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Abstract

Estimating 3D hand poses from a single RGB image is

challenging because depth ambiguity leads the problem ill-

posed. Training hand pose estimators with 3D hand mesh

annotations and multi-view images often results in signif-

icant performance gains. However, existing multi-view

datasets are relatively small with hand joints annotated by

off-the-shelf trackers or automated through model predic-

tions, both of which may be inaccurate and can introduce

biases. Collecting a large-scale multi-view 3D hand pose

images with accurate mesh and joint annotations is valu-

able but strenuous. In this paper, we design a spin match

algorithm that enables a rigid mesh model matching with

any target mesh ground truth. Based on the match algo-

rithm, we propose an efficient pipeline to generate a large-

scale multi-view hand mesh (MVHM) dataset with accu-

rate 3D hand mesh and joint labels. We further present

a multi-view hand pose estimation approach to verify that

training a hand pose estimator with our generated dataset

greatly enhances the performance. Experimental results

show that our approach achieves the performance of 0.990

in AUC20-50 on the MHP dataset compared to the previous

state-of-the-art of 0.939 on this dataset. Our datasset is

available at https://github.com/Kuzphi/MVHM.

1. Introduction

Estimating 3D hand poses from images has attracted in-

creasing attention because it is essential to a wide range of

applications such as human-computer interaction (HCI) [1,

27, 26], virtual reality (VR) [12, 18], augmented reality

(AR) [7], medical diagnosis [20], and sign language un-

derstanding [43]. Although extensive research efforts have

been made on this research topic for decades, there are still

several unsolved challenges. One of the most crucial chal-

lenges is to handle the issue of depth ambiguity present in

single view 3D hand pose estimation.

Conventional studies mainly focus on inferring 3D hand

∗Work done outside of Amazon.

Figure 1. Our core idea. We build a synthetic dataset from a multi-

view perspective, e.g., rendering hand images from different a an-

gles. With the aid of this dataset, a single-view method takes the

image from each view and generates a possible hand pose can-

didate. We proposed a multi-view method takes different single-

view predictions as input and predicts the final result.

poses from either depth or RGB images directly. To ad-

dress the problems caused by depth ambiguity, Some pre-

vious studies [5, 19, 8, 9] want to address this problem by

leveraging depthmap information. These works come up

with several ways to introduce depthmap into the training

procedure, such as making depthmap as intermediate su-

pervision [19] or using depth regularizer [5]. On the other

hand, recent studies [22, 50] point out that imposing 3D

hand shape (mesh) supervision can boost both the perfor-

mance of 3D hand pose and shape estimators. It is clear

that 3D hand shape brings richer hand structure information

than hand keypoints. Furthermore, a preset mesh serves as

a strong prior to reduce the freedom of the hand, therefore

mitigating depth ambiguity. Along this line, several meth-

ods such as [3, 2, 45, 25, 40, 39, 48, 47, 46] are proposed.

Despite the potential, the aforementioned methods highly

rely on a preset hand model learned with a large number of

accurate 3D mesh annotations. Hence, a large-scale dataset

with accurate annotations of mesh vertices is in great de-

mand.

Accurate mesh ground truth is hard to be manually an-
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notated in general. The hand mesh annotations in most ex-

isting datasets are often annotated by hand shape estimator

which can be inaccurate because hand mesh estimation it-

self is an even more challenging task. Most existing meth-

ods leveraging mesh information for 3D hand pose estima-

tion are derived based on a single view. However, mere

mesh information is insufficient to address depth ambigu-

ity. Thus, 3D pose estimation still remains ill-posed in these

methods.

The issue of depth ambiguity can be tackled by multi-

view vision according to epipolar geometry. Multi-view

sensing systems can capture hand images from cameras in

different angles and therefore depth information of hands

can be accurately inferred as long as camera parameters are

known. Inspired by the above observations, we aim to build

a large-scale multi-view hand mesh dataset that provides

hand meshes and multi-view hand images simultaneously

for training pose estimators.

