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Abstract

Neural Module Network (NMN) exhibits strong inter-

pretability and compositionality thanks to its handcrafted

neural modules with explicit multi-hop reasoning capabil-

ity. However, most NMNs suffer from two critical draw-

backs: 1) scalability: customized module for specific func-

tion renders it impractical when scaling up to a larger set

of functions in complex tasks; 2) generalizability: rigid pre-

defined module inventory makes it difficult to generalize to

unseen functions in new tasks/domains. To design a more

powerful NMN architecture for practical use, we propose

Meta Module Network (MMN) centered on a novel meta

module, which can take in function recipes and morph into

diverse instance modules dynamically. The instance mod-

ules are then woven into an execution graph for complex

visual reasoning, inheriting the strong explainability and

compositionality of NMN. With such a flexible instantiation

mechanism, the parameters of instance modules are inher-

ited from the central meta module, retaining the same model

complexity as the function set grows, which promises better

scalability. Meanwhile, as functions are encoded into the

embedding space, unseen functions can be readily repre-

sented based on its structural similarity with previously ob-

served ones, which ensures better generalizability. Experi-

ments on GQA and CLEVR datasets validate the superiority

of MMN over state-of-the-art NMN designs. Synthetic ex-

periments on held-out unseen functions from GQA dataset

also demonstrate the strong generalizability of MMN. Our

code and model are released in Github1.

1. Introduction

Visual reasoning requires a model to learn strong com-

positionality and generalization abilities, i.e., understand-

ing and answering compositional questions without hav-

1https://github.com/wenhuchen/
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Figure 1. Comparison between NMN and MMN for visual reason-

ing. Neural Module Network (NMN) builds an instance-specific

network based on the given question from a pre-defined inventory

of neural modules, each module has its independent parameteri-

zation. Meta Module Network (MMN) also builds an instance-

specific network by instantiating instance modules from the meta

module based on the input function recipes (specifications), every

instance module has shared parameterization.

ing seen similar semantic compositions before. Such com-

positional visual reasoning is a hallmark for human intel-

ligence that endows people with strong problem-solving

skills given limited prior knowledge. Neural module net-

works (NMNs) [2, 3, 15, 21, 14, 28] have been proposed

to perform such complex reasoning tasks. NMN requires

a set of pre-defined functions and explicitly encodes each

function into unique shallow neural networks called mod-

ules, which are composed dynamically to build an instance-

specific network for each input question. This approach has

high compositionality and interpretability, as each module

is designed to accomplish a specific sub-task, and multiple

modules can be combined to perform an unseen combina-

tion of functions during inference.
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However, NMN suffers from two major limitations. 1)

Scalability: When the complexity of the task increases,

the set of functional semantics scales up, so does the num-

ber of neural modules. For example, in the recent GQA

dataset [17], a larger set of functions (48 vs 25, see Ap-

pendix for details) with varied arity is involved, compared

to previous CLEVR dataset [20]. To solve this task with

standard NMN framework [2, 15, 28], an increased amount

of modules are required to implement for these functions,

leading to higher model complexity. 2) Generalizability:

Since the model is tied to a pre-defined set of functionali-

ties when a new question with unseen functional semantics

appears, no existing module can be readily applied to the

new semantics, limiting the model’s ability to generalize.

In order to enhance NMN for more practical use, we pro-

pose Meta Module Network (MMN). As depicted in Fig-

ure 1, MMN is based on a meta module (a general-purpose

neural network), which can take a function recipe (key-

value pairs) as input to embed it into continuous vector

space and feed it as a side input to instantiate different in-

stance modules. Depending on the specification provided

in function recipe, different instance modules are created to

accomplish different sub-tasks. As different instance mod-

ules inherit the same parameters from the meta module,

model complexity remains the same as the function set en-

larges. For example, if the recipe has K slots, and each slot

takesN values, a compact vector of the recipe can represent

up to NK different functions. This effectively solves the

scalability issue of NMN. When creating instance modules

for specified sub-tasks, the input recipes are encoded into

the embedding space for function instantiation. Thus, when

an unseen recipe appears, it can be encoded into the em-

bedding space to instantiate a novel instance module based

on embedding similarity with previously observed recipes.

