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Abstract

Recently, deep convolutional neural network (CNN) have

achieved promising performance for single image super-

resolution (SISR). However, they usually extract features

on a single scale and lack sufficient supervision informa-

tion, leading to undesired artifacts and unpleasant noise

in super-resolution (SR) images. To address this problem,

we first propose a hierarchical feature extraction module

(HFEM) to extract the features in multiple scales, which

helps concentrate on both local textures and global seman-

tics. Then, a hierarchical guided reconstruction module

(HGRM) is introduced to reconstruct more natural struc-

tural textures in SR images via intermediate supervisions

in a progressive manner. Finally, we integrate HFEM

and HGRM in a simple yet efficient end-to-end framework

named hierarchical generative adversarial networks (HSR-

GAN) to recover consistent details, and thus obtain the se-

mantically reasonable and visually realistic results. Ex-

tensive experiments on five common datasets demonstrate

that our method shows favorable visual quality and supe-

rior quantitative performance compared to state-of-the-art

methods for SISR.

1. Introduction

Single image super-resolution (SISR), which has re-

ceived great attention through past few years, aims to re-

construct the high-resolution (HR) image from its low-

resolution (LR) counterpart. SISR is an ill-posed prob-

lem, because there may be multiple HR images match-

ing the same LR image through various degradation pro-

cesses. A number of SISR methods have been proposed

in the literature, such as interpolation-based methods [35],

reconstruction-based methods [34], traditional learning-

based methods [31, 32, 25, 26], and recent deep learning-
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Figure 1. Visual quality from different types of SISR methods.

Compared with our HSRGAN, SRFBN [12] reconstructs a over-

smoothing image while SRGAN [11] introduces some undesirable

noise at right horn. Our HSRGAN can reduce unpleasant artifacts

and produce more convincing textures.

based methods [3, 4, 13, 27, 11, 27, 28, 36, 21].

The early SISR methods are based on interpolation ker-

nels [35], such as bilinear or bicubic, which are simple

and efficient for real-time application. However, they can

hardly effectively restore the high frequency information,

and easily leads to blurred images. Furthermore, the re-

construction methods [34] introduced the prior knowledge

of the image as a constraint, formulating the SISR prob-

lem as an inverse process modeling of the imaging system,

such as deblurring, upper sampling and denoising. In the

past decades, a number of traditional learning-based meth-

ods [31, 32, 25, 26] have been proposed to predict miss-

ing high-frequency details in LR images, by learning the

mapping relationship between LR and HR images, through

sparse coding [31, 32], neighbor embedding [25, 26], etc.

More recently, deep neural networks have shown the

promising power in computer vision tasks, such as recogni-
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tion [2], classification [7], etc. Therefore, researchers adopt

deep learning algorithms to solve the SISR problem. De-

pending on the training objectives of the model, deep learn-

ing methods can be broadly divided into two categories:

1) Former methods concentrate on minimizing the Mean

Square Error (MSE) or Mean Absolute Error (MAE) be-

tween the super-resolution (SR) image and the ground-truth

image, which may lead to blurriness and make the recon-

structed image unrealistic [30]. 2) To recover more sharp

texture details in SR image and make it look realistic, recent

researchers introduce GAN loss [5, 18] into model training.

Nevertheless, due to the fact that these works only extract

features on a single scale and lack sufficient supervision in-

formation, they struggled to recover the local details and

complex structures and thus largely suffered undesired arti-

facts in the SR images, as shown in Figure 1.

To alleviate these problems, we propose a simple yet ef-

ficient hierarchical generative adversarial networks (HSR-

GAN) for SISR, which could recover consistent details in

an hierarchical manner, and thus obtain the semantically

reasonable and visually realistic SR results. Specifically, we

propose a hierarchical feature extraction module (HFEM) to

extract the features of multiple scales using a multi-branch

architecture, which helps our network concentrate on both

local textures and global semantics. Furthermore, we pro-

pose a hierarchical guided reconstruction module (HGRM),

where we divide the SR task of a large upscale factor into

a sequence of easier sub-tasks with small upscale factors.