In this work, we present an effective mechanism to syn-

thesize 3D hand joint and mesh annotations, and establish

a large-scale multi-view hand mesh (MVHM) dataset. We

acquired a hand mesh model with a rigging system, and 3D

hand ground truth from existing datasets, and a rigged hand

model to match the given ground truth to perform various

gestures. We render the hand model from different angles

to collect multi-view images, as well as the 3D keypoints

and mesh annotations to built MVHM. Then, we determine

if the generated MVHM dataset can be used to improve

3D hand pose estimators. To this end, a multi-view based

approach is developed for inferring 3D hand poses. The

experimental results show that the resultant pose estimator

can be greatly boosted by leveraging the generated MVHM

dataset, and performs favorably against existing methods.

This work makes three major contributions, which are sum-

marized as follows:
1. We propose an effective mechanism for compiling a

large-scale multi-view hand mesh (MVHM) dataset for

3D hand pose estimator training. To the best of our

knowledge, this is the first large-scale hand dataset

with multi-view hand images, accurate mesh annota-

tions, hand joint keypoints labels.

2. We present a multi-view hand pose estimation ap-

proach based on an end-to-end trainable graph convo-

lutional neural network where information from multi-

view images is utilized to predict 3D hand poses.

3. Our proposed approach achieves the state-of-the-art

performance on the benchmark, the MHP dataset, in

both single-view and multi-view settings.

2. Related Work

2.1. RGB based 3D Hand Pose Estimation

RGB cameras are much more widely used than depth

sensors. Estimating 3D hand poses merely from monocu-

lar RGB images are more practical and active in the litera-

ture [5, 10, 19, 29, 37, 41, 49, 24, 23, 11]. The pioneering

work by Zimmermann and Brox [49] utilizes convolutional

neural networks (CNN) to extract image feature, and feed

camera parameters with these features to a 3D lift network

where depth information is then estimated. Based on [49],

Iqbal et al. [19] leverage depth maps as intermediate super-

vision. Meanwhile, Cai et al. [5] propose a weakly super-

vised approach that reconstructs the depth map and uses it

as a regularizer during model training.

2.2. 3D Hand Mesh Estimation

3D hand pose estimation provides sparse joint locations.

However, many computer vision applications would ben-

efit more from hand shape information than sparse joints.

Therefore, 3D hand mesh estimation, an effective shape

representation, has emerged as an increasingly popular

topic [16, 3, 2, 21, 45]. Most methods [3, 2, 45, 25, 40]

are developed around a pre-defined deformable hand mesh

model called MANO [32]. Because of the high degree of

freedom and complexity of the hand gesture, searching for

the right hand mesh in such a high dimensional space is

quite challenging. Using this MANO model often relies

on strong prior to constrain the model to only regress low-

dimensional model parameters, and may ignore the high-

dimensional information. Ge et al. [16] argue that mesh is

a graph-structure data, and propose to directly regress 3D

mesh vertices through graph convolutional neural network

(GCN) with a pre-defined mesh graph.

2.3. Multi-View Hand Pose Estimation

Unlike single-view pose estimation, few research efforts

focus on 3D hand pose estimation from multi-view data.

Ge et al. [15] first introduce multi-view CNN to formu-

late it as an estimation problem. Their method assumes that

hand joint locations independently follow 3D Gaussian dis-

tributions, and uses CNN to estimate the mean and variance

of the location distribution of each joint. The main draw-

backs of their method include 1) its inability to train in an

end-to-end manner and 2) its impractical assumption about

the independence among different joint locations. Simon et

al. [33] propose a multi-view system which is trained to pro-

gressively improve hand keypoints detection. Their method

would work well on fine-tuning a well pre-trained estimator

but could not train a 3D hand pose estimator from scratch.

2.4. 3D Hand Pose Benchmark

There exist extensive research efforts such as [36, 38, 35,

42, 44, 49, 34, 30, 28, 25, 50] on building hand datasets for

3D hand pose estimation. We summarize the publicly avail-

able hand datasets and our dataset in Table 1. Most exist-

ing datasets do not contain mesh information, since labeling
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Table 1. Comparison between our dataset with publicly available datasets. Auto in field Annotation represents that the annotation is

made by some algorithms and therefore may not be accurate.Mano means the emsh annotaion is fitted by Mano Model