This metamorphous design effectively overcomes NMN’s

limitation on generalizability.

MMN draws inspiration from Meta Learning [35, 32, 9]

as a learning-to-learn approach - instead of learning inde-

pendent functions to solve different sub-tasks, MMN learns

a meta-function that can generate a function to solve spe-

cific sub-task.2 The learning algorithm of MMN is based

on a teacher-student framework to provide module supervi-

sion: an accurate “symbolic teacher” first traverses a given

scene graph to generate the intermediate outputs for the

given functions from specific recipe; the intermediate out-

puts are then used as guidelines to teach each “student” in-

stance module to accomplish its designated sub-task in the

function recipe. The module supervision together with the

original question answering supervision are used jointly to

train the model.

2borrowing the concept of Meta as in: a book in which a character is

writing a book, or a movie in which a character is making a movie, can be

described as Meta.

The model architecture of MMN is illustrated in Fig-

ure 2: (1) the coarse-to-fine semantic parser converts an in-

put question into its corresponding program (i.e., a sequence

of functions); (2) the meta module is instantiated into dif-

ferent instance modules based on the function recipes of the

predicted program, which is composed into an execution

graph; (3) the visual encoder encodes the image features

that are fed to the instance modules; (4) during training, we

provide intermediate module supervision and end-step an-

swer supervision to jointly train all the components.

Our main contributions are summarized as follows. (i)

We propose Meta Module Network that effectively extends

the scalability and generalizability of NMN for more prac-

tical use, allowing it to handle tasks with unseen compo-

sitional function from new domain. With a metamorphous

meta module learned through teacher-student supervision,

MMN provides great flexibility on model design and model

training that cleverly overcomes the rigid hand-crafting of

NMN. (ii) Experiments conducted on CLEVR and GQA

benchmarks demonstrate the scalability of MMN to accom-

modate larger set of functions. (iii) Qualitative visualiza-

tion on the inferential chain of MMN also demonstrates its

superb interpretability and strong transferability.

2. Related Work

Neural Module Networks By parsing a question into a

program and executing the program through dynamically

composed neural modules, NMN excels in interpretability

and compositionality by design [2, 3, 15, 21, 14, 44, 28, 40].

For example, IEP [15] and N2NMN [21] aims to make the

whole model end-to-end trainable via the use of reinforce-

ment learning. Stack-NMN [14] proposes to make soft lay-

out selection so that the whole model is fully differentiable,

and Neural-Symbolic VQA [44] proposes to perform com-

pletely symbolic reasoning by encoding images into scene

graphs. However, its success is mostly restricted to simple

datasets with a limited set of functions, whose performance

can be surpassed by simpler methods such as relational net-

work [34] and FiLM [31]. Our MMN is a module network

in concept, thus possessing high interpretability and compo-

sitionality. However, different from traditional NMN, to en-

hance its scalability and generalizability, MMN uses only a

general-purpose meta module for program execution recur-

rently, which makes MMN inherently a monolithic network,

ensuring its strong empirical performance without sacrific-

ing model interpretability.

Monolithic Network Another line of research on visual

reasoning is focused on designing monolithic network ar-

chitecture, such as MFB [46], BAN [23], DCN [29], and

MCAN [45]. These black-box models have achieved strong

performance on challenging datasets, such as VQA [4, 11]

and GQA [18], surpassing the NMN approach. More re-

656



Relate([1], beside, boy)

End-Task 

Supervision

V
isu

a
l E

n
c
o

d
e

r

O
b

je
c
t D

e
te

c
to

r

Choose([3],[4], older)Filter(2], tall)Relate_inv([1], holding, girl)Select(ball)

Question: Who is older, the girl holding the ball or the tall boy beside the ball?