The upscaling sub-tasks provide more convincing supervi-

sion information to help the final upscaling procedure to ob-

tain more realistic texture details. Through extracting multi-

scale information and gradually generating SR images from

small to large, our proposed HSRGAN is capable of recov-

ering the visually realistic and semantically reasonable im-

ages from a single LR images.

In summary, our main contributions are listed as follows:

• We propose the simple yet efficient hierarchical gen-

erative adversarial networks (HSRGAN) for SISR,

which can stably generate SR images by taking hierar-

chical features and supervision information into con-

sideration.

• We devise a hierarchical feature extraction module

(HFEM) to capture the hierarchical features in multi-

ple scales, which helps our model concentrate on both

local textures and global semantics.

• We further present a hierarchical guided reconstruction

module (HGRM) to exploit rich supervision informa-

tion about the structural textures and reconstruct the

image in a progressive manner.

• Experiments demonstrate that our method significantly

outperforms other state-of-the-art methods in terms of

both quantitative metrics and visual quality.

2. Related work

Since the deep learning methods have outperformed

most conventional SR methods, in this section, we mainly

focus on deep learning algorithms for SISR. There are

mainly two directions to optimize the SISR problem. At

first, most of the methods use pixel-wise MSE (L2) loss or

MAE (L1) loss as objective function to reduce the distor-

tion error. And recently, pursuing better perceptual quality

of SR images has become a new trend with the boom of

generative adversarial networks [5, 18].

2.1. Distortion­oriented methods

A variety of deep learning techniques have been used in

SISR problem and several different designs of models have

been adopted. SRCNN [3, 4] was a pioneer work that es-

tablished a three-layer convolutional neural network to di-

rectly reconstruct HR image from corresponding interpo-

lated LR one. EDSR [13] stacked modified residual blocks

which removed the batch normalization layers and ReLU

activation from ResNet [6] to work with the SR task. To

exploit channel-wise relationships in feature maps, inspired

from SENet [8], RCAN [36] introduced the residual chan-

nel attention block to improve performance. Other recent

works like MemNet [23] and RDN [37] employed dense

blocks [9] and SRFBN [12] adopted feedback mechanism,

which commonly exists in human visual system, to refine

low-level representations with high-level information.

However, the distortion-based methods mentioned above

use pixel-wise MSE (L2) loss or MAE (L1) loss as the ob-

jective function, which causes blurriness or over-smoothing

in SR image and makes it look unreal.

2.2. Perception­oriented methods

Since generative adversarial networks (GANs) [5, 18]

was proposed, models based on GAN loss have been used

in several aspects of computer vision because of more re-

alistic details the model can generate, which is what the

previous methods optimized by L1 loss or L2 loss cannot

achieve. GANs employ two components, namely a gener-

ator and a discriminator, to combat with each other. The

generator tries to create an SR image that the discriminator

cannot distinguish from a real HR image. In this manner,

SR images with more realistic textures are generated.

SRGAN [11] firstly introduced GANs into SISR prob-

lem, where the generator was composed of residual blocks

[6]. To improve the naturalness of the images, perceptual

and adversarial losses were used to train the model in SR-

GAN. Compared with the global normalization of BN layer,

SFTGAN [27] proposed a spatial feature transform (SFT)

layer, which used the segmentation probability maps as a

reference, had a stronger ability to deal with the borders
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of different objects. In this way, the effect of texture re-

construction for different objects is improved. Some other

networks, such as EnhanceNet [19] and SRFeat [17], used

multiple loss terms or discriminators to improve the per-

formance. ESRGAN [28] was a variant of SRGAN. It en-

hanced its performance by removing the batch normaliza-

tion layers and employed relativistic discriminator [10] in

training. Furthermore, NatSR [21] defined the naturalness

prior in the low-level domain and constrained the output

image in the natural manifold, which eventually generated

more natural and realistic images.

However, with the help of GANs, it may produce some

unpleasant noise or unnatural textures when the network

amplifies the image resolution.

3. Proposed method

We propose a hierarchical model to solve the SISR prob-

lem, named HSRGAN, which could recover consistent de-

tails in the generated images, and thus generate the semanti-

cally reasonable and visually realistic SR results. As shown

in Figure 2, our hierarchical model architecture is based on

the GANs, where the generator consists of two consecutive

parts: the hierarchical feature extraction module and the hi-

erarchical guided reconstruction module. For the discrim-

inator in our models, we employ relativistic discriminator

[10] in stabilizing and accelerating training procedure, as

ESRGAN [28] did. We will elaborate the details of our pro-

posed HSRGAN in the following sections.