Dataset RGB Depth Image Type Resolution Annotation Dataset Size Multi-View Mesh

ICVL [36] 7 3 real 320 ⇥ 320 tracking 18K 7 7

NYU [38] 7 3 real 648 ⇥ 480 tracking 243K 7 7

MSRA [35] 7 3 real 1920 ⇥ 1080 tracking 76K 7 7

BigHand2.2M [42] 7 3 real 640 ⇥ 480 marker 2.2M 7 7

STB [44] 3 3 real 640 ⇥ 480 manual 36K 7 7

RHP [49] 3 3 synthetic 640 ⇥ 480 synthetic 44K 7 7

Dexter+Object [34] 3 3 real 640 ⇥ 480 manual 3K 7 7

EgoDexter [30] 3 3 real 640 ⇥ 480 manual 3K 7 7

MHP [17] 3 7 real 480 ⇥ 480 auto 80K 3 7

FreiHand [50] 3 7 real 224 ⇥ 224 auto 134K 7 Mano

InterHand [28] 3 7 real 512 ⇥ 334 auto 2.2M 3 Mano

Youtube Hand [25] 3 7 real 256⇥256 auto 47K 7 Mano

Ours 3 3 synthetic 256⇥256 synthetic 320K 3 3

hand meshes manually is almost infeasible for human anno-

tators.

To address the issue of labor-intensive annotations, re-

cent studies [50, 25, 9] propose semi-automatic ways to la-

bel RGB images. FreiHand (Zimmermann et al. [50]) use

an iterative process where the trained models first make pre-

dictions on the images and then the annotators are asked

to make necessary adjustments. YoutubeHand (Kulon et

al. [25]) run OpenPose [6] to get 2D annotations, upon

which the parameters of the MANO model are regressed.

Thresholding according to confidence scores is applied to

remove those with low confidence, and hence ensures an-

notation quality. Despite the progress on efficiency and ef-

ficacy of labeling RGB images, the accuracy of annotation

relies heavily on the pre-trained models used in the pro-

cess. In addition, these methods rely on the MANO model

as the ground-truth mesh generator, which could lose high-

dimensional information of hands, as mentioned in Sec-

tion 2.2. Compared to existing datasets, our dataset con-

sists of large-scale RGB images and includes a variety of

sequences. In addition, synthetic nature provides 100% ac-

curate annotation for both hand joints and mesh. We make

the first attempt to collect the dataset that provides large-

scale, multi-view training images, thereby enhancing pose

estimator training with a multi-view perspective.

3. Generating Muti-View Dataset

Currently, there exists no dataset providing both large-

scale mesh and multi-view annotations of 3D hands, al-

though many potential applications can benefit from such

a dataset. Therefore, we create a new dataset called Multi-

View Hand Mesh (MVHM) dataset for training multi-view

hand pose estimators. To get accurate mesh and joint anno-

tation, we use a well-made hand model from TurboSquid1

1https://www.turbosquid.com

(a) (b) (c)
Figure 2. An example of hand joint and bone labels and their or-

ders adopted in this work. (a) Joint labels. (b) Bone labels, which

are used by Algorithm 1 during spin matching. (c) A failure case

when directly rigging the hand mesh based on the bone coordi-

nates without using Algorithm 1.

which provides around 2000 mesh vertices as well as an ar-

mature system to form various hand gestures. We render the

images in the open-source software Blender2.

In order to generate images and meshes from different

gestures, we deploy the NYU dataset [38] which provides

various hand pose and accurate keypoints annotation and

rigged hand bone in our model to match with the given

groundtruth. The hand bone in the rigged system consists of

7 degrees of freedom, 3 for its bone head, 3 for its bone tail,

and 1 for its spin. The first 6 degrees of freedom determine

the location of the bone and the last one represents its orien-

tation. In order to rig the hand joints and the mesh surface

correctly, we need to consider both location and orientation.

Figure 2(c) shows an example of a distorted mesh obtained

when we do not perform orientation match but simply move

the bone location.

For this purpose, we define a bone vector as the differ-

ence between the bone tail and head. Assume u as the bone

vector of the current bone we are working on. We take its

2https://www.blender.org
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Figure 3. Some examples of the MVHM dataset. Column 1 to Column 8 shows the image with 2D annotation from view 1 to view 8,

Column 9 shows the mesh. Column 10 shows the 3D annotation

adjacent bone’s vector as the spin reference ref . We define

spin sign vector as u ⇥ ref ⇥ u, and make sure this vector

does not change after matching bone with groundturth. The

detailed algorithm is summarized in Algorithm 1.