Answer: Man

Module 

Supervision

Image Input

ChooseFilterRelate_invRelateSelect

Choose

Filter

Relate

Relate_inv

Select

Program Generator

Instantiate Instantiate

1

2

4

Teacher-Student

3

Meta Module

Figure 2. The model architecture of MMN: the lower part describes how the question is translated into programs and instantiated into

operation-specific modules; the upper part describes the module execution. Circle i denotes the i-th step.

cently, multimodal pre-training algorithms [38, 27, 36, 7,

10] have been proposed that further lift state of the art

on diverse tasks such as VQA [11], NLVR2 [37], and

VCR [47]. They use a unified neural network to learn

general-purpose reasoning skills [17], which is more flex-

ible and scalable than NMN. Most monolithic networks for

visual reasoning resort to attention mechanism for multi-

modal fusion [49, 50, 48, 45, 46, 24, 23, 22, 26, 16]. To re-

alize multi-hop reasoning on complex questions, SAN [43],

MAC [17] and MuRel [5] models have been proposed. As

the monolithic network is not tied to any pre-defined func-

tionality, it has better generalizability to unseen questions.

However, since the reasoning procedure is conducted in the

feature space, such models usually lack interpretability, or

the ability to capture the compositionality in language.

GQA Models GQA was introduced in [18] for real-

world visual reasoning. Simple monolithic networks [41],

MAC netowrk [17], and language-conditioned graph neu-

ral networks [16, 12] have been developed for this task.

LXMERT [38], a large-scale pre-trained encoder, has also

been tested on this dataset. Recently, Neural State Machine

(NSM) [19] proposed to first predict a probabilistic scene

graph, then perform multi-hop reasoning over the graph for

answer prediction. The scene graph serves as a strong prior

to the model. Our model is designed to leverage dense vi-

sual features extracted from object detection models, thus

orthogonal to NSM and can be enhanced with their scene

graph generator once it is publicly available. Different from

the aforementioned approaches, MMN also performs ex-

plicit multi-hop reasoning based on predicted programs to

demonstrate inferred reasoning chain.

3. Proposed Approach

The visual reasoning task [18] is formulated as follows:

given a question Q grounded in an image I , where Q =
{q1, · · · , qM} with qi representing the i-th word, the goal is

to select an answer a ∈ A from a set of possible answers.

During training, we are provided with an additional scene

graph G for each image I , and a functional program P for

each question Q. During inference, scene graphs and pro-

grams are not provided.

Figure 2 provides an overview of Meta Module Network

(MMN), which consists of three components: (i) Program

Generator (Sec. 3.1), which generates a functional program

from the input question; (ii) Visual Encoder (Sec. 3.2),

which consists of self-attention and cross-attention layers

on top of an object detection model, transforming an input

image into object-level feature vectors; (iii) Meta Module

(Sec. 3.3), which can be instantiated to different instance

modules to execute the program for answer prediction.

3.1. Program Generator

Similar to other programming languages, we define a set

of syntax rules for building valid programs and a set of

semantics to determine the functionality of each program.

Specifically, we define a set of functions F with their fixed

arity nf ∈ {1, 2, 3, 4} based on the “semantic string” pro-

vided in GQA dataset [18]. The definitions for all the func-

tions are provided in the Appendix. The defined functions

can be divided into 10 different function types (e.g., “re-

late”, “verify”, “filter”, “choose”), and each abstract func-

tion type is further implemented with different realizations

based on fine-grained functionality (e.g., “verify”: “ver-
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ify attribute”, “verify geometric”, “verify relation”, “ver-

ify color”), which take different arguments as inputs.

In total, there are 48 different functions defined in GQA

environment, which poses great challenges to the scalabil-

ity in visual reasoning. The returned values of these func-

tions are List of Objects, Boolean, or String (Object refers

to the detected bounding box, and String refers to object

name, attributes, relations, etc.) A program P is viewed

as a sequence of function calls f1, · · · , fL. For example,

in Figure 3, f2 is Relate([1], beside, boy), the

functionality of which is to find a boy who is beside the

objects returned by f1 : Select(ball). Formally, we

call Relate the “function name”, [1] the “dependency”

(previous execution results), and beside, boy the “ar-

guments”. By exploiting the dependency relationship be-

tween functions, we build an execution graph, where each

node represents a function and each edge denotes an input-

output dependency relationship between connected nodes.