3.1. Framework

Given an input LR image ILR, the goal of our proposed

model is to train a generative model that can generate the

SR image ISR close to original HR image IHR.

Most of the previous SISR methods extract features by

stacking convolution layers with a single kernel size, which

may limit the representative capability of the network. To

enhance the SR performance, we apply HFEM to exploit

detail textures and global information. Specifically, the in-

put ILR is firstly fed into HFEM to extract feature maps in

individual receptive field:

FH = E (ILR) , (1)

where E represents the HFEM, which consists of multi-

branch network (MBN) and feature fusion network (FFN).

MBN can extract multi-scale features by several branches

and the features is then fused by FFN, which further ex-

ploits the intent information.

Furthermore, the GAN-based methods may produce un-

desired artifacts [15], especially in the SISR problem with

large magnification, due to the lack of sufficient supervision

information. To handle this issue, we proposed hierarchical

guided reconstruction module (HGRM) to reconstruct the

final output ISR, which upsamples the mixed features in a

progressive manner with multiple supervision by:

ISR = U (FH) , (2)

where U stands for the HGRM. The detail of HFEM and

HGRM will be shown in Section 3.2 and 3.3.

3.2. Hierarchical feature extraction

In human visual systems, when recognizing an object,

we need to pay attention to the global information as well as

the local details. In the same way, suitable feature represen-

tations are crucial for networks to understand an image. The

latest SISR methods extract features and achieve impressive

results. But they usually extract features of LR images by

convolution layers with a single kernel size, which means

that they only focus on one single scale, limiting the capac-

ity of feature representation of the network. Thus there is

still much room to treat features as a set of different compo-

nents and combine both global semantics and local textures.

To address these problems, inspired by [29], we utilize

the HFEM to capture different levels of features from in-

put LR images, which considers features in various scales.

Our HFEM contains two components: multi-branch net-

work (MBN) and future fusion network (FFN). Firstly, the

input LR image is fed into the MBN to parallelly extract

features FM in various scales:

FM = EM(ILR)

=
[

E
(1)
M (ILR),E

(2)
M (ILR), · · · ,E

(B)
M (ILR)

]

,
(3)

where EM represents the MBN of our HFEM, B denotes

the number of branches and E
(b)
M means the b-th branch,

1 ≤ b ≤ B. The convolution kernel size within each single

branch is the same and differs from other branches. There-

fore, different branches have distinct receptive fields. The

branches with smaller receptive fields focus on the local tex-

tures of LR images and the branches with larger receptive

fields integrates more surrounding information such as spa-

tial relationship.

Secondly, since the concatenated features may be com-

plementary or mutually exclusive, and the network cannot

make full use of this information, we fuse the hierarchical

features by FFN to further learn the intent information. Our

FFN consists of a channel aggregation layer and a series of

residual blocks. We feed the concatenation of the hierar-

chical features FM into the FFN to jointly learn the final

feature representation of the input ILR:

FH = EF (FM) , (4)

where EF represents the FFN of our HFEM.

In practice, considering the performance and efficiency,

we set the number of parallel branches B = 3 for default
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Figure 2. Architecture of our proposed HSRGAN. The bias item and activation layer are omitted for simplicity.

(a) (b) (c)

Figure 3. Illustration of pixel filling in SISR. Suppose that the pixel

at left upper corner (blue) in 2-by-2 image, as shown in (a), is

directly map to left upper corner in its upscale versions. (b) For

a magnification of 2, we only need to fill the remaining 3 pixels

(light blue). (c) For a magnification of 4, we need to fill 15 pixels

(light blue), which is more likely to produce unreal pixels (image

details) than for the magnification of 2.

with kernel size of 3, 5 and 7, respectively. In addition, we

employ dilated convolution [33] layers to further expand re-

ceptive field while maintaining low computation cost. More

details will be discussed in Section 4.3.