For each ground-truth gesture, we set 8 different camera

positions that are evenly located on a circle within the plane

perpendicular to the palm. All 8 cameras point to the center

of the palm to ensure that the hand locates at the center of

each rendered image. Figure 4 shows the scene when we

render hand images.

To increase the diversity of the collected MVHM, we

randomly change the intensity of the light and global illu-

mination in the blender. In addition, we select some back-

ground scenes from online sources, and randomly use them

as background during our rendering. We render 320, 000
images of resolution 256⇥ 256 for MVHM construction.

We emphasize that each sample in MVHM comes with

full annotations of 21 hand joint and 2651 mesh vertices.

Following the setting in [49], each finger is fully repre-

sented by 4 keypoints (Metacarpophalangeal, Proximal in-

terphalangeal, Distal interphalangeal and fingertip), addi-

tionally. Carpometacarpal joints are also labeled in MVHM.

Figure 2(a) shows a sample of the hand joint labels. In

addition, we also release the hand segmentation mask, the

camera intrinsic matrix, and the optical flow for each sam-

ple. Nevertheless, we in this paper only use the multi-view

and mesh information from the collected MVHM dataset

for hand pose estimator training.

4. Methodology

4.1. Overview

Given an RGB image of a hand I 2 R
W⇥H⇥3, our goal

is to estimate the 3D joint locations of the hand Pj 2 R
k⇥3,

where W and H denote the image height and width re-

spectively, and K is the number of the hand joints. Recent

studies [16, 3] have demonstrated that using the mesh dis-

Figure 4. Synthetic scene when rendering hands in MVHM.

tance loss as an intermediate supervision during training can

boost the performance of the learned hand pose estimator.

Inspired by the approach [16], we define a hand mesh as a

bidirectional graph G(V,Λ), where V is the vertex set and

Λ is the adjacency matrix. We also assume that V contains

N different elements (i.e., points on the mesh) and our mesh

estimator would predict the 3D locations Pm 2 R
N⇥3 for

all vertices in V.

In our single-view approach, we use the stacked hour-

glass [31] as the CNN backbone to extract hand features

from an image. The graph convolution network (GCN) is

applied to estimate the 3D pose and mesh. Figure 5 shows

the architecture of our single-view network, which consists

of three major components: the 2D evidence network, mesh

evidence network, and 3D pose estimator. These compo-

nents are elaborated in the following subsections.

4.2. 2D Evidence Network

The 2D evidence network offers two main functionali-

ties. First, it estimates hand keypoint heatmaps to obtain the

2D hand joint locations. Second, it extracts image features

that then serve as the input to the mesh evidence network.

We denote the estimated heatmaps as H 2 R
K⇥H⇥W . As

shown in Figure 5, the hourglass backbone gives two out-

puts, including the estimated hand joint heatmaps and the
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Algorithm 1: Spin matching Algorithm for rigging

hand mesh base on 3D hand pose ground truth

Input:

C is the array of 3D keypoints ground truth that we

want our mesh to match with.

B is the array of hand bones in the rig system. Each

bone has two attributes, head and tail, which

represent the beginning and end location of the

bone.

B and C is stored in an array whose orders are

shown in Figure 2(a) and 2(b)

begin

Move B[0].tail to location C[0] ;

// spin the bone inside the palm

for i 2 {1, 5, 9, 13, 17} do

// bone vector

u B[i].tail - B[i].head;

v  C[i] - C[0] ;

adj i+ 4;

if i = 17 then

adj i� 4;

end

// reference vector

refori  B[adj].tail - B[adj].head;

refaft  C[adj] - C[0] ;

Move B[i] to match groundturth;

// sign vector

e1 = u⇥ refori ⇥ u;

e2 = v ⇥ refaft ⇥ v ;

Spin B[i] with the angle between e1 & e2;

end

for i 1 to 21 do

if i mod 4 6= 1 then

Move B[i] to match groundturth;

B[i] performs the same spin as B[i-1] ;

end

end

end

extracted features. The ground-truth heatmaps H̄s are ob-

tained by smoothing the keypoint location kth with Gaus-

sian blur. To train the 2D evidence network, we apply the

heatmap loss Lh to each hourglass block as supervision.

The heatmap loss is defined by

Lh =
1

S ⇤K

SX

s=1

KX

k=1

||Hs
k � H̄k||

2

F , (1)

where S and K denote the number of the hourglass blocks

and keypoints, respectively.