In order to generate syntactically plausible programs, we

follow [8] and adopt a coarse-to-fine two-stage generation

paradigm, as illustrated in Figure 3. We first encode the

question as a context vector, and then decode a sketch step

by step (the sketch only contains the function name without

arguments). Once the sketch is decoded, the arity and types

of the decoded functions are determined. For example, af-

ter generating “Relate”, there are three arguments following

this function with the first argument as the dependency. The

sketch is thus expanded as “Relate (#1, #2, #3)”, where “#i”

denotes the i-th unfilled slot. We then apply a fine-grained

generator to fill in the slots of dependencies and arguments

for the sketch as a concrete program P . During the slot-

filling phase, we mask the infeasible tokens at each time

step to greatly reduce the search space.

Such a two-stage generation process helps guarantee the

plausibility and grammaticality of synthesized programs.

For example, if function Filter is sketched, we know

there are two tokens required to complete the function.

The first token should be selected from the dependency set

([1], [2], ...), while the second token should be selected

from the attribute set (e.g., color, size). With these syn-

tactic constraints to shrink the search space, our program

synthesizer can achieve a 98.8% execution accuracy (i.e.,

returning the same result as the ground truth after execu-

tion) compared to execution accuracy of 93% of a standard

sequence generation model.

3.2. Visual Encoder

The visual encoder is based on a pre-trained object de-

tection model [33, 1] that extracts from image I a set of

regional features R = {ri}
N
i=1, where ri ∈ R

Dv , N de-

notes the number of regions of interest, and Dv denotes the

feature dimension. Similar to a Transformer block [39],

we first use two self-attention networks, SAq and SAr,

to encode the question and the visual features as Q̂ =
SAq(Q,Q;φq) and R̂ = SAr(R,R;φr), respectively.

Q̂ ∈ R
M×D, R̂ ∈ R

N×D, and D is the network’s hidden

dimension. Based on this, a cross-attention network CA is

applied to use the question as guidance to refine the visual

features into V = CA(R̂, Q̂;φc) ∈ R
N×D, where Q̂ is

used as the query vector, and φ = {φq, φr, φc} denotes all

the parameters in the visual encoder. The attended visual

features V will then be fed as the visual input to the meta

module, which is detailed in Sec. 3.3.

3.3. Meta Module

As opposed to having a full inventory of task-specific pa-

rameterized modules for different functions as in NMN [3],

we design an abstract meta module that can be instantiated

into instance modules based on an input function recipe,

which is a set of pre-defined key-value pairs specifying the

properties of the function. As exemplified in Figure 4, when

taking recipe Function:relate; Geometric:to

the left as the input, the Recipe Embedder produces

a recipe vector to instantiate the abstract meta module

into a “geometric relation” module, which specifically

searches for target objects that the current object is to

the left of. When taking recipe Function:filter;

Type:color; Attribute:pink as input, the Em-

bedder will instantiate the meta module into a “filter pink”
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Figure 4. Illustration of the instantiation process for Relate and Filter functions.

module, which specifically looks for the objects with pink

color in the input objects.

Two-layered Attention Figure 4 demonstrates the com-

putation flow in meta module, which is built upon two-

leveled multi-head attention network [39]. A Recipe Em-

bedder encodes a function recipe into a real-valued vector

rf ∈ R
D. In the first attention layer, rf is fed into an at-

tention network gd as the query vector to incorporate the

output (ô1:K) of dependent modules. The intermediate out-

put (od) from this attention layer is further fed into a sec-

ond attention network gv to incorporate the visual repre-

sentation V of the image. The final output is denoted as

g(rf , ô1:K ,V) = gv(gd(rf , ô1:K),V).

Instantiation & Execution The instantiation is accom-

plished by feeding a function f to the meta module g, which

results in a wrapper function gf (ô1:K ,V;ψ) known as in-

stance module (ψ denotes the parameters of the module).