3.3. Hierarchical guided reconstruction

Compared with image inpainting which estimates suit-

able pixel information to fill holes in images, SISR is a task

of filling several new sensible pixels around existing pixels,

see Figure 3. As the magnification increases, the number

of pixels to be filled doubles. However, most of the previ-

ous SISR methods employ a network to directly generate a

SR image with a large upscale factor. Compared with the

problem with a small upscale factor, the network will create

more pixels based on one pixel, which may force the gener-

ator to produce a lot of unreal image details. To solve this

drawback, we propose a hierarchical guided reconstruction

module (HGRM) to recover the final SR image in an easy-

to-hard way.

Different from conventional SISR methods, our hierar-

chical guided reconstruction module (HGRM) introduces

more supervision information into the model. It contains

T branches, where T ≥ 1, including one main branch and

T − 1 intermediate branches. The main branch reconstructs

the LR image to the target resolution and the rest branches

produce the intermediate SR images with corresponding up-

scale factors to provide more supervision information:

I
(t)
SR = U

(t) (FH) , (5)

where I
(t)
SR represents the t-th output image and U

(t) denotes

the t-th branch, 1 ≤ t ≤ T . It should be noted that the U
(t)

shares common upscale networks (pixel shuffle layers) with

its previous branches to ensure the supervision information.

The main branch generates the final SR image ISR by

ISR = I
(T )
SR = U

(T ) (FH) . (6)

The main purpose to introduce hierarchical branches into

the reconstruction module is to provide more supervision

information about the image content (e.g. structural tex-

ture), by penalizing the network with losses between the

outputs of intermediate branches and intermediate HR im-

ages generated from the ultimate HR image. Due to the fact

that employing adversarial loss may force the generator to

produce sharp but incorrect details, we disable the adversar-

ial loss to intermediate branches to avoid wrong supervision

information. Thus the intermediate branches mainly con-

centrate on the content information, while the final branch

preserves the structure information and generate realistic re-

sults.

In addition, the intermediate branches can be used for

combating gradient vanishing problem, and thus stabilize

the generative process through providing more regulariza-
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tion [22]. It is worth noting that they are used for training

only and NOT used in testing or inference time.

In our experiments, we employ two branches (T = 2)

to super-resolve the 4× images, including the main branch

and one intermediate branch with magnification of 2. More

details will be discussed in Section 4.3 and Supplementary

Materials.

3.4. Formulation

Given a training pair {ILR, IHR}, we generate T − 1 in-

termediate HR images
{

I
(1)
HR, · · · , I

(T−1)
HR

}

from its corre-

sponding HR image IHR by bicubic kernel. Specifically,

IHR = I
(T )
HR .

As the Figure 2 shows, we define the content loss, per-

ceptual loss and adversarial loss to optimize the parameters

of our model, which is similar to [28]. The content loss

function of our model is:

LC =
1

T

T
∑

i=1

∥

∥

∥
I
(i)
SR − I

(i)
HR

∥

∥

∥

1
, (7)

where ‖·‖1 represents the 1-norm distance operator.

The perceptual loss can be expressed as:

LP =
1

T

T
∑

i=1

∥

∥

∥
φ
(

I
(i)
SR

)

− φ
(

I
(i)
HR

)∥

∥

∥

1
, (8)

where φ (·) indicates the feature map obtained by the

VGG19 network [20].

The adversarial loss is defined based on the enhanced

discriminator of Relativistic GAN [10], denoted as DRa.

Due to our idea of HGRM that intermediate branches

mainly provide the supervision information about the im-

age content, we disable the adversarial loss on the branches

which may generate incorrect details and only apply it to

the final SR image. The adversarial loss for generator is

expressed as:

LA =− log (1− DRa (IHR, ISR))

− log (DRa (ISR, IHR)) .
(9)

To summarize, the total loss of the generator is then de-

fined as:

LG = LC + λLP + ηLA, (10)

where λ and η are the trade-off coefficients to balance dif-

ferent loss terms.