Figure 5. Overview of our single-view method. Given a single-

view RGB image, the 2D evidence network predicts its heatmap

and outputs the encoded image features. The mesh evidence net-

work takes image features as input and outputs the hand mesh.

Based on the estimated mesh, the 3D pose estimator gives final

hand pose prediction.

4.2.1 Mesh Evidence Network

Our mesh evidence network is built on the basis of spectral

GCN [4]. Given the image features extracted by the 2D

evidence network, our mesh evidence network estimates the

3D hand mesh. A 3D hand mesh is represented by a set of

vertex coordinates Pm 2 R
N⇥3 where N is the number of

the vertices in the hand mesh. We represent a hand mesh

as a graph G(V,Λ), where V is the vertices set, and Λ is

the adjacency matrix. Λi,j is 1 if there is an edge between

vertex i and vertex j, otherwise it is 0.

Specifically, we first normalize the adjacency matrix Λ

via graph Laplacian operation and obtain a normalized ad-

jacency matrix L = I � D�
1

2ΛD�
1

2 , where D is the

degree matrix of graph G and I is an identity matrix.

Graph spectral decomposition is then used to decompose

the normalized adjacency matrix L as UAUT , where A =
diag(λ1,λ2, ...,λN ) consists of the eigenvalues of the L,

where λmax is the largest eigenvalue of L.

Following [13], we define the convolution kernel Â in

GCN as

Â = diag(

SX

i=0

αiλ
i
1
, ...,

SX

i=0

αiλ
i
C), (2)

where α is the kernel parameter and S is a pre-set hyper-

parameter used to control the receptive field.

Thus, the GCN convolutional operation is defined by

F
0 = UΛ̂U

T
Fθi =

SX

i=0

αiL
i
Fθi, (3)

where F 2 R
N⇥Fin and F 0 2 R

N⇥Fout indicate the input

and output features respectively, and θi 2 R
Fin⇥Fout is train-
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Figure 6. Overview of the multi-view method. The single-view method first predicts the hand pose for each view independently. A graph

U-Net takes the concatenation of these single-view predictions as input, and estimates the final pose estimation. N(·) and C(·) represent

the number of nodes in the graph and feature size of each node, respectively.

able parameter used to refine the input feature and control

the output channel size.

Since our hand mesh surface is composed of 2561 ver-

tices, it takes a huge computational cost to apply the above

operation to each vertex because the time complexity of

matrix multiplication for Li is O(N3). Therefore, we uti-

lize the Chebyshev polynomial approximation to reduce the

complexity. The convolutional operation is then defined by

F
0 =

SX

i=0

αiTi(L̂)θi, (4)

where Tk(x) is the kth Chebyshev polynomial and L̂ =
2L/λmax � I is used to normalize the input features.

To enable our model to learn both local and global fea-

tures, we adopt a scheme that is used in [13, 16] for gen-

erating hand meshes from coarse to fine. We leverage the

heavy-edge matching algorithm to coarsen the graph by

three different coarsening levels, and record the mapping

between graph nodes in every two consecutive levels. In

the forward pass, our model first constructs the most coarse

hand mesh and then up-samples more nodes from the coarse

graph to the fine graph based on the stored mappings.

At the last layer of the GCN, we set Fout to 3 to repre-

sent the 3D coordinate vertices. Also, we apply the l2 loss

between the ground-truth mesh and prediction map as the

mesh loss function:

Lm =
1

N
||Pm � P̄m||2F . (5)

4.3. 3D Depth Evidence Network

The proposed 3D evidence network infers the depth of

3D hand keypoints Pd from the predicted hand mesh Pm

by the mesh evidence network. Taking Pm as the input, we

adopt a two layers GCN with a similar structure of the mesh

evidence network to predict the pose features. These pose

features are then fed to two fully connected layers to regress

the depth of 3D hand keypoint locations. The corresponding

loss is defined by

Ld =
1

K
||D � D̄||2F , (6)

where D 2 R
K and D̄ 2 R

K represent the predicted and

the ground-truth joint depths, respectively.

To infer the 3D hand keypoints, we use non-maximum

suppression to get the 2D coordinates from the estimated

heatmaps. With the estimated 2D coordinates and the depth

map calculated by the 3D depth evidence network, we then

obtain 3D coordinates in the camera coordinate system.

