12% 42.56 % 45.79% 39.49 %

CFGR 62.56% 47.26% 48.52% 52.78%

tion error than DeepWarp and it is superior to PRGAN in

most cases. Moreover, without the refined process, CGR

has a much higher gaze error, especially for large gaze dif-

ferences (e.g., 50◦).

The 2nd row of Fig. 4 shows the LPIPS scores. Here,

we see that CFGR leads to much smaller scores than Deep-

Warp. Additionally, our model also has lower LPIPS scores

than PRGAN, indicating that our method can generate a

new eye image which is more perceptually similarly to the

ground truth. However, CFGR has a higher gaze error or

larger LPIPS scores in some cases, especially for redirection

results with 30◦ head pose. Overall, as shown in Table 1,

our approach achieves 0.0333 LPIPS score, lower than the

0.0946 of DeepWarp, the 0.0409 of PRGAN and it gets a

5.15 gaze error, lower than the 14.18 of DeepWarp and the

5.37 of PRGAN.

User Study. We conducted a user study to evaluate the

proposed model with respect to the human perception. In

details, we divided the gaze redirection results on the test

data into three groups with respect to the head pose of the

input image and we randomly selected 20 samples gener-

ated by each method for each group. Then, for each image,

10 users were asked to indicate the gaze image that looks

more similar with the ground truth. Table 2 shows the re-

sults of this user study. We observe that our method outper-

forms PRGAN and DeepWarp in groups with 0◦, 15◦ and

30◦ head poses. Moreover, CFGR is selected as the best

model on average, as shown in the final column of Table 2.
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Figure 6. A quantitative evaluation used in the ablation study. The 1st row shows the gaze estimation error and the 2nd row the LPIPS

scores. Our model ablated of the perceptual loss is called A, without the residual image learning is called B, without the flow field learning

C, and without the pictorial gazemap guidance D.

4.3. Ablation Study

In this section we present an ablation study of the main

components of our method. We refer to the full model with-

out the perceptual loss as A. When we remove the flow

learning in the encoder-decoder, this is called B. Remov-

ing the residual learning in the generator leads to model

C, while removing the gazemap pictorial guidance gets D

(more details below).

Perceptual Loss. Fig. 5 shows that CFGR without the

perceptual loss can generate results very close to the full

model. However, some of these results have more arti-

facts (marked with a red box in the 2th column). Moreover,

as shown in Fig. 6, the gaze estimation error and the LPIPS

score are larger when removing this loss. Overall, the per-

ceptual loss is helpful to slightly improve the visual quality

and the redirection precision of the generated samples.

Residual Learning. We eliminate the residual term R in

Eq. 6 to evaluate its contribution. As shown in Fig. 5, the

results are very blurry with a lot of artifacts. The quantita-

tive evaluations in Fig. 6 are consistent with the qualitative

results.

Flow Learning. Our encoder-decoder network predicts

the flow field which is used to warp the input image for

quickly learning the spatial shape transformation. As shown

in Fig. 5, our full model achieves more natural results for

the iris shape. Moreover, the quantitative results in Fig. 6

demonstrate the effectiveness of flow learning in improving

the redirection precision.

Gazemap in NPG. When removing the gazemap (see

the 6th column in Fig. 5), the visual results present more

shape distortions compared with the full model. Moreover,

the quantitative results in Fig. 6 demonstrate the effect of

the gazemap in improving the redirection precision.

5. Conclusion

In this paper we presented a novel gaze redirection ap-

proach based on a coarse-to-fine learning. Specifically, the

encoder-decoder learns to warp the input image using the

flow field for a coarse-grained gaze redirection. Then, the

generator refines this coarse output by removing unwanted

artifacts in the texture and possible distortions of the shape.

Moreover, we proposed an NPG module which integrates a

pictorial gazemap representation with the numerical angles

to further improve the redirection precision. The qualita-

tive and the quantitative evaluations validate the effective-

ness of the proposed method and show that it outperforms

the baselines with respect to both the visual quality and the

redirection precision. In future work we plan to extend this

approach to the gaze redirection task in the wild.
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