4. Experiment

4.1. Dataset and settings

For training, we use the mixture of DIV2K [24] and

Flickr2K [24], named DF2K. DIV2K is a high-quality (2K

resolution) dataset specially organized for SISR tasks. It

contains 800 images for training, 100 images for validation

and 100 images for testing. Flickr2K is collected on the

Flickr website, which consists of 2650 2K high resolution

images. Furthermore, we enrich our training set with Out-

doorSceneTraining (OST) [27], which contains rich natu-

ral textures in 7 categories. We randomly crop 128 × 128

patches to feed into our models with random horizontal flips

and 90 degree rotations as ESRGAN [28] did.

To comprehensively evaluate our proposed model, we

test it on five commonly used benchmark datasets: Set5,

Set14, BSDS100, Urban100 and Manga109, each of which

has different characteristics.

In our experiment, VGG13 [20] is deployed as the back-

bone of our discriminator, as other works [11, 28] did. Since

max pooling operation may lose some information during

feed-forward process, we instead use the convolution ker-

nel with stride set to 2 to downsample the feature maps. We

empirically choose the hyper-parameters λ = 5× 10−3 and

η = 1 × 10−2, the the initial learning rate is 10−4. Using

Adam optimizer, the models are trained with a batch size of

16 with the learning rate reduing to half every 200k itera-

tions.

4.2. Evaluation metrics

In recent years, SR algorithms have gradually developed

into two directions: one is to obtain higher restoration accu-

racy measured by PSNR [13, 36, 12] which calculates the

pixel-wise difference between SR image and groundtruth:

PSNR = 10 · log10
MAXI

2

MSE
, (11)

where the higher is the better. The other is to measure per-

ceptual quality of reconstructed images, among which the

perceptual index [28] is the most commonly used metric:

PI =
1

2
((10−Ma) + NIQE) , (12)

which combines the no-reference image quality measures

of Ma score [14] and NIQE [16], and the lower is the better.

However, the two objective metrics generally grow in an

opposite way. The lower the PI value, the higher the PSNR,

and vice versa. In this paper, for better visual quality, we

employ PI as the main criteria and PSNR as an auxiliary.

4.3. Ablation study

In this section, we will verify the effects of our proposed

hierarchical feature extraction module (HFEM) and hier-

archical guided reconstruction module (HGRM). We train

several models with different configurations and test them

on Set14, as listed in Table 1. Each row represents a model

with its settings.

First of all, we set up a baseline (model 1) which only

contains one branch feature extractor (B = 1) with filter
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Models HFEM HGRM PI / PSNR Training time (days)

1 B = 1 (k = 3) T = 1 (f = 4) 3.109 / 26.344 2.1

2 B = 2 (k = 3, 5) T = 1 (f = 4) 3.060 / 25.609 2.3

3 B = 3 (k = 3, 5, 7) T = 1 (f = 4) 2.810 / 25.263 2.8

4 B = 4 (k = 3, 5, 7, 9) T = 1 (f = 4) 2.796 / 25.436 3.8

5 B = 3 (k = 3, 5, 7) T = 2 (f = 2, 4) 2.897 / 26.239 2.9

6 B = 3 (k = 3, 5, 7) T = 3 (f = 1, 2, 4) 2.903 / 26.234 2.9
Table 1. The effects of different components of our HSRGAN. Each row represents a model with its configurations of HFEM and HGRM.

k means the kernel size of each branch in HFEM and f denotes the corresponding upscale factor of each branch in HGRM. The quantitative

results (perceptual index and PSNR) and training time is listed on the right.

𝑩 = 𝟏, 𝑻 = 𝟏 𝑩 = 𝟐, 𝑻 = 𝟏 𝑩 = 𝟑, 𝑻 = 𝟏 𝑩 = 𝟑, 𝑻 = 𝟐

ppt3 from Set14

157055 from BSDS100

182053 from BSDS100

img_062 from Urban100

Figure 4. Overall visual comparisons for showing the effects of each component in our models. Each column represents a model with its

configurations in Table 1.

size of 3 and an upscale module without an intermediate

branch (T = 1). From Table 1 we can see that model 1

achieves PI = 3.109 and PSNR = 26.344. Then we em-

ploy our HFEM and add branches as model 2 to model 4.

Results from model 2 to model 4 verify the effectiveness of

the hierarchical features extracted from our HFEM. Specifi-

cally, model 3 significantly optimizes PI to 2.810 and model

4 further reduces PI to 2.796 while costs more than 1 day in

training, since the computing complexity caused by kernel

size of 9. In the meantime, the pixel-wise accuracy reflected

by PSNR deteriorates about 1dB.