Since the camera parameters are known, we are then able

to infer hand keypoints in the world system.

4.4. Multi-view Method

Based on our single-view method, we propose a simple

yet effective multi-view approach to hand pose estimation.

Figure 6 illustrates the core idea of our approach.

Our single-view method predicts the 3D hand pose for

each view independently. We concatenate these view-

specific predictions on their coordinate channel. The con-

catenated prediction serves as the input features to a graph

U-Nets[14] and predicts the final 3D hand keypoints. We

utilize the L2 distance as the loss function in our multi-view

network, i.e.,

Ls =
1

K
||Pj � P̄j ||

2

F , (7)

where Pj and P̄j represent the predicted and the ground-

truth joint depth, respectively.

5. Experiment Setting

5.1. Datasets for Evaluation

We evaluate our single-view approach on two benchmark

hand pose datasets, including the Stereo Tracking Bench-

mark (STB) Dataset [44] and the Multi-view 3D Hand Pose
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Figure 7. Examples of the two hand pose datasets used for eval-

uation. The first row shows images with the annotated hand poses

from the STB dataset [44] while the second row shows those from

the MHP dataset [17].

(MHP) dataset [17]. The proposed multi-view approach is

evaluated on the MHP dataset. Both the MHP and STB

datasets provide real hand video sequences performed by

different people in various backgrounds. The hand joint an-

notations of the STB dataset are manually labeled while the

annotations of the MHP dataset are obtained by using the

Leap Motion sensor. The MVHM dataset we build is used

in all of our experiments. We aim at determining if training

the hand pose estimators with the MVHM dataset can be

effectively improved in different experimental settings.

For the STB dataset, we use its SK subset, which con-

tains 6 different hand videos, to evaluate our approach. Fol-

lowing the train-validation split setting in [16], we take the

first video as the validation set while the rest videos serve

as the training set.

The MHP dataset includes 21 different hand motion

videos. Each hand motion video provides hand RGB im-

ages and multiple types of annotations in each sample, in-

cluding bounding boxes and 2D/3D hand joint locations.

Figure 7 displays some examples of the STB and MHP

datasets. We follow [5, 49] and apply the standard data pre-

processing for both of the STB and MHP datasets. During

data pre-processing, we firstly crop the images to remove

the irrelevant background and make sure the hands are lo-

cated at the center of the images. All the cropped images are

then resized to resolution 256 ⇥ 256. Secondly, we follow

the mechanism used in [5] to change the hand center from

the palm center to the joint of the wrist for data in both of

the STB and MHP datasets.

5.2. Metrics

We follow the settings from previous researches [49, 16]

and adopt the average end-point-error (EPEm), and the

area under the curve (AUC) on the percentage of correct

keypoints (PCK) within a threshold range as the metrics to

evaluate model effectiveness. We report the performance

in both AUC on PCK between 0mm and 50mm as well as

between 20mm and 50mm.

Table 2. Ablation studies of 3D hand pose estimation on the STB

and MHP datasets. ↑: higher is better; ↓: lower is better; The mea-

suring unit of EPE is millimeter(mm). SV stands for the single-

view method and MV represents the multi-view method.

AUC0-50 " AUC20-50 " EPEm #

MHP Dataset

SV w/o MVHM 0.604 0.802 22.13

SV w/ MVHM 0.660 0.857 18.09

MV w/o MVHM 0.832 0.985 8.43

MV w/ MVHM 0.895 0.990 5.20

STB Dataset

SV w/o MVHM 0.820 0.987 8.95

SV w/ MVHM 0.832 0.991 8.38

Table 3. Results on the MHP dataset. ↑: higher is better.

AUC20-50 "

Zimmermann et al. [50] 0.717

Cai et al. [5] 0.928

Chen et al. [8] 0.939

Our multi-view method 0.991

5.3. Implementation Details

We implement our single-view and multi-view ap-

proaches in Python with PyTorch. In the training phase,

we set the batch size as 8, and use the Adam solver with

an initial learning rate 0.01. Both models are trained on a

server with four GeForce GTX 1080-Ti GPUs.