Each module gf outputs o(f) ∈ R
D, which acts as the

message passed to its neighbor modules. For brevity, we

use o(fi) to denote the MMN’s output at the i-th func-

tion fi. The final output o(fL) of function fL will be fed

into a softmax-based classifier for answer prediction. Dur-

ing training, we optimize the parameters ψ (in meta mod-

ule) and φ (in visual encoder) to maximize the likelihood

pφ,ψ(a|P,Q,R) on the training data, where a is the answer,

and P,Q,R are programs, questions and visual features.

3.4. Learning

In order to train the meta module to learn the instantia-

tion process from given function recipes (i.e., how to gen-

erate functions), we propose a Teacher-Student framework

depicted in Figure 5. First, we define a Symbolic Execu-

tor as the “Teacher”, which can take the input function f

and traverse the provided training scene graph to obtain in-

termediate results (i.e., distribution over the objects on the

ground-truth scene graph). The “Teacher” exhibits it as a

guideline γ for the “Student” instance module gf to follow.

Symbolic Teacher We first execute the program P =
f1, · · · , fL on the ground-truth scene graph G provided in

the training data to obtain all the intermediate execution re-

sults. According to the function definition (see Appendix

for details), the intermediate results are either of type List of

Objects or Boolean. The strategy of representing the results

follows: (i) Non-empty List of Objects: use the first ele-

ment’s vertexes [x1, y1, x2, y2]; (ii) Empty List of Objects:

use dummy vertexes [0, 0, 0, 0]; (iii) “True” from Boolean:

use the vertexes from last step; (iv) “False” from Boolean:

use dummy vertexes as in (ii). Therefore, the intermedi-

ate results can be unified in the form of quadruples denoted

as bi. To align these quadruple bi regions with the regions

R proposed by the object detector from the visual encoder,

we compute its overlap against all the regions rj ∈ R as

ai,j =
Intersect(bi,rj)
Union(bi,rj)

. Based on whether there exist any

overlaps, we handle the following two cases differently:

1. If
∑
j ai,j > 0, which means that there exists detected

bounding boxes overlapping with the bi, we normalize

ai,j over R to obtain a distribution γi,j =
ai,j∑
j
ai,j

and

append an extra 0 in the end to obtain γi ∈ R
N+1.

2. If
∑
j ai,j = 0, which means no detected bounding

box has overlap with bi (or bi = [0, 0, 0, 0]), we use

the one-hot distribution γi = [0, · · · , 0, 1] ∈ R
N+1 as

the distribution. The last bit represents “No Match”.

We call distributions γi,j the guideline from symbolic

teacher. Please refer to the rightmost part of Figure 5 to

better understand the computation.

Student Module We propose to demonstrate the guide-

line distributions γi,j from the symbolic teacher for stu-

dent instance modules gf to imitate. Formally, we let

each instance module gf predict its guideline distribution

based on its output representation o(fi), denoted as γ̂i =
softmax(MLP (o(fi))). During training, we enforce the

instance module’s prediction γ̂i to align the guideline distri-

bution γi by minimizing their KL divergence KL(γi||γ̂i).
This side task is aimed to help the meta module learn the

mapping from recipe embedding space rf ∈ R
D to func-

tion space f ∈ F like a function factory rather than directly

learning independent functions f itself. Such a “learning to

learn” or meta-learning paradigm gives our model the ca-

pability to generalize to unseen sub-tasks encoded in the
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Model Cnt Exist
Cmp

Num

Cmp

Attr.

Query

Attr.
All

NMN [15] 68.5 85.7 84.9 88.7 90.0 83.7

IEP [21] 92.7 97.1 98.7 98.9 98.1 96.9

MAC [17] 97.1 99.5 99.1 99.5 99.5 98.9

NS [44] 99.7 99.9 99.9 99.8 99.8 99.8

NS-CL [28] 98.2 98.8 99.0 99.1 99.3 98.9

MMN 98.2 99.6 99.3 99.5 99.4 99.2

Table 1. Comparison of MMN against the state-of-the-art models

on CLEVR test set, as reported in their original papers.

recipe embedding space.