Furthermore, based on model 3, which balances the

quantitative results and computing efficiency, we add in-

termediate branches to verify the functionality of our pro-

posed HGRM. Specifically, model 5 contains an interme-

diate branch of upscale factor of 2 (T = 2) and model 6

contains one more branch of upscale factor of 1 (T = 3),

which guides the output of HFEM to estimate the original
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Dataset Bicubic
EDSR RCAN SRFBN SRGAN SFTGAN NatSR ESRGAN HSRGAN

[13] [36] [12] [11] [27] [21] [28] (Ours)

Set5 7.369 5.962 5.958 5.937 3.536 3.759 4.165 3.755 3.688

Set14 7.027 5.285 5.246 5.403 2.948 2.906 3.109 2.926 2.897

BSDS100 7.003 5.258 5.130 5.352 2.381 2.377 2.780 2.313 2.406

Urban100 6.944 4.989 4.987 5.138 3.495 3.614 3.652 3.635 3.369

Manga109 6.764 4.718 4.760 4.871 3.370 3.308 3.463 3.416 3.295
Table 2. Quantitative evaluation of state-of-the-art SR approaches on datasets Set5, Set14, BSDS100, Urban100, and Manga109 measured

by perceptual index. Best and second best results are highlighted and underlined.

baby from Set5
PI / PSNR

HR
2.43 / ∞

Bicubic
6.87 / 31.83

EDSR
5.86 / 33.94

RCAN
5.85 / 33.96

SRFBN
5.88 / 33.88

SRGAN
3.23 / 30.43

SFTGAN
3.37 / 31.58

ESRGAN
3.49 / 31.52

NatSR
3.24 / 31.61

HSRGAN
3.01 / 30.95

126007 from BSDS100
PI / PSNR

HR
1.76 / ∞

Bicubic
6.62 / 27.43

EDSR
3.88 / 29.57

RCAN
4.03 / 29.69

SRFBN
4.07 / 29.73

SRGAN
2.07 / 27.34

SFTGAN
2.03 / 26.70

ESRGAN
2.16 / 26.82

NatSR
2.51 / 28.06

HSRGAN
2.04 / 27.46

Figure 5. Qualitative results of our HSRGAN and state-of-the-art methods. HSRGAN generates more realistic textures and less artifacts.

LR image. Experiments indicate that with the help of inter-

mediate guided supervision, our model can generate higher

quality images with a raise of PSNR by nearly 1dB. Never-

theless, model 6 achieves almost the same quantitative re-

sults as model 5 in PI and PSNR, which implies that the

adding the intermediate branch of original resolution does

not further improve the performance. Comparing model 1

with model 5 or model 6, it demonstrates that our hierar-

chical generative adversarial networks composed of HFEM

and HGRM can reduce the PI while maintains PSNR at the

same time.

To compare the visual quality of different models, we

test model 1, model 2, model 3 and model 5 on BSDS100

and Urban100. And the overall visual comparisons are il-

lustrated in Figure 4. Comparing model 1, model 2 and

model 3, we can see the significant improvement on the im-

age clarity. model 5 recovers much clearer edges of letter

A in image ”ppt3” and more natural facial details in im-

age ”157055”. It demonstrates that the hierarchical features

captured by multi-branch network help with the sharpness.

From model 3 and model 5, we verify that the HGRM can

reduce the artifacts generated by HFEM, like arches in im-

age ”182053” and windows in image ”img 062”, and make

the image more natural. The main reason lies in that the

structure information can be reconstructed by intermediate

supervision of HGRM.

4.4. Comparison with the state­of­the­art

In this section, we employ Bicubic, EDSR [13], RCAN

[36], SRFBN [12], SRGAN [11], SFTGAN [27], NatSR
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[21], ESRGAN [13] as our comparison methods. We re-

trained these models with their published codes and run

them on the test datasets. Table 2 lists the quantitative re-

sults. The methods can be divided into 3 categories, where

Bicubic is a baseline for the others. Compared to distortion-

oriented methods, such as EDSR, RCAN and SRFBN,

GAN-based or perception-oriented methods show signifi-

cant advantages in perceptual index, which indicates that

the methods generate clear edges of images to some extent.