When training the single-view network, we use a multi-

stage training strategy. In the first stage, we train our 2D

evidence network with the heatmap loss Lh. In the sec-

ond stage, we fix the weights of the 2D evidence network

and train the mesh network with mesh loss Lm. In the third

stage, we fix the weights of both of the 2D evidence network

and mesh network, and focus on training the joint depth net-

work with loss Ld. In the final stage, the whole network is

optimized end-to-end.

For training the multi-view network, we apply the same

multi-stage training strategy. In the first stage, we use the

pre-trained weights from the single-view network for ini-

tializing the 3D hand single-view network, and keep this

part fixed for training the 3D hand fusion network. In the

second stage, we activate both networks and fine-tune the

whole network architecture in an end-to-end manner.

6. Experimental Results

6.1. Multi-view task

To evaluate the effectiveness of the proposed multi-

view method, we compare our single-view method with our

multi-view method on the MHP dataset under the setting of

with or without using data from the MVHM dataset. Table 2

and Figure 8(a) show that utilizing the multi-view informa-

tion from the MHP dataset itself boosts the testing perfor-
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(a) (b) (c) (d)
Figure 8. Ablation studies and comparison of the state-of-the-art methods for single-view pose estimation. (a) PCK results of different

settings on the STB dataset. (b) Comparison results in PCK for the state-of-the-art methods on the STB dataset. (c) PCK results under

different settings on the MHP dataset. (d) Comparison results in PCK for the state-of-the-art methods on the MHP dataset.

mance in AUC0-50, AUC20-50, and EPEm by large margins,

i.e., 0.218, 0.183, and 13.80mm respectively. When addi-

tional data from the MVHM dataset are used, substantial

performance gains are achieved, which reveals the effec-

tiveness of using the collected MVHM dataset for training.

Three current state-of-the-art methods are chosen for

comparing with our method on the MHP dataset, includ-

ing Zimmermann et al. [50] (0.717 in AUC20-50 ), Cai et

al. [5] (0.928 in AUC20-50)3, and Chen et al. [8] (0.939 in

AUC20-50). Zimmermann et al. [50] just report the numer-

ical result so we include their result in Table 3 and does

not show it in Figure 8(b). Our multi-view method achieves

the performance of 0.990 in AUC20-50, outperforming these

competing methods by a large margin. This experiment

shows that both the proposed multi-view method and the

established MVHM dataset are beneficial and can work to-

gether to get the new state-of-the-art performance on the

MHP dataset.

6.2. Single-view task

To further validate the effectiveness of the generated

mesh dataset MVHM in addition to multi-view methods, we

also conduct the following experiments for comparison on

single-view methods. We compare the results when models

are trained solely on the MHP/STB datasets and trained on

the MHP/STB datasets together with the MVHM dataset.

Table 2, Figure 8(a) and Figure 8(c) show, on both MHP

and STB datasets, adding the mesh data greatly enhances

the performance by granting a model the ability to capture

the mesh-level features, therefore leading to better results.

We select seven powerful and recently published meth-

3Cai et al. [5] do not report the results in their paper. Here we report

the re-implementaition results by Chen et al. [8].

ods for comparison with the proposed method, including

PSO [3], ICPPSO [10], CHPR [44], Iqbal et al. [19], Cai et

al. [5], Zimmermann and Brox [49], and Ge et al. [16]. The

AUC curves are plotted in Figure 8(d). Ge et al. [16] also

utilize an additional dataset to train their model and got the

STOA result, which demonstrates the effectiveness of their

mesh dataset. Besides, they introduce more complicated

mesh metrics like the surface norm loss. Iqbal et al. [19]

and Cai et al. [5] leverage additional depth-map informa-

tion to derive their models, and achieve good results. As

a multi-view approach without complicated components,

our method is on par with methods by Ge et al. [16] and

Iqbal et al. [19] while outperforms most of them on single-

view tasks.

7. Conclusions

Estimating 3D hand poses from monocular images is an

ill-posed problem due to its depth ambiguity. Nevertheless,

multi-view images could make up the deficiency. To this

end, we build a multi-view mesh hand dataset, MVHM,

to enable training 3D pose estimators with mesh supervi-

sion. We present a multi-view method that effectively fuses

single-view predictions. When testing on the real-world

multi-view dataset MHP, our multi-view method with the

aid of the MVHM dataset achieves the state-of-the-art per-

formance.
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