Joint Optimization Formally, given the quadruple of

(P,Q,R, a) and the pre-computed guideline distribution γ,

we propose to add KL divergence to the standard loss func-

tion with a balancing factor η:

L(φ, ψ) = − log pφ,ψ(a|P,Q,R) + η

L−1∑

i=1

KL(γi||γ̂i) .

The objective jointly provides the module supervision and

end-task supervision, the parameters φ, ψ of visual encoder

and the module network are optimized w.r.t to it.

4. Experiments

In this section, we conduct the following experiments.

(i) We first evaluate the proposed Meta Module Network

on CLEVR datast [20] to preliminarily validate its effective-

ness on the synthetic environment. (ii) We then evaluate on

the GQA v1.1 dataset [18] and compare it with state-of-the-

art methods. As GQA is a more realistic testbed to demon-

strate the scalability and generalizability of our model, we

will focus on it throughout our experiments. (iii) We pro-

vide visualization of the inferential chains and perform fine-

grained error analysis based on that. (iv) We design syn-

thesized experiments to quantitatively measure our model’s

generalization ability towards unseen functional semantics.

4.1. Preliminary Experiments on CLEVR

The CLEVR dataset [20] consists of rendered images

featuring 3D-objects of various shapes, materials, colors,

and sizes, coupled with machine-generated compositional

multi-step questions that measure performance on an array

of challenging reasoning skills. Each question is also as-

sociated with a tree-structured functional program that was

used to generate it, specifying the reasoning operations that

should be performed to compute the answer. We use the

standard training set containing 700K questions-program

pairs to train our model and parser along with the provided

scene graphs. We define a set of function F with arity of

nf ∈ {1, 2} provided in the dataset. The definitions of all

functions are provided in Appendix, and there are 25 func-

tions in total with similar return type as GQA. We follow

NS-VQA [44] to train detectors based on MaskRCNN [13]

and detect top 32 bounding boxes ranked by their confi-

dence scores. We use a hidden dimension D = 256 for

both the visual encoder and the meta module.

We report our experimental results on the standard test

set in Table 1. We observe that MMN can outperform the

standard NMN [15] with more compact representation with

meta module and scene-graph-based intermediate supervi-

sion. Except for numerical operations like Count and Com-

pare Number, MMN can achieve similar accuracy as the

state-of-the-art NS-VQA [44] model. As CLEVR dataset is

not the focus of this paper due to its synthetic nature and

limited set of semantic functions, we use it only as the pre-

liminary study. Note that we have also attempted to re-

implement the NS-VQA approach on GQA, and observe

that the accuracy is very low (≈ 30% on test set). This

is due to that NS-VQA performs pure symbolic reasoning,

thus requiring the scene graph to be accurately generated;

while generating scene graphs is challenging in GQA with

open-domain real images.

4.2. GQA Experimental Setup

GQA Dataset [18] contains 22M questions over 140K

images. This full “all-split” dataset has unbalanced answer
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distributions, thus, is further re-sampled into a “balanced-

split” with a more balanced answer distribution. The new

split consists of 1M questions. Compared with the VQA

v2.0 dataset [11], the questions in GQA are designed to re-

quire multi-hop reasoning to test the reasoning skills of de-

veloped models. Compared with the CLEVR dataset [20],

GQA greatly increases the complexity of the semantic

structure of questions, leading to a more diverse function

set. The real-world images in GQA also bring in a bigger

challenge in visual understanding. In GQA, around 94% of

questions need multi-hop reasoning, and 51% questions are

about the relationships between objects. Following [18], the

evaluation metric used in our experiments is accuracy (in-

cluding binary and open-ended).