Among all the GAN-based methods, our HSRGAN outper-

forms the other methods on Set14, Urban100, Manga109

datasets and achieves the second best on Set5 dataset, which

is comprehensively the best quantitative results.

We also show the qualitative results of various methods

in Figure 5. As we can see, the distortion-oriented methods

produce over-smoothing images, while recent GAN-based

methods outperform in both sharpness and details. Taking

image ”baby” as an example, EDSR, RCAN and SRFBN

obtain more faithful results of the woolen hat. SRGAN,

SFTGAN and ESRGAN reconstruct the clear textures but

fail to reproduce the natural shape of wool. NatSR gen-

erates sensible wool textures but it is a little blurry. Our

HSRGAN is capable of generating clear details and realistic

wool textures at the same time. Another problem of GAN-

based methods is that they sometimes add undesired noise

into the final SR images. In image ”126007”, SFTGAN and

ESRGAN recover the abrupt surface of the tower especially

the left part and top part of the window. SRGAN produces a

more natural tower surface but there still exist rigid artifacts

on the left part. Our HSRGAN can get rid of the unpleas-

ant artifacts while maintaining enough details and generate

clearer image than NatSR. More qualitative comparison can

be found in our supplementary material.

4.5. Subjective assessments

However, perceptual index does not fully reflect the vi-

sual quality of the image. The lower perceptual index does

not always guarantee a better visual quality. [1] points out

that perceptual index is correlated with the human-opinion-

scores on a coarse scale, but it is not always well-correlated

with these scores on a finer scale. To provide a better ref-

erence standard for visual quality assessment, we use the

mean opinion score (MOS) to quantify our performance.

Specifically, we ask 30 raters to assign a score from 1

(bad quality) to 5 (excellent quality) to the super-resolved

images of BSDS100. The raters rate 10 randomly-shuffled

versions of super-resolved each image on BSDS100 recov-

ered by Bicubic, EDSR [13], RCAN [36], SRFBN [12], SR-

GAN [11], SFTGAN [27], NatSR [21], ESRGAN [13], our

HSRGAN and the original HR image. Each rater thus rates

1000 instances (100 images × 10 versions) and each in-

stance is rated 30 times. The results of distribution of MOS

scores are illustrated as Figure 6. It is worth noting that a

Bicubic

EDSR
1600

RCAN

SRFBN
1200

SRGAN

SFTGAN
800

ESRGAN

NatSR
400

HSRGAN

HR
10

1 2 3 4 5

MOS

Figure 6. Color-coded distribution of MOS scores on BSDS100.

For each method 3000 samples (100 images × 30 raters) are as-

sessed. Mean shown as red marker and the darker the color, the

more times the score of the method. The distortion-oriented meth-

ods focus on 2 or 3 points, while the most perception-oriented

methods focus on 4 points.

method rated less than 10 times will not be shown in the

figure for better visualization.

As we can see that raters very consistently rate bicubic

interpolated test images as 1 and the original HR images as

5. The scores of EDSR, RCAN and SRFBN mainly lie in 2

or 3 and are extremely close since they focus on minimiz-

ing pixel-wise distortion, such as MAE or MSE, resulting in

producing the mean result from intent multiple HR counter-

parts, which is not helpful to improve the subjective visual

quality. For the rest GAN-based methods, the scores range

from 2 to 5. And our HSRGAN slightly outperforms SFT-

GAN, NarSR, ESRGAN and SRGAN.

5. Conclusions

We proposed hierarchical generative adversarial net-

works (HSRGAN) for the SISR problem. Specifically, the

hierarchical feature extraction module (HFEM) extracts the

hierarchical features in multiple receptive fields, concen-

trating on both local texture and global semantics. In ad-

dition, we proposed a hierarchical guided reconstruction

module (HGRM). It reconstructs the SR image by adding

intermediate supervision branches in a progressive manner.

Our HSRGAN can generate more sensible structural tex-

tures than directly upsampling a LR image to a large mag-

nification. Extensive experiments on 5 common datasets

show that our method achieves state-of-the-art performance

in terms of both quantitative metrics and visual quality.
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