The dimensionality of input image features Dv is 2048,

extracted from the bottom-up-attention model [1]3. For

each image, we keep the top 48 bounding boxes ranked

by confidence score with the positional information of each

bounding box in the form of [top-left-x, top-left-y, bottom-

right-x, bottom-right-y], normalized by the image width and

height. Both the meta module and the visual encoder have

a hidden dimension D of 512 with 8 heads. GloVe embed-

dings [30] are used to encode both questions and function

keywords with 300 dimensions. The total vocabulary size

is 3761, including all the functions, objects, and attributes.

For training, we first use the 22M unbalanced “all-split” to

bootstrap our model with a batch size of 2048 for 5 epochs,

then fine-tune on the “balanced-split” with a batch size of

256. The testdev-balanced split is used for model selection.

4.3. GQA Experimental Results

We report our experimental results on the test2019 split

(from the public GQA leaderboard) in Table 2. First,

we observe significant performance gain from MMN over

NMN [3], which demonstrates the effectiveness of the pro-

posed meta module mechanism. Further, we observe that

our model outperforms the VQA state-of-the-art mono-

lithic model MCAN [45] by a large margin, which demon-

strates the strong compositionality of our module-based ap-

proach. Overall, our single model achieves competitive per-

formance (top 2) among published approaches. Notably, we

achieve higher performance than LXMERT [38], which is

pre-trained on large-scale out-of-domain datasets. The per-

formance gap with NSM [19] is debatable since our model

is standalone without relying on well-tuned external scene

graph generation model [42, 43, 6].

To verify the contribution of each component in MMN,

we perform several ablation studies. (1) w/o Module Su-

pervision vs. w/ Module Supervision. We investigate the

influence of module supervision by changing the hyper-

parameter η from 0 to 2.0 to see how much influence the

3https://github.com/peteanderson80/

bottom-up-attention

Model Required Inputs Binary Open Accuracy

Bottom-up [1] V+L 66.64 34.83 49.74

MAC [17] V+L 71.23 38.91 54.06

GRN [12] V+L 74.93 41.24 57.04

LCGN [16] V+L 73.77 42.33 57.07

BAN [23] V+L 76.00 40.41 57.10

PVR [25] V+L+Program 74.58 42.10 57.33

LXMERT [38] V+L+Pre-training 77.16 45.47 60.33

NSM [19] V+L+SceneModel 78.94 49.25 63.17

MCAN [45] V+L 75.87 42.15 57.96

NMN [3] V+L+Program 72.88 40.53 55.70

MMN (Ours) V+L+Program 78.90 44.89 60.83

Table 2. Comparison of MMN single model with published state-

of-the-art methods on the blind test2019 leaderboard.

Ablation (1) Accuracy Ablation (2) Accuracy

MCAN 57.4 MMN w/o BS 58.4

MMN (η = 0) 58.1 MMN w/o FT 56.5

MMN (η = 0.1) 59.1 MMN + BS (2 ep) 59.2

MMN (η = 0.5) 60.4 MMN + BS (3 ep) 59.9

MMN (η = 1.0) 60.1 MMN + BS (4 ep) 60.4

MMN (η = 2.0) 59.5 MMN + BS (5 ep) 60.0

Table 3. Ablation study on GQA testdev. BS means bootstrapping,

FT means fine-tuning; w/o BS: Directly training on the balanced-

split; (n ep) means bootstrapped for n epochs.

module supervision has on the model performance. (2) w/o

Bootstrap vs. w/ Bootstrap. We investigate the effective-

ness of bootstrapping in training to validate whether we

could use the large-scale unbalanced split to benefit on the

model’s performance.

We further report the ablation results for the validation

split in Table 3. From Ablation (1), we observe that without

module supervision, our MMN already achieves decent im-

provement over 6-layered MCAN [45]. Since all the mod-

ules have shared parameters, our model has similar parame-

ter size as 1-layered MCAN. The result demonstrates the ef-

ficiency of the parameterization in our MMN. By increasing

η from 0.1 to 0.5, accuracy steadily improves, which reflects

the effectiveness of module supervision. Further increasing

the value of η did not improve the performance empirically.

From Ablation (2), we observe that bootstrapping is a crit-

ical step for MMN, as it explores more data to better regu-

larize functionalities of reasoning modules. Bootstrap for 4

epochs can yield better performance in our experiments.

4.4. Generalization Experimental Results

Similar to Meta Learning [9], we also evaluate whether

our meta module has learned the ability to adapt to un-

seen sub-tasks. To evaluate such generalization ability,

we perform additional experiments, where we held out

all the training instances containing verify shape,
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select(woman) Relate_inv_name([1], atop, baby) Relate_inv_name([2], left, food)

2. Where is the girl who is wearing the cyan shirt?

select(shirt) filter([1],cyan) Relate_inv([2], wearing)

Cake

Query([3], name)

Beach

1. What type of food is to the left of the baby that is  sitting atop the woman ?

Query([4], name)

MLP

MLP

Relate_inv([3], on)

Figure 6. Visualization of the inferential chains learned by our model.

Function verify shape relate name

Methods NMN 0%(MMN) 100%(MMN) NMN 0%(MMN) 100%(MMN)

Accuracy 50% 61% 74% 5% 23% 49%

Function filter location choose name

Methods NMN 0%(MMN) 100%(MMN) NMN 0%(MMN) 100%(MMN)

Accuracy 50% 77% 86% 50% 62% 79%

Table 4. Analysis of MMN’s generalizability to unseen functions. In NMN, since the unseen function does not have pre-defined module,

the performance is close to randomness. In MMN, 0% means without any training instances, 100% means fully-supervision.

relate name, filter location, choose name

to quantitatively measure model’s performance on these un-

seen functions. Standard NMN [3] fails to handle these

unseen functions, as it requires training instances for the

randomly initialized shallow module network for these un-

seen functions. In contrast, MMN can generalize the un-

seen functions from recipe space and exploits the struc-

tural similarity with its related functions to infer its se-

mantic functionality. For example, if the training set con-

tains verify size (function: verify, type: size, attr: ?)

and filter shape (function: filter, type: shape, attr: ?)

functions in the recipes, and instantiated module is capable

of inferring the functionality of an unseen but similar func-

tion verify shape (function: verify, type:shape, attr:

?) from the recipe embedding space. Table 4 shows that

the zero-shot accuracy of the proposed meta module is sig-

nificantly higher than NMN (equivalent to random guess),

which demonstrates the generalizability of proposed MMN

architecture. Instead of handcrafting a new module every

time when new function appears like NMN [3], our MMN

is more flexible and extensible for handling growing func-

tion sets. Such observation further validates the value of the

proposed method to adapt a more challenging environment

where we need to handle unknown functions.

4.5. Interpretability and Error Analysis

To demonstrate the interpretability of MMN, Figure 6

provides some visualization results to show the inferential

chain during reasoning. As shown, the model correctly ex-

ecutes the intermediate results and yields the correct final

answer. More visualization examples are provided in the

Appendix. To better interpret the model’s behavior, we also

perform quantitative analysis to diagnose the errors in the

inferential chain. Here, we held out a small validation set to

analyze the execution accuracy of different functions. Our

model obtains Recall@1 of 59% and Recall@2 of 73%,

which indicates that the object selected by the symbolic

teacher has 59% chance of being top-1, and 73% chance

as the top-2 by the student model, significantly higher than

random-guess Recall@1 of 2%, demonstrating the effec-

tiveness of module supervision.

Furthermore, we conduct a detailed analysis of function-

wise execution accuracy to understand the limitation

of MMN. We found that most erroneous functions are

relate and query, having 44% and 60% execution accu-

racy respectively. These errors are mainly related to scene

understanding, which suggests that the scene graph model

is critical to surpassing NSM [19] on performance. How-

ever, this is out of the scope of this paper and we plan to

leave it for future study.

5. Conclusion

In this paper, we propose Meta Module Network that re-

solves the known challenges of NMN. Our model is built

upon a meta module, which can be instantiated into an in-

stance module to perform designated functionalities dynam-

ically. Our approach can significantly outperform baseline

methods and achieve comparable performance to state of

the art while maintaining strong explainability.
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